
CycFlowDec: A Python module for decomposing flow networks
using simple cycles

Austen Bernardi, Jessica M.J. Swanson*

Department of Chemistry, University of Utah, 1400 E, Salt Lake City, UT, 84112, United States of
America

Abstract

New algorithms for determining the expected flow through simple cycles in a closed network are

presented. Current network analysis software do not implement algorithms for expected cyclic

flow decomposition, despite its potential value. Decomposing networks into expected cycle flows

provides a quantitative characterization of network cycles that can be further analyzed for

sensitivity and correlative behavior. An efficient, general algorithm has been coded into

CycFlowDec, an open source Python module available at https://github.com/austenb28/

CycFlowDec.

Keywords

CycFlowDec; Cyclic flow decomposition; Network analysis; Kinetic networks; Kinetic modeling

Code metadata

Current code version v1

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-
D-20-00084

Code Ocean compute capsule N/A

Legal Code License GPL 3.0

Code versioning system used Git

Software code languages, tools, and services used Python 3

Compilation requirements, operating environments & dependencies Python 3, NumPy

If available Link to developer documentation/manual https:/github.com/austenb28/CycFlowDec

Support email for questions a.bernardi@utah.edu

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. j.swanson@utah.edu (Jessica M.J. Swanson).

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

HHS Public Access
Author manuscript
SoftwareX. Author manuscript; available in PMC 2021 October 25.

Published in final edited form as:
SoftwareX. 2021 June ; 14: . doi:10.1016/j.softx.2021.100676.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/austenb28/CycFlowDec
https://github.com/austenb28/CycFlowDec
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00084
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00084
https://github.com/austenb28/CycFlowDec
https://creativecommons.org/licenses/by-nc-nd/4.0/

1. Motivation and significance

Network analysis is a practice that reaches all areas of science, from biology [1], to

computer science [2], to traffic flow [3]. For some analyses, a central objective is to

characterize the expected flow of certain cycles within a network [1,4,5]. However,

quantifying the relative probabilities of pathways through a complex network is generally

non-trivial. Many graph theoretic algorithms have been developed to characterize network

flow [6–9], and the software implementing these algorithms have gained popularity [10–15].

These methods generally quantify the maximum flow or minimum cost paths. However,

there has been limited progress on the determination of the expected flow decomposition of

complex networks. Previous studies concerning expected cycle flows have been largely

theoretical [16,17], and have focused on developing mathematical descriptions of related

system attributes, such as entropy production rates [18], or specific network types, such as

quantum Markov semigroups [19].

The primary motivator of this work involves the analysis of relevant ion transport pathways

in a kinetic Markov state model of a Cl−/H+ antiporter, [1,20,21] for which decomposing the

network into expected simple cyclic flows is essential. These cycles can be further studied to

determine their sensitivities to specific transitions, revealing sub-ensemble properties and

opening new avenues for mechanistic insight. Aside from this specific application, the

Python module CycFlowDec, described in this work, has been designed to decompose a

given flow network into expected simple cycle flows. Any chemical reaction network can be

analyzed using CycFlowDec to quantitatively determine the expected flow of relevant

reaction cycles. This feature is particularly valuable for analyzing networks in the fields of

catalysis, such as the study of enzymatic networks or heterogeneous catalysis. Precise

knowledge of expected cycle flows in reactive networks provides a quantitative metric for

the importance of the underlying mechanisms that dictate the functionality of the reactive

network. In an analogous fashion, CycFlowDec can be applied to the analysis of any

application involving flow networks. For example, one could use CycFlowDec to determine

the expected cycle flows in a communications network [22], a traffic network [23], a

migration network [24], or a monetary network [25].

2. Theoretical background

New algorithms for decomposing a closed flow network into simple cycles are presented

herein. Note that a simple cycle is a cycle that contains at most one instance of any node.

Thus, an expected simple cycle flow decomposition assigns the expected flows to all simple

cycles in a network such that the original flow network is recovered when the cycle flows are

summed together. The mathematical framework of the algorithms presented in this work is

based on the work developed in Ref. [26] and expanded on in chapter 3 of Ref. [27]. This

section presents an overview of this previously developed framework, while the appendices

describe the newly developed algorithms. The most efficient, general algorithm has been

implemented in the CycFlowDec Python module, available at https://github.com/austenb28/

CycFlowDec with examples and additional documentation. While the presented algorithms

are designed to decompose closed flow networks into simple cycle flows, the framework can

be straightforwardly extended to open networks via transformation of the open network to an

Bernardi and Swanson Page 2

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/austenb28/CycFlowDec
https://github.com/austenb28/CycFlowDec

effective closed network. This is accomplished by including an additional virtual node,

which connects the network sinks to the sources.

Four algorithms are sequentially outlined in Appendix A, ending with the fastest algorithm,

which is incorporated in CycFlowDec. We begin with a brief overview of the underlying

theory [26,27]. Consider the three-node flow network ℕ3 in Fig. 1. Let a representative

cyclic walk W on ℕ3 be

W = A, B, A, C, B, A, B, C, B, C, A .

Walk W can be decomposed into simple cycles with the following procedure: [27]

1. Start at the first node of W. Mark it as visited.

2. Walk to the next node.

3. If the current node was already marked as visited, extract all nodes from its

previous visitation up to the preceding node. Log the cycle composed by the

extracted nodes. Mark the extracted nodes as unvisited except the current node.

Otherwise, mark the current node as visited.

4. Repeat 2 and 3 until the end of the walk.

Note that a simple cycle is a cycle that contains no more than one instance of any node.

Table 1 illustrates the decomposition of W using the described procedure. A cycle that

cycles through q nodes n1, n2, . . ., nq, . . . is denoted by (n1, n2, . . ., nq). Extracting cycles

with this procedure has several benefits. If the procedure is performed on a network ℕ using

a random walk generated via Markovian transition probabilities, we can define the divergent

limit [27]

lim
N ∞

wc
N = wc ∀c ∈ ℂ, (1)

where N is the length of the walk, C is the set of all simple cycles on ℕ, and wc
N is the

number of extracted cycles c on a walk of length N. Eq. (1) represents the primary basis of

all algorithms described in this work. The expected probability pc of a cycle is given by [27]

pc = wc ∑
∀ j ∈ ℂ

w j

−1
∀c ∈ ℂ . (2)

Importantly, pc is finite and takes on the same value irrespective of the starting node of the

walk. The expected flow of a cycle c, given as fc, may be calculated as

f c = wc ∑
∀k ∈ ℂ

nkwk

−1
∑

∀ j ∈ 𝔼
e j ∀c ∈ ℂ, (3)

Bernardi and Swanson Page 3

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where 𝔼 is the set of all edges on ℕ, ej is the flow of edge j, and nk is the number of edges in

cycle k. Combining Eqs. (2) and (3) shows that fc is also finite and takes on the same value

irrespective of the starting node of the walk. Eq. (3) is the equation used in CycFlowDec to

calculate cycle flows.

3. Software description

CycFlowDec is an open source Python module that enables the expected simple cycle flow

decomposition of closed networks. Flow decomposition is accomplished using the

percolating with burn-in and minimum contribution tolerance described in Appendix A.4,

enabling rapid and efficient performance on complex networks.

3.1. Software architecture

CycFlowDec is fully contained in a single, compact Python 3 script, requiring NumPy as its

only external library. The object oriented structure uses a CycFlowDec main class,

employing various methods for decomposition and analysis. An auxiliary Walk class is also

used that enables efficient tracking of the percolating walks in the algorithm. A diagram of

the architecture of CycFlowDec is provided in Fig. 2. Detailed descriptions of the classes

and methods along with examples are available at https://github.com/austenb28/

CycFlowDec.

4. Illustrative examples

4.1. Algorithm performances

In order to assess the performance of the cyclic flow decomposition algorithms described in

Appendix A, the mean relative error (MRE) was calculated between edges of the

reconstructed flow network from cycles and the original flow network. That is,

MRE = 1
NE

∑
j ∈ 𝔼

1
e j

e j − ∑
k ∈ ℂ j

f k , (4)

where NE is the number of edges in ℕ, and ℂj is the set of simple cycles containing edge j.

Fig. 3 shows the MRE vs. steps for the first three described algorithms for ℕ3, the three-node

network specified in Fig. 1. The percolating with burn-in uses burn = N − 2, where N is the

total number of steps. Optimizing the selection of burn is discussed in Appendix B. The ℕ3

network is small enough to use a minimum contribution tolerance of zero. The percolating

with burn-in algorithm is significantly faster than the stochastic and percolating algorithms,

exhibiting geometric instead of algebraic convergence. CycFlowDec employs the

percolating with burn-in and minimum contribution tolerance algorithm, permitting rapid

cyclic flow decomposition of closed networks.

The ℕ3 cyclic flow decomposition for the previously described algorithms is reported in

Table 2. All three algorithms appear to be converging to the same decomposition, consistent

with the fact that they are based on the same fundamental theory. Consistent with the final

datapoints in Fig. 3, the stochastically determined cycle flows agree with the higher accuracy

Bernardi and Swanson Page 4

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/austenb28/CycFlowDec
https://github.com/austenb28/CycFlowDec

algorithms by at least one digit, while the percolating cycle flows agree with the percolating

with burn-in by at least four digits.

4.2. Additional networks

Since ℕ3 is a small network, a seven-node network ℕ7 and a 64-node network ℕ64 were also

used to validate CycFlowDec. Networks ℕ7 and ℕ64 are depicted in Figs. 4 and 5,

respectively. Network ℕ64 represents a Markov state model of the Cl−/H+ antiporter

[1,20,21] that largely motivated this work.

The MRE convergence of the networks is shown in Fig. 6. Intuitively, ℕ64 requires

substantially more steps to converge than the other networks; however, ℕ7 actually converges

faster than ℕ3. This implies that there is another factor affecting convergence besides the

number of nodes and edges in the network. It is likely that this third factor is related to the

relative flow balance of the network: networks with edge flows of similar magnitudes

equilibrate percolation faster than networks with edge flows of highly variant magnitudes.

Network ℕ3 has edge flows that differ by a factor of 10, while the ℕ7 edge flows are all O(1).

Network ℕ64 has edge flows that differ by over 103. The algorithmic convergence rate is

likely a complex function of the number of nodes and edges as well as the flow balance in

the network, and warrants further investigation.

5. Impact

CycFlowDec decomposes closed flow networks into expected simple cycle flows. To the

best of our knowledge, no other network analysis tools have been designed to accomplish

this task. This tool has a broad potential use given the potentially important role of cyclic

flow in closed flow networks in any scientific field involving flow networks, such as

chemical reaction networks, communication networks, and more [1,4,5,22–25]. Determining

the expected cycle flows in a flow network yields a direct metric for importance of the

underlying cycles that constitute network function. This information is especially valuable

for quantitatively determining fundamental mechanisms that dictate functional behavior in

the network. The example network ℕ64 represents an enzymatic ion transport network of a

Cl−/H+ antiporter, which can be directly analyzed with CycFlowDec [1,20,21]. Future work

will expand on this analysis, including the assessment of cycle sensitivity to specific

transitions, and applicability to obtain mechanistic insight in the complex biological system.

CycFlowDec is an open source Python module published under the GNU General Public

License. This transparency ensures straightforward access to all interested parties and allows

further modification of CycFlowDec. Additionally, the lightweight design and simple

Python interface enables direct incorporation into general research projects and programs.

The simple Python module format is well suited for CycFlowDec due to its wide potential

range of applicability for network analysis.

CycFlowDec was designed for the decomposition of close flow networks into simple cycle

flows, but it can also be applied to the analysis of open networks with no internal

Bernardi and Swanson Page 5

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

modification. This can be accomplished by defining an effective closed flow network for the

open network, where the source nodes are connected to the sink nodes via an intermediate

virtual node. Using CycFlowDec to decompose the effective closed network will result in

simple cycle flows, some of which include the virtual node. The simple cycles that include

the virtual node represent transient path flows, where the transient path is given by removing

the virtual node. This additional application of CycFlowDec to open flow networks further

increases the range of applicability. For example, CycFlowDec has only been applied to

steady state networks involving the Cl−/H+ antiporter represented by ℕ64, whereas the

intermediate, transient state networks could be analyzed using the previously mentioned

open network analysis.

6. Conclusions

A novel, efficient algorithm for determining the cyclic flow decomposition of closed

networks is presented. The algorithm is incorporated in the open source Python module

CycFlowDec. While CycFlowDec was designed for closed networks, it is applicable to open

networks by defining an analogous effective closed network where a source and sink flows

are sent to a virtual node. CycFlowDec enables more comprehensive analyses of cyclic flow

networks, which are present in many fields of science.

Acknowledgments

The authors are grateful to Dr. Heather Mayes, Dr. Sangun Lee, Dr. Zhi Yue, and Dr. Vadhana Varadarajan for their
motivating research, and to Andrew Ralph for his assistance in testing. The authors also thank Dr. Dionisios
Vlachos and Dr. Udit Gupta for insightful discussions. This work was funded, in part, by a collaborative
development award from the CHEETAH Center at the University of Utah, United States of America (NIH P50
AI150464). The support and resources of the Center for High Performance Computing at the University of Utah are
also gratefully acknowledged.

Appendix A.: Algorithms

The CycFlowDec Python module implements a single efficient, general algorithm based on

established Markovian circulation theory [26,27]. The algorithm is a product of three

sequential modifications on simpler algorithms that are described first.

A.1. Stochastic algorithm

The first algorithm described is directly obtained from the underlying theory. The

pseudocode is provided in algorithm 1. The left stochastic matrix M is calculated using

M[k, j] = e j, k ∑
∀l ∈ ℝ j

el

−1

∀ j, k ∈ 𝕍, (A.1)

where 𝕍 is the set of all nodes on ℕ, ej,k the edge flow from node j to node k, and 𝔼j is the set

of all edges emanating from node j. For ℕ3 in Fig. 1,

Bernardi and Swanson Page 6

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

M =
0 38/43 6/9

40/44 0 3/9
4/44 5/43 0

.

Eq. (A.1) is used to calculate M for all algorithms in this work. The stack data structure is

appropriate for storing walks, since cycles are always extracted from the end of the walk.

Roll(0, 1) rolls a random uniform real number between zero and one that is used to

stochastically select the next node in the walk with M. The stack method pop_cycle(k)

extracts and returns the encountered cycle starting from node k according to the previously

defined procedure. The resulting cycle counts wc keyed by cycle c are stored in the hash

table C, which can be used to calculate cycle flows with Eq. (3).

Algorithm 1:

Stochastic cyclic flow decomposition.

Generate the stochastic matrix M

Initialize an empty stack S

Initialize an empty hash table C

Put a starting node on S

for j 1 to N do

 r Roll(0, 1)

 for k in rows(M) do

 if M[k,S[end]] ≤ r then

 break

 end if

 end for

 if k in S then

 c = S.pop_cycle(k)

 C[c] += 1

 else

 S.push(k)

 end if

end for

A.2. Percolating algorithm

The percolating algorithm extends the stochastic algorithm in the limit of infinite walks

emanating from the starting node. In this sense, infinite walks deterministically percolate the

network from the starting node, and cycles are extracted and counted as they are

encountered. The pseudocode is provided in algorithm 2, for the case that the variables burn
and tol (defined in Appendices A.3 and A.4, respectively) are initialized to zero. Instead of

explicitly counting the number of occurrences of the simple cycles, the fractional

contribution of each cycle with respect to all walks is used for wc. For example, if 3% of

walks go through cycle c at a given iteration, then wc is incremented by 0.03. The two hash

Bernardi and Swanson Page 7

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

tables H1 and H1 keyed by walk stacks are used to alternate the percolation steps and

progress the walks. The percolating algorithm takes advantage of the ability to consolidate

walks with the same stacks after cycle extraction, allowing the tracking of infinite

percolating walks without combinatorial explosion. Similar to the stochastic algorithm, the

resulting cycle contributions wc are stored in hash table C, and can be used to calculate cycle

flows with Eq. (3). Both algorithms subsequently described result in C in the same fashion.

A.3. Percolating with burn-in algorithm

The percolating algorithm is subject to initialization bias at earlier iterations, since it takes

time for the walks to fully percolate and equilibrate. A straightforward idea to mitigate this

issue is to refrain from counting cycles for some number burn of initial iterations. This

inclusion of a burn-in with the percolating algorithm is shown in algorithm 2, for the case

that the variable tol is initialized to zero.

A.4. Percolating with burn-in and minimum contribution tolerance

For highly connected, large networks, the percolating algorithm will suffer from

combinatorial explosion, since the convergence rate decreases linearly with the number of

feasible simple cycles. At the cost of maximum achievable accuracy, this issue can be

mitigated by only percolating new walk stacks that contribute to the total number of walks

above a fractional tolerance tol. This modification is shown in algorithm 2. Walks that

contribute below tol but do not result in new walk stacks are still percolated, since they do

not increase the total number of walk stacks. Contributions that are not percolated are folded

back into the originating walk.

Algorithm 2:

Percolating cyclic flow decomposition with burn-in and minimum contribution tolerance

algorithm.

Generate the stochastic matrix M

Initialize an empty hash table H−1

Initialize an empty hash table H1

Initialize an empty hash table C

Initialize a stack S containing a starting node

H−1[S] = 1

b = 1

for j = 1 to N do

 for S in H−b.keys() do

 Hb S = 0

 end for

 for S in H−b.keys() do

 r = 0

 for k in rows(M) do

 f = H−b[S] ∗ M[k, S[end]]

Bernardi and Swanson Page 8

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 Q = S

 if H−b S > tol or k in S then

 if j > burn and k in S then

 c = Q.pop_cycle(k)

 C[c] += f

 else

 Q.push(k)

 end if

 if Q in Hb.keys() then

 Hb[Q] += f

 else

 Hb[Q] = f

 end if

 else

 r += f

 end if

 end for

 if S in Hb.keys() then

 Hb[S] += r

 else

 Hb[S] = r

 end if

 end for

 b *= −1

end for

Appendix B.: Burn-in selection

Fig. B.7.

Semi-log plots of MRE vs. burn-in steps for ℕ3, ℕ7, and ℕ64. Total steps were fixed at 150,

50, and 3000 for the three, seven, and 64-node networks, respectively.

Bernardi and Swanson Page 9

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. B.8.

Semi-log plot of MRE vs. burn-in steps for a network analogous to ℕ3, AB = BC = CA = 40
and AC = CB = BA = 1. Total steps were fixed at 500.

The burn-in is a critical component of algorithm efficiency, as demonstrated in Fig. 3. To

investigate the effects of burn-in selection, different burn-ins were tested for the same total

steps for all three validation networks, shown in Fig. B.7. An interesting pattern arises from

this data: all three networks show dual behavior for even and odd burn-in steps. Upon further

testing, the behavior is actually dependent on whether the number of cycle logging steps log
= N − burn is even or odd. Specifically, even log steps exhibit generally decreasing, lower

MRE, while odd log steps exhibit higher MRE with an upturn for log near zero. Network ℕ7

shows the least difference between even and odd log steps, probably since it contains the

most balanced edge flows. A burn-in of N − 2 is slightly higher than N − 4 for ℕ64, probably

due to ℕ64 requiring a non-zero minimum contribution tolerance to accelerate its

computation.

As it so happens, ℕ3, ℕ7, and ℕ64 all have dominant flow cycles of length two. In order to

test whether the burn-in behavior was sensitive to this, a network with the same structure as

ℕ3 but with a dominant flow cycle of length three was tested. The result is shown in Fig. B.

8. The burn-in behavior appears sensitive to the dominant flow cycle length, as ternary burn-

in behavior is observed with the length three cycle dominant network. For complex networks

where computational efficiency is a limiting factor, the burn-in behavior should be tested, as

no simple, general choice of burn-in is apparent without prior knowledge of cycle flows.

Bernardi and Swanson Page 10

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix C.: Minimum contribution tolerance selection

Fig. C.9.

Semi-log plot of MRE vs. steps for different minimum contribution tolerances for ℕ64. Edge

flows below 0.1 are omitted from the MRE calculation.

For ℕ64, a minimum contribution tolerance tol is required to permit tractable computation

times. The behavior of the cyclic flow network convergence of ℕ64 with respect to tol is
shown in Fig. C.9. For all values of tol, the MRE decrease exponentially until a certain step

number is reached, and then levels out. This behavior is consistent with the concept that

incorporating a minimum contribution tolerance decreases the maximum achievable

accuracy of cyclic flow decomposition. Lower MRE is obtainable using lower tolerances, at

the cost of increasing computational expense.

References

[1]. Mayes HB, Lee S, White AD, Voth GA, Swanson JM. Multiscale kinetic modeling reveals an
ensemble of Cl–/H+ exchange pathways in ClC-ec1 antiporter. J Am Chem Soc 2018;140(5):
1793–804. [PubMed: 29332400]

[2]. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A comprehensive
review. Neural Comput 2017;29(9):2352–449. [PubMed: 28599112]

[3]. Yan Y, Zhang S, Tang J, Wang X. Understanding characteristics in multivariate traffic flow time
series from complex network structure. Physica A 2017;477:149–60.

[4]. Manik D, Timme M, Witthaut D. Cycle flows and multistability in oscillatory networks. Chaos
2017;27(8):083123. [PubMed: 28863499]

Bernardi and Swanson Page 11

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[5]. Wang G, Du C, Chen H, Simha R, Rong Y, Xiao Y, Zeng C. Process-based network decomposition
reveals backbone motif structure. Proc Natl Acad Sci 2010;107(23):10478–83. [PubMed:
20498084]

[6]. Dantzig G, Fulkerson DR. On the max flow min cut theorem of networks. Linear Inequal Relat
Syst 2003;38:225–31.

[7]. Froncek D. Cyclic decompositions of complete graphs into spanning trees. Discuss Math Graph
Theory 2004;24(2):345–53.

[8]. Rosa A. On cyclic decompositions of the complete graph into (4m 2)-gons. Mat-fyz Časopis
1966;16(4):349–52.

[9]. Woodhouse FG, Forrow A, Fawcett JB, Dunkel J. Stochastic cycle selection in active flow
networks. Proc Natl Acad Sci 2016;113(29):8200–5. [PubMed: 27382186]

[10]. Csardi G, Nepusz T, et al. The igraph software package for complex network research. Int J
Complex Syst 2006;1695(5):1–9.

[11]. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis.
BMC Bioinformatics 2008;9(1):559. [PubMed: 19114008]

[12]. Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. Statnet: Software tools for the
representation, visualization, analysis and simulation of network data. J Stat Softw 2008;24(1):
1548.

[13]. De Nooy W, Mrvar A, Batagelj V. Exploratory social network analysis with pajek: Revised and
expanded edition for updated software, vol. 46. Cambridge University Press; 2018.

[14]. Thomas S, Bonchev D. A survey of current software for network analysis in molecular biology.
Hum Genom 2010;4(5):353.

[15]. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U.
COPASI—a complex pathway simulator. Bioinformatics 2006;22(24):3067–74. [PubMed:
17032683]

[16]. Banisch R, Conrad ND. Cycle-flow–based module detection in directed recurrence networks.
Europhys Lett 2015;108(6):68008.

[17]. Banisch R, Conrad N, Schütte C. Reactive flows and unproductive cycles for random walks on
complex networks. Eur Phys J Spec Top 2015;224(12):2369–87.

[18]. Jia C, Jiang D-Q, Qian M-P, et al. Cycle symmetries and circulation fluctuations for discrete-time
and continuous-time Markov chains. Ann Appl Probab 2016;26(4):2454–93.

[19]. Fagnola F, Umanita V. Generic quantum Markov semigroups, cycle decomposition and deviation
from equilibrium. Infin. Dimens. Anal. Quantum Probab. Relat. Top 2012;15(03):1250016.

[20]. Lee S, Swanson JM, Voth GA. Multiscale simulations reveal key aspects of the proton transport
mechanism in the ClC-ec1 antiporter. Biophys J 2016;110(6):1334–45. [PubMed: 27028643]

[21]. Lee S, Mayes HB, Swanson JM, Voth GA. The origin of coupled chloride and proton transport in
a Cl–/H+ antiporter. J Am Chem Soc 2016;138(45):14923–30. [PubMed: 27783900]

[22]. Hagen L, Keller T, Neely S, DePaula N, Robert-Cooperman C. Crisis communications in the age
of social media: A network analysis of Zika-related tweets. Soc Sci Comput Rev 2018;36(5):
523–41.

[23]. Ding R, Ujang N, bin Hamid H, Abd Manan MS, He Y, Li R, Wu J. Detecting the urban traffic
network structure dynamics through the growth and analysis of multi-layer networks. Physica A
2018;503:800–17.

[24]. Myers OM, Reyier E, Ahr B, Cook GS. Striped mullet migration patterns in the Indian River
Lagoon: A network analysis approach to spatial fisheries management. Mar. Coast. Fish
2020;12(6):423–40.

[25]. Iosifidis G, Charette Y, Airoldi EM, Littera G, Tassiulas L, Christakis NA. Cyclic motifs in the
Sardex monetary network. Nat Hum Behav 2018;2(11):822–9. [PubMed: 31558815]

[26]. Minping Q, Min Q. Circulation for recurrent Markov chains. Z. Wahrscheinlichkeitstheor.
Verwandte Geb 1982;59(2):203–10.

[27]. Kalpazidou SL. Cycle representations of Markov processes, vol. 28. Springer Science & Business
Media; 2007.

Bernardi and Swanson Page 12

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.

The three-node flow network ℕ3.

Bernardi and Swanson Page 13

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
CycFlowDec architecture diagram. Classes and methods intended for general users are in

green.

Bernardi and Swanson Page 14

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Log–log plot of MRE vs. algorithm steps for the stochastic, percolating, and percolating

with burn-in algorithms for ℕ3. Stochastic and percolating have trendlines of the form y = ax
−b, and percolating with burn-in uses y = ae−bx.

Bernardi and Swanson Page 15

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.

The seven-node flow network ℕ7.

Bernardi and Swanson Page 16

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.

The 64-node flow network ℕ64. Generated with igraph [10] using the large graph layout

algorithm. Edges represent bidirectional flows.

Bernardi and Swanson Page 17

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.

Log–log plot of MRE vs. steps for ℕ3, ℕ7, and ℕ64 using the percolating algorithm with

burn-in. Trendlines are of the form y = ae−bx. Burn-in and minimum contribution tolerance

for ℕ3 and ℕ7 were N − 2 and zero, respectively. Network ℕ64 used N − 4 and 10−7. Starting

nodes were A, G, and 51 for ℕ3, ℕ7, and ℕ64, respectively.

Bernardi and Swanson Page 18

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bernardi and Swanson Page 19

Table 1

Walk-based simple cycle extraction example. The current node on W is in bold.

W Visited Extracted cycle

{A, B, A, C, B, A, B, C, B, C, A} {A}

{A, B, A, C, B, A, B, C, B, C, A} {A, B}

{A, C, B, A, B, C, B, C, A} {A} (A, B)

{A, C, B, A, B, C, B, C, A} {A, C}

{A, C, B, A, B, C, B, C, A} {A, C, B}

{A, B, C, B, C, A} {A} (A, C, B)

{A, B, C, B, C, A} {A, B}

{A, B, C, B, C, A} {A, B, C}

{A, B, C, A} {A, B} (B, C)

{A, B, C, A} {A, B, C}

{A} {A} (A, B, C)

SoftwareX. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bernardi and Swanson Page 20

Table 2

Cycle flows of ℕ3 by algorithm. N = 2 × 105 for stochastic and percolating, while N = 300 for percolating with

burn-in.

Cycle Stochastic Percolating Percolating, burn = N − 2

(A, B) 36.90029 36.77424 36.77419

(A, C) 2.74282 2.77420 2.77419

(B, C) 1.78229 1.77418 1.77419

(A, B, C) 3.18206 3.22579 3.22581

(A, C, B) 1.20101 1.22580 1.22581

SoftwareX. Author manuscript; available in PMC 2021 October 25.

	Abstract
	Table T3
	Motivation and significance
	Theoretical background
	Software description
	Software architecture

	Illustrative examples
	Algorithm performances
	Additional networks

	Impact
	Conclusions
	Algorithms
	Algorithm 1:
	Algorithm 2:
	Burn-in selection
	Minimum contribution tolerance selection
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Table 1
	Table 2

