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Abstract

Background: The identification of mutations that play a causal role in tumour development, so called “driver”
mutations, is of critical importance for understanding how cancers form and how they might be treated. Several
large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting
a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the
most prominent driver genes are well characterised, comparatively less is known about the role of mutations in
the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs
has resulted in a concomitant increase in the number of cancer whole genome sequences being produced,
facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes.

Results: To examine the mutational landscapes of tumour genomes we have developed a novel method to
identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary
conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies
prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly,
we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions)
and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes
rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate
several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis.

Conclusions: We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable
to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can
be used to differentiate candidate driver regions from likely passenger regions susceptible to somatic mutation.
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Background
The characterisation of driver mutations in tumour ge-
nomes is a major component of cancer genomics research
[1–3]. Cancer develops when somatic cells sustain genetic
damage. Some mutations generated in this manner allow
a cell and its progeny to survive and divide more rapidly,
eventually generating a detectable tumour. However, a
large fraction of mutations present in cancer genomes do
not confer a detectable advantage to cells, therefore do
not experience somatic selection and are termed passen-
ger mutations. The mutations that do confer an advantage

to cancerous cells are positively selected during tumour
development, and are referred to as driver mutations [4].
Driver mutations are causally related to the development
of individual cancers, so cataloging potential driver muta-
tions is critical to understanding the mechanisms and dy-
namics of tumour development. Additionally, because
driver mutations contribute to and sometimes are essen-
tial for the growth and survival of a tumour, the presence
or absence of specific driver mutations are strong candi-
date biomarkers for personalized cancer therapies.
Driver mutations within the coding regions of the gen-

ome have been extensively characterized [4–8]. This has
generally taken the form of large studies both within and
across cancer types that have attempted to identify driver
genes (genes that contain driver mutations). As a result of
this work, several strategies have been developed that can
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be used to infer regions that are targets of positive somatic
selection (putative driver regions) from the somatic muta-
tions present in large sets of tumours. Positive selection is
expected to increase the frequency with which a mutation
is observed in sequencing experiments above the rate ex-
pected simply from mutational processes alone. As a re-
sult, recurrence of a mutation, or mutations within a
given region of the genome relative to the mutation rate
of that region is a signal of positive selection [6–9]. Driver
mutations are also likely to be mutations that have strong
functional effects. As a result, the functional consequence
of a mutation can be an indication of the likelihood that a
mutation or region has driver potential [10]. In the con-
text of coding mutations for example, nonsynonymous
mutations are apriori more likely to be driver mutations
than synonymous mutations. Driver mutations often dis-
play a clustered pattern within driver regions across tu-
mours, particularly in oncogenes [11, 12]. This can be the
case when mutations in two separate tumours target the
same functional site or domain, creating a clustered pattern
where mutations tend to occur within the same region, and
are mutually exclusive across individual tumours (i.e. only
one mutation at the site per tumour).
Most efforts to characterize driver mutations have fo-

cused exclusively on coding regions of the genome, but
recent examples of non-coding mutations that can con-
tribute to tumourigenesis have sparked interest in the
non-coding regions of the cancer genome [13]. For ex-
ample, mutations in the promoter of the telomerase re-
verse transcriptase (TERT) gene have been identified as
pan-cancer driver mutations that function by creation
of a de novo transcription factor binding site upstream
of TERT, resulting in TERT mRNA upregulation [14, 15].
TERT mutations occur recurrently at two nucleotides up-
stream of TERT in a mutually exclusive manner. Several
studies have also conducted systematical screens of the
non-coding regions of the genome for driver mutations
[16–25]. These efforts have mainly focused on identifying
recurrently mutated regions, but have also included other
approaches. In the context of non-coding mutations, one
potential strategy is to use various annotations to increase
the priority given to certain types of mutations, similar to
the use of annotations (e.g. PolyPhen, SIFT) for coding
mutations. Examples of annotations that have been ap-
plied to non-coding mutations include information about
motif disruption/creation [19, 21, 24] and human germline
polymorphism frequency [19]. Other studies have corre-
lated non-coding mutation status with mRNA expression
[18, 21] and clinical data [21, 26].
These studies have predominantly focused on the sub-

set of the non-coding genome that is most likely to be
functional (e.g. promoter or regulatory regions). However,
there may be driver regions that lie outside of currently
known functional regions or in less well-documented and

studied regions. As such, the aforementioned studies not-
withstanding, the extent and significance of the contribu-
tion of non-coding mutations in cancer development has
yet to be fully eludicated. This is in part due to the fact
that we do not possess a clear appreciation of how to ex-
tricate the information from cancer genomes necessary to
interpret the significance of non-coding mutations.
Therefore, in this study we sought to develop a novel

method for the identification of mutational hotspots in
cancer genomes that can be applied to prioritize putative
non-coding driver regions in cancer. First, we aimed to
develop a method that was applicable to entire genome,
both coding and non-coding, rather than only a subset
of regions. Second, we decided to incorporate informa-
tion on evolution conservation in addition to mutation
recurrence, and to determine what impact the inclusion
of this information has on the regions identified. We de-
veloped a procedure for validating the performance of
our scoring method that is based on the ability to iden-
tify known driver genes within coding regions. We also
applied our method in a cancer type specific analysis to
evaluate the possibility that some non-coding driver
regions might be mutated in a cancer type specific
manner.

Results
We have developed a scoring method, described in detail
below, that identifies regions of the genome that are
more frequently mutated compared to flanking regions
(recurrence score) and that have mutations at bases that
are more highly conserved (conservation score). We
have applied this method to 1349 whole cancer genomes
from a variety of cancer types (Additional file 1: Table S1)
for 50 bp windows spanning the entire human genome.
Unlike previous efforts aimed at identifying non-coding
driver mutations, which have usually focused on a limited
set of non-coding regions (e.g. promoters, DNase I hyper-
sensitive sites) we have applied our method in an unbiased
manner to the entire genome, with the sole exception of
regions where mappability is a concern. Here, we examine
the characteristics and performance of our scores, as well
as highlighting some promising candidate regions.

Mutational processes in cancer genomes
Our objective was to identify regions of the non-coding
genome that are under positive selection during tumour-
ogenesis. We searched for regions of the genome that
are recurrently somatically mutated in cancer, a signal of
positive selection. Although recurrent mutation may be
a result of selection, it may also result from mutational
processes acting on cancer genomes. There is consider-
able heterogeneity in mutation rates between different
regions of the genome [9] as well as between different
tumours (Additional file 2: Figure S1). To discover
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regions that are mutated more than would be expected
from underlying mutational processes, we implemented
a score that normalized for the mutation rate in flanking
regions. This method can account for mutational pro-
cesses that are constant over large portions of the gen-
ome, but may falsely identify portions of the genome
that are particularly susceptible to mutation within a fo-
cused region. Because of the possibility that such focal
mutational processes might contaminate regions identi-
fied by our scoring method, we additionally sought to
understand mutational processes acting on whole cancer
genomes for the purpose of flagging regions that are po-
tential false positives.

Identification of putative hypermutated regions
We reasoned that regions of the genome with unusually
high exposure to mutational processes would be ex-
pected to have a consistently elevated likelihood of mu-
tation, whereas selection is expected to diminish once a
driver has already been mutated. For example, gain of

function mutations in oncogenes generally only need to
occur once to confer driver activity, and often display
mutual exclusivity with other mutations that have the
same effects or that target the same pathway. Tumour
suppressor genes are an exception, where two mutations
may be required to confer driver activity. Thus, regions
that are susceptible to mutation are more likely to sustain
repeated mutations within the same region in the same
tumour, while regions that are recurrently mutated due to
selection are more likely to be mutated only once per
tumour. In order to identify regions that may be recur-
rently mutated due to mutational processes rather than
selection, we calculated the average number of mutations
per patient for each region under consideration. We con-
sidered a region to be potentially hypermutated when the
region had an average of 1.2 mutations per mutated pa-
tient or greater. We examined the prevalence of mutations
within these putative hypermutated regions across tumour
types. Several tumour types have an excess of mutations
from hypermutated regions (Fig. 1) such as lymphomas

Fig. 1 For each of three categories: recurrent and hyper mutated regions (RHM, red, 832 total mutations), non-recurrent hypermutated regions
(HM, green, 20958 total mutations), and other regions (OR, blue, 10713694 total mutations), we show the percent of mutations within region that
belong to different cancer types. Malignant lymphoma has a disproportionate share of hypermutated regions, suggesting that our method of
identifying hypermutated regions is capturing some regions that are targets of somatic hypermutation in this cohort. We define a region to be
hypermutated when it has > 1.2 mutations per tumour, and to be recurrently mutated when it has a recurrence score greater than 10
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(“MALY-DE”) and renal cancers (“RECA-EU”). Several of
the regions that we have identified as being hypermutated
by this method lie in promoter regions and are primarily
mutated in lymphoma, potentially suggesting that these
regions are targets of somatic hypermutation rather than
selection. Furthermore, some of these regions such as the
promoter regions of BCL2 and MYC have been identified
as putative targets of selection in a previous analysis [26].
Analysis of mutational signatures within the putatively
hypermutated regions that we identified did not identify

any specific mutation process that could explain the
pattern of base substitutions in these regions (Fig. 2),
although it is possible that this mutational pattern is
partially due to a process identified in CLL and lymphoma
that is implicated with AID induced somatic hypermuta-
tion [27]. To evaluate the possible sensitivity of our method
for identifying hypermutated regions to the specific thresh-
old we use, we compared the classification of regions at a
threshold of 1.2 with several other thresholds. For all
values, > 97% of regions received the same designation

Fig. 2 Observed mutational spectra within recurrent hypermutated, non-recurrent hypermutated, and non-hypermutated regions. Each column
represents a particular category of mutation, defined by the base change, as well as the bases that flank the mutated nucleotide, both 5’ and 3’.
The height of each bar is proportional to the frequency of the mutational category within each region type
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(hypermutated vs non-hypermutated) when compared to
the 1.2 threshold. We therefore use the > 1.2 threshold
throughout the rest of our analysis.

Mutational processes at CTCF binding sites
In addition to the putatively hypermutated regions that
we identified, we also observed that many recurrently
mutated regions overlap regions with ChIP-seq evidence
of CTCF binding (Fig. 3a, CTCF binding vs other re-
gions p = 3.8 x 10−18, CTCF DNase I hypersensitive vs
other regions p = 2.08 x 10−263, CTCF binding vs CTCF
DNase I hypersensitive p = 1.24 x 10−46). A recent ana-
lysis also identified an association between CTCF bind-
ing and recurrent mutation [20] potentially suggesting
selection of these mutations, while other evidence from
colorectal cancer by Katainen et al. suggests that CTCF
binding sites may be subject to a unique mutational
process which displays an excess of T > G (A > C) and
T > C (A > G) mutations [28]. To discern whether the
observed recurrence at CTCF binding sites in our data-
set could result from a mutational process rather than
selection, we compared the mutations at CTCF binding
sites with the signature observed in Katainen et al. [28].
While CTCF binding sites in general do not show a sig-
nature similar to the one in [28] CTCF binding sites that
we also identified as recurrent in our analysis display an
excess of T > G and T > C mutations (Fig. 3b). When we
examined specific recurrently mutated CTCF binding site
that was also identified in [28] we found that the same
bases within the binding site were recurrently mutated

(Additional file 2: Figure S2). This suggests that the recur-
rently mutated CTCF binding sites identified by our ana-
lysis are likely the result of the same process implicated in
Katainen et al. [28]. CTCF binding sites that additionally
have overlapping evidence of DNase I hypersensitivity in
encode data display increased recurrence scores, consist-
ent with the explanation that these mutations are the re-
sult of a mutational process related to DNA repair [29].
Many of the CTCF mutations in our sample come from a
set of gastric cancer genomes, a cancer type not previously
included by Katainen et al. Our analysis thus extends
these observed patterns to this cancer type. Recent ana-
lyses have shown that transcription factor bound regions
of the genome are subject to unique mutational processes
and these mutations often preferentially target certain
bases (e.g. G/C bases) [29, 30]. Our recurrence score cor-
relates weakly with GC context (rank correlation 0.113)
perhaps due to coding driver genes having high GC%
(Additional file 2: Figure S3). Regions with recurrence
score > 10 have comparable GC% to regions with score <
10 (Wilcoxon rank sum p-value = 0.81).

Pan-cancer prioritisation of non-coding mutations
Having identified CTCF binding sites and regions
with >1.2 mutations per tumour as regions that might
be enriched for false positives, we next sought to identify
regions that were likely to be under selection. We vali-
dated our prioritisation scores by considering exonic
regions within our sample, because many large analyses
have already identified known driver genes in protein

Fig. 3 (a) CTCF binding sites that overlap (green) and do not overlap (red) DNase I hypersensitive sites show a higher recurrence score compared
to non-CTCF binding regions (blue); (b) We classified mutations as coming from recurrent CTCF binding sites (orange), non-recurrent CTCF binding
sites (blue) and non-CTCF binding sites (pink). For each of these three categories, we give percentages indicating how many mutations from each
category exhibit each of the six possible base changes. We define a CTCF binding site as recurrent when it has a recurrence score greater than 10
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coding regions. Our recurrence score (p = 3.8 x 10−27),
conservation score (p = 1.32 x 10−19), and combined
score (p = 3.22 x 10−30) were able to discriminate
known driver genes within the set of all exonic regions
(Fig. 4 a-c), suggesting that our method has reasonable
effectiveness within this subset of the genome, despite
the fact that we did not take advantage of annotations
that are available for coding mutations (e.g. non-
synonymous vs synonymous mutations). We confirmed
this by direct comparison of scores between driver and
non-driver regions, as well as by simulation. To com-
pare the known driver regions to a set of non-drivers of
equal size, we resampled the non-driver exonic regions
10,000 times for each score, and compared the median
score of the sampled non-drivers to the observed me-
dian of the known drivers. For all three scores, none of
the 10,000 samples exceeded the median driver score
(Fig. 4 d-f ). Several of the top scoring coding regions
overlap well-known driver genes such as TP53 and
KRAS. To investigate whether the inclusion of coding
sequence within flanking regions had an impact on the

regions identified, we also rescored each candidate re-
gion, this time excluding coding regions from the cal-
culation of the flanking mutation rate. The regions
identified were largely similar, with 94% of top regions
in common between the two scoring methods. In order
to assess whether the mutational counts are dominated
by hypermutated samples, we recalculated the number
of mutations in each 50 bp window, excluding samples
that are two standard deviations above the mean num-
ber of mutations. These counts are highly correlated
(r = 0.88, p < 0.0001) and this correlation is maintained
when considering only regions that have greater than
5 mutations in the full dataset (r = 0.937, p < 0.00001).
In addition to identifying known coding drivers, we also

identified recurrently mutated non-coding regions, includ-
ing both previously identified regions as well as novel re-
gions (Fig. 5; Tables 1, 2, 3 and 4). We identified TERT
(Additional file 2: Figure S4) and PLEKHS1 (Additional
file 2: Figure S5) promoters as being recurrently mutated,
consistent with previous analyses [21]. TERT appears in
the top 50 regions genome-wide by recurrence (Table 1)

Fig. 4 For exonic regions, known driver genes score significantly higher in terms of recurrence (a, d) conservation (b, e) and combined scores (c, f).
We also compare the observed medians scores for drivers (red arrows) to median scores generated by resampling non-driver regions (grey bars, d - e)
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but not when ranked by the combined score (Table 3).
One explanation for this is that in a genome-wide context,
adding conservation will tend prioritise coding regions
more highly, given the higher conservation of coding com-
pared to non-coding regions. In support of this interpret-
ation, Table 3 appears to be enriched for coding drivers
relative to Table 1, while comparison of the top ten non-
coding, non-hypermutated regions based on recurrence
(Table 2) and combined score (Table 4) are highly similar.
Despite the similarity of these lists, adding conservation
does prioritise some interesting regions, including an in-
tronic region that shows high conservation, as well as a
conserved region of a miRNA. We discuss several candi-
date regions in more detail in the next section.

Novel recurrent non-coding mutations
Our method has highlighted several novel non-coding
regions that may be selected for in cancer. Many highly
recurrent regions are either known coding drivers or
are regions that we have identified as hypermutated.

Although a region can be both hypermutated and selected,
we focus on highlighting regions that are less likely to
hypermutated. To demonstrate the types of novel regions
identified by our analysis, we examined several regions
that scored among the top regions in terms of both recur-
rence and conservation scores in our pan-cancer analysis.
The first region that we examined lies between the

protein-coding gene MED16 and the small nuclear RNA
RNU6-2 (Additional file 2: Figure S6). This regions lies
within a DNase I hypersensitivity site and shows heavy
transcription factor binding, suggestive of promoter ac-
tivity or some other regulatory function. Each mutation
within the region lies within a conserved sub-region of
the window. No mutations fall within the unconserved
regions surrounding this sub-region or within the nearby
RNA gene, despite the fact that these latter regions make
up the majority of the window. Driver mutations often
displaying clustering within specific functional regions.
The pattern observed in this region, with mutations clus-
tered within a single conserved element, is potentially

Fig. 5 Scatterplot of all regions mutated in more than two patients with conservation score on the vertical axis and Log (recurrence score + 2) on
the horizontal axis. The points are colored based on a classification of each region into one of four categories: coding, non-driver regions (blue),
coding driver regions (red), non-coding, hypermutated regions (yellow), and non-coding non-hypermutated regions (green). Several known driver
regions are also labelled
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Table 1 Top 50 regions in terms of recurrence score identified by our method. We give the position of the region, number of
genomes that are mutated within the region, the recurrence score, and a classification of the region based annotations and our
method of identifying hypermutated regions. We also manually annotated each region by viewing in the UCSC genome browser

Rank Chr Start End Mutated samples Score Automated annotation Manual annotation

1 chr12 25398250 25398300 256 399.9 Driver KRAS exon

2 chr17 7577100 7577150 68 182.1 Driver TP53 exon

3 chr17 7577500 7577550 62 165.7 Driver TP53 exon

4 chr3 41266100 41266150 65 149.3 Driver CTNNB1 exon

5 chr17 7578400 7578450 50 130.6 Driver TP53 exon

6 chr17 7577550 7577600 41 103.9 Driver TP53 exon

7 chr17 7578200 7578250 32 82.8 Driver TP53 exon

8 chr17 7578250 7578300 31 80.1 Driver TP53 exon

9 chr17 7577050 7577100 29 72.2 Driver TP53 exon

10 chr17 7578500 7578550 26 64.4 driver TP53 exon

11 chr10 96652800 96652850 14 60.0 hotspot non-coding

12 chr12 6899300 6899350 3 57.1 hotspot CD4 intron

13 chr17 7574000 7574050 19 46.2 driver TP53 exon

14 chr17 7578450 7578500 18 43.5 driver TP53 exon

15 chr17 7578350 7578400 17 40.9 driver TP53 exon

16 chr3 195892250 195892300 18 38.7 non-coding non-coding

17 chr17 7577000 7577050 14 38.3 driver TP53 exon

18 chr12 64749950 64750000 7 35.5 hotspot C12orf56 intron

19 chr13 50016900 50016950 8 34.5 hotspot CAB39L intron

20 chr11 63881800 63881850 9 34.4 hotspot FLRT1 intron

21 chr15 64857000 64857050 9 31.6 hotspot ZNF609 intron

22 chr17 7578150 7578200 13 30.6 driver TP53 exon

23 chr17 7578550 7578600 13 30.5 driver TP53 splice site

24 chr16 88383450 88383500 7 28.9 hotspot Non-coding / TF binding

25 chr14 24895100 24895150 11 28.8 hotspot Non-coding / TF binding

26 chr17 79389900 79389950 9 28.8 hotspot BAHCC1 intron

27 chr17 17424850 17424900 7 28.5 hotspot PEMT intron

28 chr22 46697350 46697400 5 27.8 hotspot GTSE1 intron

29 chr8 30717550 30717600 7 27.8 hotspot TEX15 exon-intron border

30 chr7 76949650 76949700 6 27.6 hotspot GSAP intron

31 chr14 74239050 74239100 8 27.2 hotspot ELMSAN1 intron

32 chr4 819750 819800 6 27.0 hotspot CPLX1 intron

33 chr16 81908550 81908600 7 26.4 hotspot PLCG2 intron

34 chr4 39684550 39684600 10 26.4 non-coding non-coding

35 chr22 39962000 39962050 6 26.2 hotspot non-coding

36 chr12 25380250 25380300 20 26.1 driver KRAS exon

37 chr3 43746400 43746450 11 25.4 non-coding ABHD5 intron

38 chr17 7579300 7579350 10 25.4 driver TP53 exon

39 chr9 21971100 21971150 12 24.5 driver CDKN2A exon

40 chr8 9921850 9921900 12 24.3 non-coding MRSA intron

41 chr11 70764100 70764150 6 24.1 hotspot SHANK2 intron

42 chr19 12597300 12597350 9 23.8 hotspot ZNF709 intron
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suggestive of driver activity. Given the evidence for
transcription factor binding in this region, one possi-
bility is that this conserved sub-region is a motif asso-
ciated with protein binding. Although mutations at
this locus are focused within this conserved sub-
region, the mutations are spread throughout the sub-
region, not focused at any single nucleotide, and do
not always show consistent base changes in the cases
where the mutations do occur at the same nucleotide.
Assuming that these mutations are in fact targeting
some kind of binding motif, the relatively even distri-
bution of mutations without consistent base changes
possibly suggests that these mutations are disrupting a
binding motif as opposed to a creating a novel motif.
To assess the possibility that these mutations may alter
protein-binding motifs at the site, we searched the ref-
erence sequence of the mutated region for possible
matches with known motifs. We identified matches
with the transcription factors FOXL1, NKX3-1, and
MEF2A. We also searched for matches when the refer-
ence sequence is replaced with several of the mutants
observed in our dataset. In the case of MEF2A both
mutations we tested reduced the maximum similarity
score from 13.7 to 5.7 and 0.92, suggesting that the

mutations observed in this region may be disruptive to
this motif (Additional file 2: Figure S7).
The second region that we highlight is deep within the

intron of the gene GPR126 (Additional file 2: Figure S8).
This region shows high levels of conservation, and the
mutations observed is region occur exclusively at two base
positions. All mutations within this region are entirely mu-
tually exclusive, and there are no other mutations within
this region other than at these two positions. This pattern
of mutation is similar to that initially observed at muta-
tions in the TERT promoter, and is suggestive of driver
activity. These mutations also occur at the same posi-
tions within a motif (GAAC) as mutations in the
PLEKHS1 promoter, potentially suggesting a common
process is occurring at these two loci. These mutations
lie far from any exon-intron boundaries, ruling out the
possibility that they affect donor or acceptor sites. This
region overlaps a DNase I hypersensitive site, potentially
suggesting that this region contains on intronic regulatory
elements. We identified motifs matching the transcrip-
tion factors FOXL1, POU2F2, FOXA1, and FOXP2
overlapping this region. We did not notice a consistent
pattern in the effects of the observed mutations on
motif occurrence.

Table 1 Top 50 regions in terms of recurrence score identified by our method. We give the position of the region, number of
genomes that are mutated within the region, the recurrence score, and a classification of the region based annotations and our
method of identifying hypermutated regions. We also manually annotated each region by viewing in the UCSC genome browser
(Continued)

43 chr17 49455750 49455800 10 23.6 hotspot non-coding

44 chr5 1295200 1295250 14 23.4 non-coding TERT promoter

45 chr7 151591800 151591850 6 23.2 hotspot non-coding

46 chr21 44524450 44524500 9 22.9 driver U2AF1 exon

47 chr1 45914900 45914950 7 22.7 hotspot TESK2 intron

48 chr8 29901300 29901350 9 22.4 non-coding non-coding

49 chr7 606050 606100 7 22.0 hotspot PRKAR1B intron

50 chr2 49173750 49173800 27 22.0 non-coding CTCF binding

Table 2 Top ten non-coding, non-hypermutated regions in terms of recurrence score

rank chr start end samples mutated score manual annotation

1 chr3 195892250 195892300 18 38.7 non-coding

2 chr4 39684550 39684600 10 26.4 non-coding

3 chr3 43746400 43746450 11 25.4 ABHD5 intron

4 chr8 9921850 9921900 12 24.3 MSRA intron

5 chr5 1295200 1295250 14 23.4 TERT promoter

6 chr8 29901300 29901350 9 22.4 non-coding

7 chr2 49173750 49173800 27 22.0 CTCF binding

8 chr8 70576150 70576200 21 21.8 CTCF binding

9 chr19 893450 893500 9 21.6 MED16 promoter

10 chr2 47359300 47359350 8 21.0 C2orf61 intron

Piraino and Furney BMC Genomics  (2017) 18:17 Page 9 of 17



Table 3 Top 50 regions in terms of combined score identified by our method. We give the position of the region, number of
genomes that are mutated within the region, the combined score, and a classification of the region based annotations and our
method of identifying hypermutated regions. We also manually annotated each region by viewing in the UCSC genome browser

rank chr Start End Mutated samples Score Automated annotation Manual annotation

1 chr12 25398250 25398300 256 208.4 driver KRAS exon

2 chr17 7577100 7577150 68 98.1 driver TP53 exon

3 chr17 7577500 7577550 62 89.1 driver TP53 exon

4 chr3 41266100 41266150 65 84.0 driver CTNNB1 exon

5 chr17 7578400 7578450 50 72.0 driver TP53 exon

6 chr17 7577550 7577600 41 57.5 driver TP53 exon

7 chr17 7578250 7578300 31 46.1 driver TP53 exon

8 chr17 7578200 7578250 32 45.8 driver TP53 exon

9 chr17 7577050 7577100 29 40.9 driver TP53 exon

10 chr17 7578500 7578550 26 38.6 driver TP53 exon

11 chr10 96652800 96652850 14 30.1 hotspot Non-coding

12 chr12 6899300 6899350 3 28.6 hotspot CD4 intron

13 chr17 7578450 7578500 18 26.4 driver TP53 exon

14 chr17 7578350 7578400 17 25.5 driver TP53 exon

15 chr17 7574000 7574050 19 25.4 driver TP53 exon

16 chr17 7578550 7578600 13 23.3 driver TP53 exon

17 chr17 7577000 7577050 14 22.6 driver TP53 exon

18 chr17 7578150 7578200 13 22.5 driver TP53 exon

19 chr21 44524450 44524500 9 20.9 driver TP53 exon

20 chr3 41266050 41266100 10 20.2 driver CTNNB1 exon

21 chr3 195892250 195892300 18 19.5 non-coding Non-coding

22 chr9 21971100 21971150 12 17.9 driver CDKN2A exon

23 chr12 64749950 64750000 7 17.7 hotspot C12orf56 intron

24 chr17 7579300 7579350 10 16.8 driver TP53 exon

25 chr2 198266800 198266850 9 16.8 driver SF3B1 exon

26 chr12 25380250 25380300 20 16.8 driver KRAS exon

27 chr18 48591900 48591950 11 16.8 driver SMAD4 exon

28 chr3 178936050 178936100 9 16.7 driver PIK3CA exon

29 chr11 63881800 63881850 9 16.3 hotspot FLRT1 intron

30 chr13 50016900 50016950 8 16.0 hotspot CAB39L intron

31 chr19 11134250 11134300 6 15.7 driver SMARCA4 exon

32 chr15 64857000 64857050 9 15.5 hotspot ZNF609 intron

33 chr20 57484400 57484450 13 15.5 driver GNAS exon

34 chr16 3786700 3786750 5 15.4 driver CREBBP exon

35 chr17 17424850 17424900 7 14.9 hotspot PEMT intron

36 chr14 24895100 24895150 11 14.7 hotspot Non-coding / TF binding

37 chr18 48575150 48575200 7 14.7 driver SMAD4 exon

38 chr18 48604750 48604800 7 14.6 driver SMAD4 exon

39 chr19 11132500 11132550 5 14.6 driver SMARCA4 exon

40 chr17 79389900 79389950 9 14.3 hotspot BAHCC1 exon

41 chr18 48591800 48591850 8 14.2 driver SMAD4 exon

42 chr3 178952050 178952100 7 14.2 driver PIK3CA exon
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We additionally identified recurrent mutations at
highly conserved positions overlapping the miRNA
MIR142 (Additional file 2: Figure S9). These mutations
are spread throughout the region, and occur exclusively
in lymphoma samples, suggesting that this region may
be a target of somatic hypermutation. Puente et al. also
identified recurrent mutations near MIR142 in CLL, which
they attribute to somatic hypermutation [22]. Despite the
fact that this region may be a target of hypermutation ra-
ther than selection, the appearance of this region within
the top ten non-coding, non-hypermutated regions in
terms of combined score (Table 4) but not recurrence
score (Table 2) suggests that conservation can highlight re-
gions that are highly conserved but have lower recurrence.
All but one of the mutations observed in our dataset
overlap the mature microRNA hsa-miR-142-5p based on
the miRBase [31] sequence (Additional file 2: Figure S10),
suggesting that these mutations may have an impact of
the ability of the mircoRNA to bind target mRNAs. This
creates the possibility that this region is a target of both
hypermutation and selection. As a result, it may be useful
to use both scores separately to nominate regions with
different characteristics. Finally, we highlight a recur-
rently mutated region in an intron in the gene MSRA

(Additional file 2: Figure S11). Similar to several of the
other regions highlighted, this region is mutated pre-
dominantly at two base positions, which in this case
occur at neighbouring positions. We additionally iden-
tified motifs that are potential matches for transcription
factors SOX9 and SRY overlapping this region. We did
not notice a consistent pattern in the effects of the ob-
served mutations on motif occurrence.

Cancer type specific analysis
So far, we have focused on regions that are mutated in
multiple cancer types. To investigate if some non-coding
driver mutations are mutated primarily in one or a few
cancer types only, we applied our scoring method inde-
pendently to each cancer type in the dataset with more
than 75 whole genomes. Consistent with our pan-cancer
analysis, when we applied our method to the exonic re-
gions of specific cancer types, we again identified many
known cancer genes (Fig. 6). Several of the genes that
we identified are particularly prominent in cancer types
in which they are known to be highly mutated, such as
VHL in renal cancer, PIK3CA in breast cancer, TP53 in
ovarian cancer, SMAD4 in esophageal and gastric cancer,
and KRAS in pancreatic cancer.

Table 3 Top 50 regions in terms of combined score identified by our method. We give the position of the region, number of
genomes that are mutated within the region, the combined score, and a classification of the region based annotations and our
method of identifying hypermutated regions. We also manually annotated each region by viewing in the UCSC genome browser
(Continued)

43 chr7 76949650 76949700 6 14.0 hotspot GSAP intron

44 chr14 74239050 74239100 8 13.9 hotspot ELMSAN1 intron

45 chr17 56408600 56408650 5 13.9 non-coding MIR142 non-coding

46 chr22 46697350 46697400 5 13.6 hotspot GTSE1 intron

47 chr8 30717550 30717600 7 13.4 hotspot TEX15 exon-intron border

48 chr10 89692900 89692950 3 13.3 driver PTEN exon

49 chr17 7577600 7577650 5 13.3 driver TP53 splice site

50 chr4 819750 819800 6 13.2 hotspot CPLX1 intron

Table 4 Top ten non-coding, non-hypermutated regions in terms of combined score

rank chr start end samples mutated score manual annotation

1 chr3 195892250 195892300 18 38.7 non-coding

2 chr4 39684550 39684600 10 26.4 non-coding

3 chr3 43746400 43746450 11 25.4 ABHD5 intron

4 chr8 9921850 9921900 12 24.3 MSRA intron

5 chr5 1295200 1295250 14 23.4 TERT promoter

6 chr8 29901300 29901350 9 22.4 non-coding

7 chr2 49173750 49173800 27 22.0 CTCF binding

8 chr19 893450 893500 9 21.6 MED16 promoter

9 chr6 142706200 142706250 9 18.0 GPR126 intron

10 chr17 56408600 56408650 5 11.3 MIR142
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Cancer type specific non-coding mutations
In addition to the regions identified in our pan-cancer ana-
lysis, we also identified non-coding regions that are recur-
rently mutated in individual cancer types (Additional file 1:
Tables S2 and S3). We identified recurrent mutations
within an intron of the PRIM2 gene (Additional file 2:
Figure S12) specifically in renal cancer. These mutations
occurred at two bases in a mutually exclusive manner, and
exclusively in renal cancer samples. We identified mo-
tifs matching the transcription factors FOXL1, BRCA1,

FOXH1, FOXP1, PRDM1, TCF7L2, ZNF236, IRF1,
STAT3, and FOXP2 overlapping this region. Two mu-
tant sequences we tested had maximum scores of 11.1
compared to −0.8 for matches to FOXP2 (Additional
file 2: Figure S13). We also identified recurrent muta-
tions within an intron of RAD51B in several breast can-
cer samples (Additional file 2: Figure S14). RAD51B is a
DNA repair gene involved in homologous recombination
[32]. We identified motifs matching the transcription fac-
tors FOXC1, MZF1_5-13, MAFF, MAFK, EGR1, ESR2,

Fig. 6 Scatterplots of exonic regions with three or more patients mutated within each cancer type. For each scatterplot, we plot regions mutated
in three or more samples from a cancer type based on scores calculated only within each cancer type. Regions overlapping known driver genes
are depicted in red, while other coding regions are depicted in blue. Several known driver genes are labeled in each plot
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GATA2, GATA3, and THAP1 overlapping this region. We
did not notice a consistent pattern in the effects of the ob-
served mutations on motif occurrence. Given the import-
ance of this repair pathway in breast cancer, this region
may warrant further study in this cancer type. Within the
regions prioritised by the combined score, we also identi-
fied several extremely highly conserved regions that are
recurrently mutated in the LIRI-JP cohort (liver cancer),
including non-coding regions of the genes BCL11A,
BCL6, and PAX5 (Additional file 1: Table S3).

Discussion
As is the case in the analysis of coding mutations, we
have found that mutational heterogeneity is a critical fac-
tor that impacts the identification of non-coding driver re-
gions in cancer. Our initial analysis revealed that several
promising candidate regions, some of which have been
suggested in the literature as potential driver regions, may
actually be recurrently mutated primarily due to focal mu-
tational processes rather than selection. We have found
potential evidence of an AID associated somatic hyper-
mutation signature as well as a recenty identified process
which targets CTCF binding sites [28] as prominent local
mutational processes. In addition, we have proposed
methods for identifying and filtering out these putatively
hypermutated regions, allowing greater focus on regions
for which we believe the evidence favouring positive selec-
tion is stronger. Using the exome to validate our scoring
method, we showed that all three scores can differentiate
known drivers from other coding regions. We also identi-
fied several known driver genes that display a mutation
pattern across cancer types consistent with expectations.
In addition to using recurrence as previous studies have,

we included conservation as part of the prioritization
scores. We have shown that the conservation score can
separate known coding drivers from non-drivers. Conser-
vation may also be useful in the analysis of non-coding
mutations, both to increase confidence that recurrent
non-coding mutations have the potential to impact func-
tion, as well as to highlight non-coding regions that may
have lower recurrence but driver potential due to higher
conservation. The combined score also appears to outper-
form the recurrence score alone in terms of distinguishing
known driver regions from other exonic regions, suggest-
ing that conservation provides valuable information in
addition to recurrence, although this may be more difficult
to interpret within the context of non-coding mutations,
given that non-coding regions are generally less well con-
served as a whole compared to coding regions. The gener-
ally low conservation observed in non-coding regions
sugggests that functional non-coding mutations might not
necessarily always occur at conserved positions. Thus, it is
useful to consider recurrent mutations, even if they are
not at highly conserved positions. Using a measure such

as the combined score may also highlight regions that have
moderate recurrence but which are highly conserved. These
regions would be good candidates for more “hill-like” drivers
[8]. As a result, we believe that using both recurrence and a
combined score that incorporates recurrence and conserva-
tion to prioritise regions that may have different properties
is a promising strategy. It is also worth noting that more
complex ways of combining these scores might yield add-
itional benefits. We have averaged the scores, after normaliz-
ing to make the scores roughly comparable, but other
transformations might also produce insights.
Within these genomes, we also identified several novel

recurrently mutated regions. In addition to the novel re-
current regions we identified in a pan-cancer analysis,
we also identifed several novel non-coding regions that
appear to be cancer type specific, some of which have
high frequencies in the cancer types in which they occur.
These regions, as well as other regions that score highly
within our framework, may be good targets for future
analyses of non-coding somatic mutations in cancer.
Although the methods used here can not definitively
establish a mutation as a driver, further investigation of
non-coding mutations using these and other methods
may reveal new non-coding driver mutations. These drivers
may have important implications for cancer therapy if they
are directly targetable by drugs or involved in the regulation
of pathways that are targetable. Non-coding mutations such
as TERT promoter mutations [33] have been associated
with clinical outcomes, as have mutational processes in
cancer [34–36]. We have highlighted regions that have an
excess of mutations in cancer genomes. These regions may
lead to important insights that may have clinical implica-
tions if they are either under selection or indicative of
underlying mutational processes.

Conclusions
We have developed a novel method for the identification
of putative driver regions in cancer, which is applicable
to both coding and non-coding regions. We have shown
that this method performs well at identifying prominent
coding and non-coding regions that are known or highly
suspected to play a role in cancer. Unlike previous at-
tempts to identify recurrently mutated non-coding regions,
we apply our method to the entire genome to identify
novel non-coding regions mutational hotspots. We also
highlight recurrently mutated regions that may have re-
sulted from increased exposure to mutational process ra-
ther than selection, some of which have been identified
previously as targets of selection.

Methods
In order to identify recurrently mutated non-coding re-
gions that are potential targets of somatic selection dur-
ing the development of cancer, we devised a scoring
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system to prioritise regions of the genome based on sig-
natures that are indicative of selection. In the context
of coding mutations, driver genes are known to be re-
currently mutated above background mutation rates
and also show a pattern of enrichment for functional
mutations (e.g. stop-gain, non-synonymous) compared
to mutations that are less likely to be function (e.g. syn-
onymous mutations). Applying similar principles to
non-coding regions, we developed two scores, one that
is designed to detect regions that are recurrently mutated,
and a second designed to detect regions that have muta-
tions at conserved bases, working on the hypothesis that
conserved positions are more likely to be functional. We
then applied these scores, as well as a combined score, to
a set of over 1300 cancer whole genomes.

Whole genome mutation data
We assembled a set of pre-called somatic mutations
from three sources: release 18 of ICGC [37], data from
Alexandrov et al. [27], and the supplemental materials
of Wang et al. [38]. Some of these sources contain data
from both whole exome and whole genome sequencing.
We only analyzed mutations annotated as coming from
whole genome sequencing. To avoid the possibility of
duplicated samples, in cases where the same tumour
type was included in ICGC and the data from Alexan-
drov et al. we included data from only one source. The
distribution of samples across tumour types and data
sources is summarized in Additional file 1: Table S1.
After filtering out samples lacking sufficient numbers of
mutations, we were left with a total of 1349 samples for
our final analysis.

Annotation data
We used the UCSC genome browser [39, 40] to obtain
various annotation files, including dbSNP and COSMIC
variants, information on gene models, conservation,
mappability, and epigenetic data.

Software
We processed genomic data using bedtools v2.25.0 [41]
and conducted statistical analysis and data manipulation
in R 3.2.3 [42].

Processing mutation data
We annotated all data to human reference genome ver-
sion hg19. Preliminary analysis revealed several frequent
mutations that overlap known germline SNPs, suggestive
of the possibility that these mutations are not truly som-
atic. We removed from consideration mutations that
occur at the same genomic coordinate as a known dbSNP
entry, unless that genomic position was also annotated as
mutated in COSMIC (cancer.sanger.ac.uk) [5]. After filter-
ing out known dbSNP entries, we also excluded tumour

samples with fewer than 1000 total mutations from fur-
ther analysis. For dbSNP variants, we used build 142 of
dbSNP. dbSNP and COSMIC variant locations were ob-
tained in bed format from the UCSC Table Browser [39].

Annotating and filtering genomic regions
We divided the reference hg19 genome into 50 bp, non-
overlapping windows using the bedtools makewindows
command. We mapped mutations to each window, and
calculated the mean 100-way PhyloP score as well as the
mean 35 bp uniqueness (a measure of sequence mapp-
ability) across mutations that fell within the window. We
excluded from further consideration any window that
had a mean mappability of its overlapping mutations
that was less than 0.5, as well as any window that was
mutated in fewer than 3 patients (because these regions
lack sufficient mutations to be considered recurrent).

Calculation of recurrence score
For each region that met our filtering criteria (candidate
regions), we calculated a recurrence score representing
the level of enrichment of the region with mutations
compared to the mutation rate within the region of the
genome flanking the region under consideration. For
each candidate region, we formed a flanking region, which
included the region of the genome that was within 0.5 Mb
of the region on either side, truncated at chromosome
ends. We removed bases within the flanking region that
had mappability less than 0.5. We calculated a flanking
mutation rate for each candidate region by dividing the
number of mutations in our set of whole genomes that
overlap valid flanking base positions by the number of
valid bases within the flanking region. We calculated a
raw mutation score (Equation 1) by dividing the rate
(mutations per nucleotide) in the candidate region by
the flanking mutation rate. We normalized this raw
mutation score by subtracting the median score from all
candidate regions and dividing each score by the median
absolute deviation (mad) over all candidates (Equation 2).
We initially planned to perform the normalization by
flanking mutation rate separately for each tumour sample,
but this was not feasible due to the sparsity of mutations
in some samples. Equations for the raw and normalized
recurrence scores are:

raw score ¼
T=T0——————————

Lþ Rð Þ= L0 þ R0ð Þ
ð1Þ

Where T is the number of mutations observed in the
target region, T0 is the length of the target region, L and
R are the number of mutations in the left and right
flanking regions of the target region, and L0 and R0 are
the lengths of the left and right flanking regions.

Piraino and Furney BMC Genomics  (2017) 18:17 Page 14 of 17



normalized score ¼ raw score− median raw scoreð Þ
mad raw scoreð Þ

ð2Þ

Calculation of conservation score
For each candidate region, we also calculated a conser-
vation score. Our strategy was to use a basepair level
measure of conservation, and average across mutations
to score a region based on conservation. We chose the
PhyloP score [43] calculated on a 100-way species tree,
which is available from the UCSC genome browser.
PhyloP scores as implemented in the UCSC Genome
Browser are negative log base 10 p-values for a likeli-
hood ratio test against the null hypothesis of neutral
evolution. The scores are positive when the test indicates
that the nucleotide evolves more slowly (i.e. is conserved)
and negative in the case that it evolves more quickly
(acceleration). For each mutation, we mapped PhyloP
scores of the base position at which the mutation oc-
curred. Within each candidate region, we took the mean
of the PhyloP scores for each mutation within the region
as a raw conservation score. Similar to our recurrence
score, we normalized this raw conservation score by
subtracting the median score and dividing by the median
absolute deviation.

Calculation of combined score
For each candidate region, we calculated the combined
score as the simple average of normalized recurrence
and conservation scores.

Statistical analysis
For comparison of scores in different classes of regions,
we used Mann–Whitney tests, as implemented in R. we
also performed simulations to compare the median scores
of known driver regions to non-driver exonic regions. We
repeated sampled with replacement 10,000 samples of
non-driver regions with size equal to the number of candi-
date regions overlapping known driver regions, took the
median score for each sample, and compared to the ob-
served median for known driver genes.

Collation of known driver genes
Driver genes were collated in humans by combining
gene lists from two previously published lists of driver
genes from Vogelstein et al. and Lawrence et al. [4, 6].
Gene names were taken from table S2A of Vogelstein et
al. [4] and from Additional file 1: Table S2 from
Lawrence et al. [6]. These gene names were entered into
the UCSC Table Browser [39] to obtain hg19 coordinates
for the coding exons of these genes, which were mapped
to mutations using bedtools [41]. We considered a region
to be a known driver if it overlapped a coding exon of a

gene listed in either publication. In total, we constructed a
set of 308 driver genes.

Threshold sensitivity analysis
For all regions with greater than 2 mutations, we classified
the region as either hypermutated or non-hypermuated
based on whether the mutations per mutated sample in
that region exceed a threshold, where exceeding the
threshold resulted in classification as a hypermutated
region. We classified regions in this way for thresholds
of 1.1, 1.3, 1.3 and 1.5, and compared these classifications
to a threshold of 1.2. For each comparison, we calculated
the percent of regions that had the same classification
(both hypermutated or both non-hypermutated) in the
comparison.

Transcription factor binding motif analysis
We obtained position weight matrices for human transcrip-
tion factors using the “JASPAR2014” package in R [44], and
searched for matches using the “searchSeq” function from
the “TFBSTools” package [45] with default settings. We
also selected recurrent mutations occurring within candi-
date regions and searched against the mutated sequence for
transcription factors that matched the reference.

Additional files

Additional file 1: Table S1. The number of samples with 1000 or more
valid mutations included in our final analysis, as well as information about
tumour type and original publication for each sample. For the ICGC samples
we give ICGC project codes and use this to categorise tumour type
throughout this work. Although some project codes imply the same
tumour type (e.g. LICA-FR and LINC-JP are both liver cancers) we treat
these separately in case these cohorts might have different properties,
either technical or biological. Table S2: Top ten non-coding, non-
hypermutated regions in terms of recurrence score within each cancer
type. Table S3: Top ten non-coding, non-hypermutated regions in
terms of combined score within each cancer type. (PDF 196 kb)

Additional file 2: Figure S1. Log10 of total mutations per genome,
ordered by median mutations within each tumour type. Figure S2: For
comparison, we show the location of mutations (black arrows) within a
recurrent CTCF binding site that was highlighted in a previous analysis
[28]. Figure S3: We show recurrence score (plotted as log(score + 2))
plotted against GC content. Regions with mutations per patient > 1.2 are
in orange, with recurrence score > 10 and mutations per patient < = 1.2
in black, and all others in purple. Figure S4: Recurrent TERT promoter
mutations identified in our data set. The mutations occur at one of the
previously identified bases, generating a de novo ETS binding site.
Figure S5: PLEKHS1 recurrently mutated region that has previously
been identified. We identify mutations at the same base position as
previous analyses. Figure S6: UCSC browser image depicting a
recurrently mutated region identified by our method. Mutations are
depicted by black arrows. This region is flanked on the left by the gene
MED16. Figure S7: Sequence logo depicting the MEF2A motif. Text
above the logo is the reference sequence observed within the
recurrently mutated region in the MED16 promoter. Mutated positions
are depicted in red. Figure S8: UCSC browser image of a second
recurrently mutated region identified by our method. Mutations are
depicted by black arrows. Figure S9: Recurrently mutated region
overlapping the miRNA MIR142. The region is highly conserved, as
suggested by its inclusion among the top non-coding regions based
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on combined score. Figure S10: MIR142 reference aligned with the
sequence of mature microRNA has-miR142-5p. Mutated positions are
depicted in red. Figure S11: Recurrently mutation overlapping an intron of
the gene MSRA. The mutations occur primarily at two neighbouring bases.
Figure S12: UCSC browser image of a recurrently mutated region
overlapping an intron of the gene PRIM2. Figure S13: Sequence logo
depicting the FOXP2 motif. Text above the logo is the reference sequence
observed within the recurrently mutated region in the PRIM2 intron.
Mutated positions are depicted in red. Figure S14: UCSC browser
image depicting a recurrently mutated region in an intron of the DNA
repair gene RAD51B. This region is mutated specifically in breast cancer.
(PDF 4081 kb)
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