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Abstract. alzheimer's disease (ad) is a neurodegenerative 
disorder characterized by cognitive decline and brain neuronal 
loss. A pioneering field of research in AD is brain stimulation 
via electromagnetic fields (EMFs), which may produce clinical 
benefits. Noninvasive brain stimulation techniques, such as 
transcranial magnetic stimulation (TMS), have been developed 
to treat neurological and psychiatric disorders. The purpose 
of the present review is to identify neurobiological changes, 
including inflammatory, neurodegenerative, apoptotic, 
neuroprotective and genetic changes, which are associated 
with repetitive TMS (rTMS) treatment in patients with AD. 
Furthermore, it aims to evaluate the effect of TMS treatment 
in patients with AD and to identify the associated mechanisms. 
The present review highlights the changes in inflammatory and 
apoptotic mechanisms, mitochondrial enzymatic activities, 
and modulation of gene expression (microRNA expression 
profiles) associated with rTMS or sham procedures. At the 
molecular level, it has been suggested that EMFs generated 
by TMS may affect the cell redox status and amyloidogenic 
processes. TMS may also modulate gene expression by acting 
on both transcriptional and post‑transcriptional regulatory 

mechanisms. TMS may increase brain cortical excitability, 
induce specific potentiation phenomena, and promote synaptic 
plasticity and recovery of impaired functions; thus, it may 
re‑establish cognitive performance in patients with AD. 
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1. Introduction

Alzheimer's disease (AD) is the most frequent, heterogeneous 
and severe form of dementia; it is characterized by chronic, 
gradual and progressive memory loss, and a decline in two 
or more cognitive functions. The clinical hallmarks of AD 
include memory deficits and the associated deterioration of 
attention, executive function, cognitive ability and behavioral 
abilities. AD is a progressive and complex neurodegenera‑
tive disorder, which eventually causes social or occupational 
impairment (1‑3). In 2020, AD accounted for 60‑80% of all 
dementia cases out of the 50 million patients with dementia 
worldwide (4). The literature has demonstrated that the neuro‑ 
and histopathological hallmarks expressively include the 
buildup of extracellular amyloid‑β (aβ) peptides as amyloid 
plaques and intracellular aggregates of hyperphosphorylated 
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tau protein in the form of neurofibrillary tangles, which 
disturb microtubule organization and cholinergic dysfunc‑
tion (3,5). Furthermore, granulovacuolar degeneration (6), 
neuroinflammation (7), oxidative stress (8), reactive oxygen 
species (roS) (9), glutamate dyshomeostasis (10), immunose‑
nescence (11), aggregation of misfolded proteins (12), and 
mitochondrial oxidative and nitrosative stress (13) also affect 
the central nervous system, promoting neural dysfunction 
and synaptic loss, thus leading to increased vulnerability to 
neuronal degeneration and cell death in ad (6‑12). in addition, 
aging remains a major pathological risk factor for AD (14). 
These clinicopathological entities ultimately lead to neurode‑
generation, synaptic dysfunction, hippocampal degeneration 
and atrophy, thus culminating in memory, cognitive and func‑
tional decline (10,15‑17).

Researchers have been increasingly interested in examining 
reliable novel imaging techniques [i.e., functional magnetic 
resonance imaging (fMRI) and positron emission tomography 
(PET)] (18) and in vivo biomarkers (such as β‑amyloid and 
tau protein) (19) involved in the various pathologies of AD, 
and numerous molecular marker tests [Aβ positron emission 
tomography (PET), cerebrospinal fluid (CSF) total or phos‑
phorylated tau and tau PeT)] (19) have been developed to detect 
such pathologies. The outcomes of neuro‑imaging technique 
and blood‑based biomarkers will be important in identifying 
the molecular mechanisms and pathological pathways respon‑
sible for the neurodegenerative progression and development 
of AD. Since Aβ peptides and phosphorylated tau proteins are 
highly present in ad, these molecules are considered to be 
biomarkers that can be used for the neurochemical diagnosis 
of AD (20). The cerebrospinal fluid concentration, and blood 
and plasma levels of Aβ and phosphorylated tau are the most 
accurate biological markers for diagnosing AD (21‑23).

Over the past few decades, there has been increasing 
interest in biological markers to understand and diagnose 
AD via imaging techniques. The application of neuroimaging 
biomarkers has become a standard tool for understanding the 
preclinical stages of AD and for periodic follow‑up, as well 
as for diagnosing AD (24). Various neuroimaging biomarkers, 
including amyloid positron emission tomography imaging (25), 
Mri (26) and optical coherence tomography (27), have been 
used for the diagnosis of AD. Over the past two decades, 
noninvasive brain stimulation (NIBS) with electromagnetic 
fields (EMFs) has received much interest regarding neuro‑
psychiatric disorders, and this research area has progressed 
greatly (28). Among the NIBS techniques, transcranial 
magnetic stimulation (TMS) has emerged as a potential 
method providing a promising avenue to treat cognitive impair‑
ment, such as AD (2,29). A number of experimental studies 
on animal models and clinical trials have demonstrated the 
beneficial therapeutic effects of TMS on neurodegenerative 
disorders (30,31), including ad (32,33). increasing evidence 
indicates that TMS treatment permits the neurophysiological 
(including motor cortex and neuronal activities) (34,35) and 
neurochemical (BDNF, TrkB) (36,37) functions to work 
more precisely, and TMS also regulates biomarkers level 
and further improves the accurate and precise functioning 
of neurons in AD (Fig. 1). In addition, research suggests 
that TMS improves neural branching, cortical excitability 
and cognitive processes in AD (38). Repetitive TMS (rTMS) 

provides a safe and noninvasive technique, which modulates 
cortical excitability, neurochemical functions and neuronal 
polarization (39,40). However, to the best of our knowledge, 
the precise molecular mechanism behind the neurorestorative 
effects of TMS is not yet fully understood. The neurological 
changes, including inflammatory, neurodegenerative, apop‑
totic, neuroprotective and genetic changes, during and after 
TMS treatment in patients with AD are also not precisely 
known. The present review focuses on TMS and rTMS, as 
an efficient technique, giving an overview of the changes in 
inflammatory and apoptotic mechanisms, mitochondrial and 
enzymatic activities, and modulation of gene expression [or 
microRNA (miRNA/miR) expression profiles] in patients 
with AD. The present review also examines the clinical and 
neurochemical changes associated with rTMS in patients with 
ad.

2. TMS

NIBS techniques are emerging and revolutionizing neurosci‑
ence research. NIBS, particularly by EMFs, allows the study 
of the relationship between the brain and certain behaviors. 
NIBS techniques include TMS, transcranial direct current 
stimulation and electroconvulsive therapy (39,41). TMS is a 
well‑known neurophysiological NIBS technique that was first 
introduced in 1985 (42). NIBS using TMS does not require 
any surgery, anesthetic agents, skin preparation or intrave‑
nous systems, and it is a painless technique (43), and thus, 
is rapidly becoming an efficient therapeutic tool in cogni‑
tive neuroscience research. At present, TMS is a Food and 
Drug Administration (FDA)‑approved therapy for treating 
major depressive disorder (44,45), treatment‑resistant obses‑
sive‑compulsive disorder (46) and migraine headaches (47). 
However, a number of animal models and clinical trials have 
demonstrated promising results in treating cognitive and 
neurodegenerative disorders (43), including AD (48,49) and 
Parkinson's disease (30,50,51). It has been suggested that TMS 
could be used to treat between 70 and 80% of AD cases (52). 
The therapeutic value of TMS may be achieved by applying 
EMFs to the predetermined cortical target based on Faraday's 
principle of electromagnetic induction, which was established 
in the latter half of the nineteenth century (53). It involves 
the application of time‑varying MRI‑strength magnetic fields 
near the scalp and superficial layer of the cerebral cortex, 
inducing focal electric currents, known as ‘Eddy currents’, 
which run in the opposite direction to the current in the coil 
and generate a magnetic field that induces currents (54,55). 
When the stimulation of the magnetic coil occurs tangen‑
tially near the M1 region, an appropriately strong stimulus 
is administered, and the powerful magnetic field penetrates 
the scalp and skull, where it activates underlying neurons and 
synapses, depolarizing axons in the targeted brain areas, and 
thus, stimulating the brain region (56‑58).

Types of TMS. TMS can be applied either in single pulses 
of stimulation [single‑pulse TMS (sTMS)], pairs of stimuli 
[paired‑pulse TMS (ppTMS)] separated by variable intervals 
[interstimulus interval (ISI)] or trains of repetitive stimuli 
(rTMS) that repeatedly pulse the EMFs at variable frequen‑
cies applied to the brain regions (59).
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sTMS is used to map cortico‑motor outputs and assess 
central motor conduction time, motor‑evoked potential (MEP) 
and motor cortical outputs. sTMS is delivered in single 
pulses of stimulation that are separated by time intervals of 
4‑8 sec (59).

ppTMS, which runs alternate to conventional TMS, is used 
to measure intracortical facilitation, cortico‑cortical connec‑
tion excitability, motor cortex connectivity (inhibition and 
facilitation) and motor cortical pathways. ppTMS utilizes two 
successive pulse stimuli, conditioning the stimulus with a test 
stimulus that is separated by an ISI. A short ISI lasts for a few 
milliseconds, and a long ISI ranges between tens and hundreds 
of milliseconds (54,59,60).

rTMS has gained much interest from neuroscientists due 
to its positive effects on cognitive tasks, and behavioral and 
normal brain functioning (61). rTMS induces trains of electric 
currents to the predetermined brain region that are delivered 
through pulsating magnetic fields with a time interval of a 
maximum of 2 sec (54). High‑frequency rTMS (HF‑rTMS; 
10‑20 Hz) tends to increase cortical excitability, intercel‑
lular interactions and MEP amplitude. Low‑frequency rTMS 
(LF‑rTMS; 1‑5 Hz) reduces cortical excitability and MEP 
amplitude (62). HF‑rTMS and LF‑rTMS have opposite effects 
on brain regions but both have potential therapeutic effects. It 
has been suggested that rTMS exerts long‑lasting effects on 
cortical excitability and plasticity (59,63).

TMS is a widely accepted and well‑established technique 
allowing for the assessment and modulation of neural excit‑
ability and neuroplasticity of pre‑specified brain regions. TMS 
is an effective and promising neuromodulation treatment, 
as it enhances the functional recovery of cortical and neural 
function (64). At the molecular level, it has been proposed that 
TMS modifies neural excitability, the functional integrity of 
neural circuits, neuroplasticity, synapses and normal brain 
activity (43). TMS‑evoked therapeutic effects can spread to the 
interconnected cortical region, subcortical structures, spinal 
cord and roots (59). TMS could potentially be used to treat 
neurological disorders, including AD; however, the underlying 
cellular processes and mechanisms of its therapeutic effects 
are still not clearly understood.

3. AD and NIBS by TMS

ad is a neurodegenerative disorder that is characterized by 
cognitive decline and brain neuronal loss of an unknown 
etiology. early studies have provided a basic and molecular 
understanding the pathogenesis of AD (1,65). AD neuropa‑
thology is considered to be commonly associated with altered 
neuroplasticity, neurotrophic impairment, neurotransmitter 
failure and synaptic loss. Furthermore, synaptic dysfunc‑
tion is noted in the early stages of AD and has become a 
therapeutic target for pharmaceutical agents (1,65). However, 
more research is required to clarify the pathogenesis of AD. 
A pioneering field of research in AD is brain stimulation 
via EMFs, which may have clinical and therapeutic benefits. 
Numerous studies and a few clinical trials have demonstrated 
the potential therapeutic effects of NIBS, particularly TMS, 
on patients with AD (2,36,66). Due to the ageing process, 
the cognitive decline and deterioration of neural plasticity 
occurs, which may worsens by MCI or AD. However, TMS 

improves cognitive ability and increases neural plasticity. 
Therefore, NIBS techniques exerts a neuroprotective effect 
on AD (Fig. 2). Although TMS treatment is approved by the 
FDA for depression (44), it is still an experimental therapy 
for AD. Extensive research has indicated that TMS might 
be an effective treatment for patients with AD (67,68). TMS 
promote synapses, neurogenesis and normal brain functioning 
stability that aid in the treatment of AD (63). To the best of our 
knowledge, the basic mechanism behind the neurorestorative 
effects of treatment with EMFs in patients with AD is still 
elusive. Furthermore, the neurological and neurochemical 
changes during and after TMS treatment in patients with AD 
are not clearly explained. Previous studies have suggested 
that changes in inflammatory and apoptotic mechanisms, 
mitochondrial enzymatic activities, and modulation of gene 
expression (miRNA expression profiles) may be associated 
with TMS or sham procedures (69,70). 

4. Neurobiological changes associated with TMS in AD

The present review identifies neurobiological changes, 
including the inflammatory, neurodegenerative, apoptotic, 
neuroprotective and genetic changes, associated with TMS 
treatment in patients with AD.

Neural restoration by TMS. Neurotrophic factors (NTFs) 
regulate the growth, survival, proliferation, migration and 
differentiation of neurons (71). Therefore, NTFs have been 
extensively studied in the context of neurodegenerative 
disorders, including AD (72). In AD, the altered expression 
and gradual dysregulation of NTFs, such as nerve growth 
factor (NGF), brain‑derived neurotrophic factor (BDNF), 
glial cell line‑derived neurotrophic factor (GDNF) and 
ciliary neurotrophic factor (CNTF), have been observed 
in different brain areas (73,74). Numerous experimental 
studies have indicated the reduction of NTFs in affected 
brain regions (72,73). These changes in NTFs in AD are 
critical for neurodegenerative processes. Studies have 
observed that cognitive decline and the underlying patholo‑
gies of AD are associated with neurodegeneration in various 
regions of the brain, especially cholinergic neurons of the 
basal forebrain and their projections for the hippocampus 
and cortex (72,75,76). It has been suggested that the loss 
of NTFs may be a mechanism involved in the pathogenesis 
of AD (77). The regulation of NTFs could be a suitable 
therapeutic target for AD treatment.

as a noninvasive neuromodulatory intervention, TMS or 
rTMS treatment may potentially regulate the expression of 
NTFs in the AD brain (Fig. 1), promoting neuronal differen‑
tiation and survival (78), and thus, exerting neurorestorative 
effects. Notably, a number of studies have indicated an 
increase in endogenous neurotrophic content (BDNF) in the 
affected brain regions after TMS therapy (2,74). BDNF is 
a neurotrophin involved in synaptic plasticity changes and 
improves learning, memory and cognitive functions via 
the BDNF‑tropomyosin receptor kinase B (TrkB) signaling 
pathway (32,74). Therefore, BDNF serves a critical role in 
memory formation and synapsis. However, deficits in BDNF 
signaling are associated with AD (79). Furthermore, the 
expression levels of BDNF are altered in neurodegenerative 
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disorders, for example the BDNF levels are decreased in 
AD (80). A study by Choung et al (32) revealed an increase 
in BDNF expression, as well as neuronal nuclear protein 

(NeuN) and neuroepithelial stem cell protein (Nestin), after 
20 Hz HF‑rTMS compared with the non‑rTMS group or sham 
group in the hippocampus and cerebral cortex regions. It was 

Figure 1. Schematic representation of the proposed paradigm demonstrating neurochemical changes in normal aging and AD, and the effects of TMS on 
these neurobiological changes, indicating that TMS may restore brain function. Aβ, amyloid‑β; AD, Alzheimer's disease; APP, amyloid‑β precursor protein; 
Bace1, β‑site APP‑cleaving enzyme 1; BDNF, brain‑derived neurotrophic factor; CTFs, C‑terminal fragments; NAA/Cr, N‑acetylaspartate/creatine; NeuN, 
neuronal nuclear protein; NGFs, nerve growth factors; NMDAR, N‑methyl‑D‑aspartate receptor; rTMS, repetitive transcranial magnetic stimulation; TrkB, 
tropomyosin receptor kinase B; zif268, Zinc finger‑containing transcription factor 268.
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concluded that rTMS exerted neurogenic and neuroprotec‑
tive effects and promoted neurogenesis (Table I) (32). A 
similar increase in BDNF has also been observed after rTMS 
treatment in a number of other studies (36,81). Additionally, 
rTMS treatment positively regulates the BDNF receptor 
TrkB. Chen et al (81) observed an increase in TrkB in the 
AD brain after 5 Hz HF‑rTMS. In addition, LF‑rTMS also 
regulates BDNF levels in AD (Table I) (82). A previous study 
revealed that 1 Hz LF‑rTMS upregulates BDNF content in the 
hippocampal region of the AD brain (82). Tan et al (82) also 
reported the effects of LF‑rTMS on another NTF, NGF, which 
is essential for growth, development, survival and neuronal 
population. The expression of NGFs has been found to be 
altered in AD (Table I). The 1 Hz LF‑rTMS treatment upregu‑
lates NGF content in AD (Aβ injected mice) group compared 
to control (saline injected) group (82). Similar results have 
also been published by chen et al (83), who applied both 
1 and 10 Hz rTMS and observed that both frequencies of 
rTMS regulated the brain levels of NTFs (BDNF and NGF), 
and these increased with increased frequency. Furthermore, 
glial cells, astrocytes and neurons secrete BDNF and NGF, 
which could be increased following rTMS treatment, there‑
fore rescue memory deficit (82) In contrast to that in AD, 
various studies have indicated that rTMS application tends to 
decrease BDNF levels in healthy volunteers (84,85). However, 
the precise mechanisms of direct evaluation of BDNF levels 
in humans after TMS treatment remain unclear (86). BDNF 
levels are associated with TMS treatment, both during and 
after treatment. Briefly, these findings suggest that BDNF 
could be an ideal biomarker for TMS treatment for patients 
with AD.

Antioxidant effects of TMS application. Oxidative stress 
serves a key role in the etiology and pathogenesis of AD. The 

imbalance in cell redox status, ROS production and impaired 
antioxidant defense lead to oxidative stress (87). These 
forms of damage serve a pivotal role in cellular dysfunction, 
potentially harming the neurons in aging and neurodegenera‑
tive disorders, including ad. ad research has revealed that 
oxidative stress and free radical damage are associated with 
histopathological hallmarks of AD, such as amyloid plaques 
and neurofibrillary tangles (88,89). ROS are free radical oxygen 
byproducts containing an unpaired electron in their valence 
shell, and these are generated as a result of cellular respira‑
tion. The excessive buildup of ROS, including oxygen radical 
superoxide and hydrogen peroxide, in the cells or neurons 
causes DNA or RNA oxidative damage, leading to cell death 
and tissue damage (87). Mitochondrial dysfunction generates 
excessive ROS as the byproduct of the electron transport chain, 
ameliorating the risk of AD (90,91). Therefore, oxidative stress 
and mitochondrial dysfunction adversely affect the brain, 
leading to aging and neurodegenerative disorders, particularly 
AD. Furthermore, studies have indicated that oxidative stress 
and BDNF are associated with each other (89,92). In addition, 
oxidative stress could be considered a promising biomarker 
of AD prognosis (93). In line with this, TMS treatment 
noninvasively modulates and balances BDNF and oxidative 
stress levels, thus exerting beneficial antioxidant effects in 
patients with AD (Fig. 1) (36). Some studies have reported 
that rTMS increases BDNF levels and decreases oxidative 
stress in treatment‑resistant depression (94), stroke (95) and 
experimental autoimmune encephalomyelitis (96). However, 
there are a limited number of experimental studies in the 
literature demonstrating the effects of TMS on oxidative stress 
in AD. Only a recent study by Velioglu et al (36) has analyzed 
the beneficial effects of rTMS on BDNF and oxidative stress 
levels in patients with AD. For this purpose, 20 Hz rTMS was 
applied to the lateral parietal cortex in patients with AD. The 

Figure 2. Proposed mechanism of cognitive decline and deterioration of neural plasticity throughout life, which may worsen by mild cognitive impairment and 
accentuate a maladaptive path to AD. Non‑invasive brain stimulation or aerobic exercise improves cognitive ability and increases neural plasticity. Therefore, 
non‑invasive brain stimulation or aerobic exercise exerts a neuroprotective effect on AD. AD, Alzheimer's disease.
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levels of BDNF, total antioxidant status, total thiol levels and 
native thiol levels were increased after 20 Hz rTMS treatment. 
Furthermore, the total oxidant status, oxidative stress index, 
oxidant enzyme activity and disulfide levels were decreased 
following left lateral parietal rTMS (Table I) (36). Oxidative 
stress could be an effective target for the treatment of neurode‑
generative disorders; however, there remains a large research 
gap in terms of investigating the influence of TMS on oxidative 
stress, antioxidant defense systems, total oxidant/antioxidant 
status and antioxidant enzymes. More studies are required to 
fill this research gap.

TMS facilitates synapsis by regulating neurotransmitters. 
The onset of AD also negatively influences the metabolism, 
levels and functioning of synaptic neurotransmitters. There 
are important contributions of cholinergic and noncholinergic 
neurotransmitter systems behind the pathophysiological 
signaling in ad (97). neurotransmitters are chemical messen‑
gers that are released from a nerve to stimulate other nerves 
across the synapse. neurotransmitters, including dopamine, 
glutamate, aspartate and γ‑aminobutyric acid (GaBa), serve 
a key role in cognitive control, learning and memory devel‑
opment (98). Therefore, alterations in the metabolism and 
expression of neurotransmitters lead to synaptic dysfunction, 
cognitive impairment, learning disabilities and memory defi‑
cits. A number of studies have emphasized that the expression 
of neurotransmitters and receptors is markedly reduced in 
patients with AD (97,99). Therefore, targeting neurotransmit‑
ters, as well as their receptors, could be a rational approach to 
overcome AD. NIBS by EMF from TMS has the potential to 
minimize symptoms and elucidate ad pathology by positively 
regulating neurotransmitter parameters (e.g. dopamine; Fig. 1).

dopamine is a monoamine neurotransmitter produced 
in dopaminergic neurons; it is involved in synaptic plasticity 
and regulates mood, emotional stability, and cognitive and 
motor function (100). The dopamine receptors (D1, d2, d3, 
d4 and d5) are G‑protein‑coupled receptors that are mostly 
expressed in the limbic system and cortex (101). The dopami‑
nergic system serves a pivotal role in the pathophysiology of 
ad (102). The loss and decrease in dopamine content and its 
receptors are frequently reported in patients with AD, causing 
motor impairment and cognitive decline (99,103,104). TMS 
increases the levels of dopamine and dopamine receptors in 
patients with AD. However, a limited number of studies have 
been conducted regarding dopamine levels after TMS applica‑
tion. Furthermore, in healthy volunteers, dopamine tends to 
increase following deep TMS therapy (105). In a recent study 
by choung et al (32), HF (20 Hz) and LF (1 Hz) rTMS were 
applied to assess dopamine levels and receptor concentrations 
after rTMS application. The findings suggested that HF‑rTMS 
and LF‑rTMS increased the dopamine levels in the hippo‑
campus. The expression of dopamine receptor 4 (DR4) was 
increased after 1 Hz LF‑rTMS in the hippocampus and cere‑
bral cortex of the AD brain compared with that of the LF and 
non‑rTMS AD groups (32). After TMS therapy, the dopamine 
levels are also increased in healthy volunteers (105,106). The 
increases in dopamine levels after TMS could allow moni‑
toring of the progress of the brain stimulation of patients 
with AD by TMS. The dopamine level also has the potential 
to be a biomarker for TMS treatment.

The n‑methyl‑d‑aspartate receptor (nMdar) is a critical 
molecule that serves a key role in synaptic transmission, 
synaptic plasticity, hippocampal long‑term potentiation (lTP), 
learning and memory (107). nMdar is a glutamate receptor 
that is important for excitatory neurotransmitter transmission, 
synapsis and memory formation (108). In AD, Aβ plaques 
trigger excessive calcium (Ca2+) influx, which enters into 
neurons via NMDARs, leading to gradual synaptic dysfunc‑
tion and neuronal cell death (109). However, NMDAR is 
downregulated in patients with AD (110). Battaglia et al (111) 
observed neocortical plasticity impairment in patients with 
AD and amyloid precursor protein (APP)/presenilin‑1 mice, 
which could cause functional deficits of NMDAR. It has been 
observed that TMS application can regulate neurotransmitters, 
including NMDAR expression, effectively affecting cognitive 
function (112). Low‑frequency (1 Hz) rTMS increases NMDAR 
expression, also increasing NMDAR subunits (NR1, NR2A 
and NR2B) in the hippocampus, thus facilitating LTP and 
memory formation (82). Furthermore, an increase in NMDAR 
and vascular endothelial growth factor (VEGF) expression 
has been observed in a rat model of vascular dementia (VaD) 
following 5 Hz rTMS treatment (112) and 1 Hz rTMS (69). 
The increase in nMdar‑related amino acids has also been 
observed after LF‑rTMS (1 Hz) by Niimi et al (113) in patients 
after stroke. Furthermore, it has been observed that upregu‑
lation of NMDAR contributes to enhanced neurotrophic 
effects (107). Therefore, treating memory deficits promotes 
synaptic plasticity, hippocampal plasticity and memory forma‑
tion. Impaired NMDAR function could alter plasticity in AD. 
An improved understanding of AD pathophysiology would 
facilitate the development of a novel treatment that regulates 
NMDAR function and improves plasticity, learning and 
memory deficits in patients with AD. Furthermore, an increase 
in NMDAR expression facilitates neuronal recovery following 
rTMS.

TMS suppresses apoptosis and exerts neuroprotective effects. 
In neurodegenerative disorders, particularly AD, excessive 
neuronal loss is considered to be common due to apoptosis, 
which acts as a major cell death pathway in neurons (114,115). 
In AD, the levels of apoptosis‑related Bcl‑2 are downregulated, 
while those of Bax and cleaved caspase‑3 are upregulated (116). 
TMS noninvasively regulates and balances the apoptotic 
pathways, thus exerting its beneficial effects on the brains 
of patients with AD (Fig. 1) (33,82,83). TMS suppresses the 
apoptotic pathways by inhibiting several members of the Bcl‑2 
family, particularly Bad, Bax and Bcl‑Xl, which enhances 
apoptosis. rTMS (1 and 10 Hz) treatment in ad mouse models 
increased apoptosis, as reflected by enhanced Bcl‑2 expres‑
sion and decreased levels of Bax and cleaved caspase‑3 (83). 
Similarly, in a VaD rat model, 1 Hz rTMS was found to 
increase Bcl‑2 expression and suppress Bax expression (69). a 
study on a middle cerebral artery occlusion rat model revealed 
that 10 Hz rTMS treatment markedly upregulated Bcl‑2 expres‑
sion and decreased the levels of Bax and TUNEL‑positive cells 
in the ischemic hippocampus (117). Studies have demonstrated 
that rTMS suppresses the apoptosis and apoptotic pathways, and 
thus, rTMS may improve cognitive impairment and exert neuro‑
protective effects on neurons in an affected brain, particularly 
in AD (78,83,118). rTMS regulates Bcl‑2 and Bax expression, 
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which can promote the functional recovery of cognitive impair‑
ments and enhance the protective mechanisms of learning and 
memory with increased synaptic plasticity; this mechanism 
may be mediated by the BDNF signaling pathway (117). More 
research is required to study the effects of TMS on apoptosis in 
AD pathology. However, TMS could be a promising candidate 
for the clinical treatment of AD.

Cognitive rehabilitation and improvement in memory and 
executive functions by TMS. AD is associated with progressive 
and irreversible loss of memory, decline in cognitive function, 
and deterioration of attention, executive function, thinking and 
behavioral abilities. in ad, language, reasoning, social behavior, 
verbal and auditory naming, and the ability to carry out simple 
tasks are also severely impaired due to underlying neurode‑
generative processes (119‑121). Executive functions, including 
working memory and selective attention, are typically associ‑
ated with the dorsolateral prefrontal cortex (DLPFC). Impaired 
DLPFC neuroplasticity is associated with the physiopathology 
of AD, severely affecting the executive functions in patients with 
AD (122,123). Some studies have assessed DLPFC plasticity in 
patients with AD using paired associative stimulation (PAS), 
a TMS paradigm, as a measure of DLPFC and potentiation 
of cortical‑evoked activity (124). PAS is the combination of 
repeated pairing of single pulses of peripheral nerve electrical 
stimulation with single pulses of TMS of the contralateral cere‑
bral cortex. PAS (TMS with electroencephalography) results in 
short‑term modulation of corticospinal excitability and induces 
LTP‑like plasticity in the different pathological stages of 
AD (122,124,125). Furthermore, the impaired LTP‑like cortical 
plasticity could be a potential biomarker for the prognosis of 
ad (126). a recent study revealed that 20 Hz rTMS improved 
cognition in AD (29). Cortical LTP‑like plasticity is associ‑
ated with cognitive function improvement in patients with AD 
following rTMS (49). In view of this, TMS positively regulates 
executive function, cognitive ability and visuospatial learning 
behavior in DLPFC (127).

Numerous studies have highlighted the fact that TMS can 
improve cognitive and executive functions, memory and language 
ability in patients with AD (29,33,66,128). However, to the best of 
our knowledge, the molecular and metabolic changes following 
rTMS are still unknown. The effects of LF‑rTMS and HF‑rTMS 
on neuronal plasticity and the learning process in memory tasks 
have been studied extensively. Cappa et al (129) reported that 
20 Hz rTMS activates the DLPFC, facilitating object and action 
naming. Similarly, high‑frequency (20 Hz) rTMS applied to 
the left and right DLPFC improves naming performance not 
only in mild ad (130), but also in severe ad (131). rTMS may 
enable the intrinsic ability of the brain to recover damaged func‑
tion (131). another study by cotelli et al (132) suggested that 
rhythmic HF‑rTMS over DLPFC exerts beneficial effects on 
sentence comprehension and may be used to treat language 
dysfunction in patients with AD. However, the exact under‑
lying mechanisms involved in rTMS improving naming and 
speech are still elusive. ahmed et al (133) demonstrated that 
(20 Hz) HF‑rTMS for five daily sessions over the left and 
right DLPFC improved cognitive functions in patients with 
mild to moderate ad. Zhang et al (134) combined HF‑rTMS 
with cognitive training (rTMS‑CT), revealing that the ratio 
of N‑acetylaspartate/creatine (NAA/Cr) increased in the left 

DLPFC of AD patients. Furthermore, the choline (Cho)/Cr 
and myoinositol (mI)/Cr ratios remained unchanged in the 
rTMS‑CT group compared to sham group (sham rTMS with 
cT). The study also proposed that rTMS‑cT may improve 
cognitive function in patients with AD who are in a mild to 
moderate stage (134). On the other hand, low‑frequency (1 Hz) 
rTMS applied over the left DLPFC of patients with AD has been 
found to facilitate no change in memory performance. However, 
when applied to the right DLPFC, low‑frequency (1 Hz) rTMS 
improves recognition memory function (135). Additionally, 
20 Hz rTMS on the lateral parietal cortex in patients with 
AD increases visual recognition memory (36). Furthermore, 
1 Hz LF‑rTMS could potentially rescue spatial learning and 
memory deficits accompanied by impaired LTP‑plasticity 
in the hippocampal CA1 region in an APP23/PS45 double 
transgenic mouse model of AD (136). Future studies will also 
investigate the short‑ and long‑term effects of rTMS on AD 
and cognitive functions (48). Furthermore, rTMS improves 
spatial working memory in mouse models of AD (32), visuo‑
spatial reasoning, and trained associative memory in patients 
with AD (137). Accordingly, these studies have concluded 
that rTMS could be beneficially and therapeutically effective 
for NIBS, behavioral recovery and cognitive rehabilitation, 
as well as a well‑tolerated therapy for patients with AD. The 
cortical changes induced by rTMS can improve synapsis and 
neuronal plasticity (138). In addition, there are only limited 
experimental studies highlighting the neurobiological changes 
during cognitive rehabilitation by rTMS (134). We hypothesize 
that changes in metabolites or other molecular indices could 
serve as biomarkers following rTMS, allowing for further 
improvement of the accurate and precise functioning of 
neurons in AD. Therefore, future studies should focus on the 
levels of metabolites and NAA/Cr, Cho/Cr and mI/Cr ratios 
after TMS treatment to further explore the therapeutic effects 
of rTMS on cognitive rehabilitation in AD.

TMS modulates gene expression and miRNA expression 
profiles in AD. mirnas are novel, short (~22 nucleotides), 
evolutionarily conserved, noncoding rna molecules that are 
post‑transcriptional regulators of gene expression, cell prolif‑
eration, differentiation and apoptosis (139,140). miRNAs serve 
an important role in regulating the translation and stability of 
mrnas, are involved in pathological processes, and inhibit 
their translation by guiding RNA‑induced silencing complex 
and complement binding or interacting with the 3'‑untrans‑
lated region of mRNA (141,142). An increasing number of 
studies have demonstrated that approximately one‑half of 
the miRNAs are in proximity to other miRNAs and regulate 
the activity of 60% of all protein‑coding genes (140,143). A 
single miRNA regulates almost 400 different mRNAs (144). 
it has also been reported that mirnas serve a pivotal role 
in synaptic formation, development function, plasticity and 
neuronal processes, such as neural proliferation, differen‑
tiation, maturation and migration (145‑147). Studies have 
demonstrated that miRNAs contribute to the development of 
numerous diseases and neurodegenerative disorders, including 
AD (141,147). The changes in the levels of miRNAs could also 
serve as diagnostic biomarkers for AD (148,149). Different 
miRNAs have been found to be associated with the accumula‑
tion of Aβ peptides and tau phosphorylation (141,150), leading 
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to the pathophysiology of AD. Furthermore, miRNAs also 
regulate oxidative stress and vice versa (142).

TMS might also have the ability to regulate miRNA expres‑
sion in AD (Fig. 1). In line with this, future studies are required 
to clarify whether TMS regulates gene expression and miRNAs. 
However, a few studies have reported the effects of TMS on 
mirnas. liu et al (151) investigated the effects of rTMS on the 
proliferation of neural stem cells (NSCs) and their association 
with miRNAs expression in vivo. The 10 Hz rTMS treatment was 
associated with the upregulation of the miRNA‑106b‑25 cluster 
and miR‑93, the downregulation of p21 protein and enhanced 
NSC proliferation (151). Liu et al (152) also investigated the effects 
of rTMS on the proliferation of neural progenitor cells (NPCs) 
and the association with miR‑106b expression when 10 Hz rTMS 
was applied to the NPCs cultured from a rat hippocampus. The 
results revealed that rTMS enhanced NPC proliferation by 
upregulating miR‑106b expression by inhibiting p21 expres‑
sion (152). another study by aydin‑abidin et al (153) examined 
the effects of low‑frequency (1 Hz) rTMS, high‑frequency 
(10 Hz) rTMS and intermittent theta‑burst stimulation (iTBS) 
on the expression of immediate early gene (IEG) proteins c‑Fos 
and zinc finger protein 268 (zif268) in the rat brain. It was 
observed that LF‑rTMS and HF‑rTMS increased c‑Fos protein 
expression in the cortical areas. LF‑rTMS did not regulate 
zif268 expression, but HF‑rTMS increased zif268 expression 
in the primary motor and sensory cortices. additionally, iTBS 
increased c‑Fos expression in limbic cortices only and zif268 
levels in all cortical areas (153). one study investigated the 
effects of a low‑frequency pulsed EMF (LF‑PEMF) on protein 
(BACE1) and miRNA expression involved in AD (70). It was 
revealed that 75 Hz LF‑PEMF modulated the expression of 
miR‑107, miR‑335‑5p and miR26b‑5p in an experimental cell 
model of peripheral blood mononuclear cells from patients 
with AD. miR‑107 regulates β‑site aPP‑cleaving enzyme 1 
(BACE1), which serves a role in the amyloidogenic pathway 
of the APP pathway. An increasing LF‑PEMF exposure time 
reduced miRNAs expression and BACE1 level (Table I) (70). 
recently, Perez et al (154) reported that repeated EMF stimu‑
lation reduces aβ40 and aβ42 peptides in primary human 
brain cultures. in a similar vein, another study reported that 
low‑frequency (1 Hz) rTMS progressively downregulated APP 
and its C‑terminal fragments (CTFs) in the AD mouse brain. 
The decrease in β‑secretase generated C99 and C89 fragments, 
and BACE1 could be observed following 1 Hz rTMS application 
in transgenic mice (136). Accordingly, it was also demonstrated 
that rTMS may suppress β‑secretase cleavage of APP proteins, 
contributing toward the decrease in Aβ neuropathology, such as 
neuritic plaque formations, APP processing and BACE1 expres‑
sion, which may contribute to the amelioration of cognitive 
functioning and synaptic plasticity (136). Therefore, TMS exerts 
anti‑AD effects by targeting Aβ peptides, modulating gene 
expression in the AD brain and reducing AD‑related neuropa‑
thology in patients with AD. 

5. Potential side effects associated with TMS treatment

Although TMS exerts extensive therapeutic effects, various 
possible side effects have also been disclosed previously. 
Headache (or neck and scalp pain) is considered the common 
side effect, which might result in accidental seizures, 

hypomania or unwanted psychiatric complications (155). 
Transient headache is reported by 20‑40% of the patients 
undergoing TMS (both low‑ and high‑frequency), but seizures 
(>1%), hypomania and cognitive changes are very rare or 
negligible (156). TMS is also unlikely to cause structural 
changes, histotoxicity or tissue damage, although unintended 
long‑term changes in the brain are theoretically possible (157). 
Additionally, the clicking sound of TMS and skin stimulation 
cause multi‑sensory experiences and trigger shifts of spatial 
attention (158,159). The incorrect positioning of the coil may 
cause a placebo (160) or unwanted effect, affecting the behav‑
ioral, physiological and cognitive processes. However, the 
safety guidelines for TMS suggested by Wassermann (161) and 
chen et al (162) recommend frequencies, current intensities 
and trains of stimuli to prevent side effects of the treatment. 
In addition, TMS parameters combined with short trains and 
long inter‑train intervals carry a lower risk of side effects (163).

6. Discussion

Aging is the major risk factor behind the pathogenesis of 
cognitive decline, dementia and neurodegenerative disorders, 
including AD (14). Being a severe form of dementia, AD is 
a multifactorial, chronic and progressive disorder leading 
toward memory decline and cognitive dysfunctions (164). The 
clinicopathological features of AD brains include proteinop‑
athy (amyloid plaques neurofibrillary tangles) (164,165). 
Despite tremendous advancements in the field of neurology 
and medical sciences, little is known regarding the mechanism 
behind this complex neurodegenerative disease. AD treat‑
ment is still a major challenge for researchers and physicians. 
Furthermore, there are no effective drugs or nondrug treat‑
ment options that can cure AD or stop or slow its progression. 
neurons may be damaged or have already died due to neuro‑
degenerative disorders, but TMS has the potential to treat and 
restore them due to its neuroprotective, neuro‑regenerative 
and disease‑modifying effects (32,36). Accordingly, TMS 
could offer a safe and noninvasive technique for the treat‑
ment of AD. However, the association between the molecular 
mechanisms responsible for the treatment of AD after TMS is 
still elusive. TMS therefore remains a topic of research, and 
much progress has been made to find its mechanism. Studies 
are continuously being conducted to elucidate the mechanisms 
and effects of TMS on the AD‑affected brain. At present, a 
number of clinical trials are ongoing to further investigate the 
molecular mechanisms behind the disease‑modifying effects 
of TMS on AD and other neurodegenerative disorders (www.
clinicaltrials.gov; Table II). 

The present review highlights the effects of TMS on 
neurobiological and neurochemical changes in ad. at the 
molecular level, TMS facilitates neural restoration, synaptic 
plasticity, neurotransmission, neural regeneration, neural 
development, neuroprotection and cognitive rehabilitation, 
and regulates gene expression in AD. TMS positively regu‑
lates inflammatory and apoptotic mechanisms, mitochondrial 
enzymatic activities, modulation of gene expression (miRNA 
expression profiles), cell redox status and the amyloidogenic 
processes (Fig. 1). Following TMS, the expression of the 
following neurochemicals increases: BDNF, NeuN, Nestin, 
dopamine, DR4 (32), TrkB (81), total antioxidant status, total 



Molecular Medicine rePorTS  25:  109,  2022 11

Ta
bl

e 
II

. O
ng

oi
ng

 c
lin

ic
al

 tr
ia

l i
n 

A
D

 p
at

ie
nt

s' 
tre

at
m

en
t w

ith
 T

M
S.

Tr
ia

l n
o.

 
 

St
ud

y 
Sa

m
pl

es
 

 
 

 
c

on
tro

l
(w

w
w.

cl
in

ic
al

tri
al

s.g
ov

) 
St

ud
y 

ty
pe

 
to

 b
e 

En
ro

ll 
D

is
ea

se
 

A
im

 
A

ct
iv

e 
gr

ou
p 

tre
at

m
en

t p
ro

to
co

l 
gr

ou
p 

tre
at

m
en

t

n
c

T0
31

21
06

6 
 

r
an

do
m

iz
ed

 c
lin

ic
al

 
45

  
a

d
 

im
pa

ct
 o

n 
co

gn
iti

ve
 

iT
B

S 
pr

ot
oc

ol
: 1

,2
00

 p
ul

se
s p

er
  

Sh
am

 T
M

S
 

Tr
ia

l 
 

 
an

d 
em

ot
io

na
l  

se
ss

io
n 

fo
r 3

.1
2 

m
in

 
 

 
 

fu
nc

tio
ni

ng
, f

un
ct

io
na

lit
y,

 
 

 
 

 
an

d 
br

ai
n 

co
nn

ec
tiv

ity
N

C
T0

32
24

98
8 

 
Pr

os
pe

ct
iv

e,
  

60
  

Pr
e‑

cl
in

ic
al

 A
D

 
To

 e
st

ab
lis

h 
th

e 
st

ru
ct

ur
al

 
Si

ng
le

‑p
ul

se
 T

M
S,

 d
ua

l‑c
oi

l 
Si

ng
le

‑p
ul

se
 T

M
S,

 
 

ob
se

rv
at

io
na

l, 
ca

se
‑c

on
tro

l 
 

(a
M

C
I o

r 
ba

si
s f

or
 b

ila
te

ra
l b

ra
in

 
TM

S 
an

d 
EE

G
 

du
al

‑c
oi

l T
M

S 
an

d
 

st
ud

y 
 

M
c

i‑
a

d
) 

in
te

ra
ct

io
ns

 a
nd

 th
e 

 
 

ee
G

 o
ve

r h
ea

lth
y

 
 

 
 

te
m

po
ra

l d
yn

am
ic

s o
f  

 
pa

tie
nt

s
 

 
 

 
cr

os
s‑

he
m

is
ph

er
ic

 
 

 
 

 
co

m
m

un
ic

at
io

n 
in

 in
 

 
 

 
 

M
c

i‑
a

d
 p

at
ie

nt
s o

r 
 

 
 

 
he

al
th

y 
pa

tie
nt

s u
si

ng
 

 
 

 
 

un
ila

te
ra

l o
r b

ila
te

ra
l T

M
S.

N
C

T0
38

46
49

2 
 

D
ou

bl
e 

bl
in

de
d 

90
  

A
D

 +
 A

gi
ta

tio
n 

To
 a

ss
es

s t
he

 m
ec

ha
ni

sm
s 

tD
C

S:
 T

he
 d

ire
ct

 c
ur

re
nt

 w
ill

 b
e 

Sh
am

 tD
C

S 
on

 
R

an
do

m
iz

ed
 C

lin
ic

al
 T

ria
l 

 
(m

ild
 to

 m
od

er
at

e 
 

an
d 

tre
at

m
en

t o
f A

D
 a

nd
 

de
liv

er
ed

 a
t 2

 m
A

 fo
r 3

0 
m

in
 

he
al

th
y 

co
m

pa
ra

to
rs

 
 

 
ag

ita
tio

n)
 

co
rti

ca
l  

pe
r d

ay
 fo

r 2
 w

ee
ks

, 5
 d

ay
s/

w
ee

k.
 

 
 

 
ex

ci
ta

tio
n/

in
hi

bi
tio

n 
 

In
hi

bi
to

ry
 st

im
ul

at
io

n 
w

ill
 b

e
 

 
 

 
ba

la
nc

e 
in

 th
e 

D
PL

FC
  

de
liv

er
ed

 to
 th

e 
fr

on
ta

l l
ob

es
.

 
 

 
 

in
 a

d
N

C
T0

42
60

72
4 

In
te

rv
en

tio
na

l, 
 

32
  

M
ild

 to
 M

od
er

at
e 

To
 a

ss
es

s t
he

 c
ha

ng
e 

of
 

TM
S:

 1
,6

00
 p

ul
se

s f
or

 2
0 

m
in

 
Sh

am
 T

M
S 

(n
o

 
Pr

os
pe

ct
iv

e,
 R

an
do

m
iz

ed
,  

 
A

D
 p

at
ie

nt
s 

co
gn

iti
on

, m
oo

d,
 A

D
L,

  
pe

r d
ay

, f
or

 4
 w

ee
ks

 (5
 d

ay
s 

st
im

ul
at

io
n)

 
Ev

al
ua

to
r‑b

lin
d,

 S
in

gl
e 

 
 

 
br

ai
n 

st
ru

ct
ur

al
 a

nd
 

pe
r w

ee
k)

 
C

en
te

r S
tu

dy
 

 
 

fu
nc

tio
na

l M
R

I f
ol

lo
w

in
g 

 
 

 
 

TM
S

N
C

T0
42

94
88

8 
 

R
an

do
m

iz
ed

 C
lin

ic
al

 T
ria

l 
40

  
aM

C
I d

ue
 to

 A
D

 
To

 e
va

lu
at

e 
ch

an
ge

s i
n 

Ex
ci

ta
to

ry
 iT

B
S 

pa
tte

rn
 

Sh
am

 rT
M

S
 

 
 

 
fu

nc
tio

na
l n

et
w

or
k 

 
 

 
 

ar
ch

ite
ct

ur
e 

fo
llo

w
in

g 
 

 
 

 
rT

M
S 

tre
at

m
en

t
N

C
T0

45
55

94
1 

 
R

an
do

m
iz

ed
 C

lin
ic

al
 T

ria
l 

60
 

M
ild

 c
og

ni
tiv

e 
To

 a
ss

es
s t

he
 c

og
ni

tiv
e 

 
iT

B
S:

 1
0 

se
ss

io
ns

, 8
0%

 R
es

tin
g 

Sh
am

 iT
B

S 
to

 th
e

 
 

 
im

pa
irm

en
t o

r  
fu

nc
tio

ns
 

M
ot

or
 T

hr
es

ho
ld

, 2
s s

tim
ul

at
io

n 
pa

tie
nt

s
 

 
 

ea
rly

 d
em

en
tia

  
 

8s
 in

te
r‑s

tim
ul

us
 in

te
rv

al
 p

er
 

 
 

du
e 

to
  

 
tra

in
, 2

0 
tra

in
s p

er
 b

lo
ck

, 3
 b

lo
ck

s
 

 
 

A
lz

he
im

er
's 

 
 

pe
r s

es
si

on
 w

ith
 a

 5
‑m

in
 b

re
ak

,
 

 
 

di
se

as
e 

 
1 

se
ss

io
n 

pe
r d

ay



BaSHir et al:  Brain STiMulaTion and ad12

Ta
bl

e 
ii

. c
on

tin
ue

d.

Tr
ia

l n
o.

 
 

St
ud

y 
Sa

m
pl

es
 

 
 

 
c

on
tro

l
(w

w
w.

cl
in

ic
al

tri
al

s.g
ov

) 
St

ud
y 

ty
pe

 
to

 b
e 

En
ro

ll 
D

is
ea

se
 

A
im

 
A

ct
iv

e 
gr

ou
p 

tre
at

m
en

t p
ro

to
co

l 
gr

ou
p 

tre
at

m
en

t

N
C

T0
48

23
81

9 
 

R
an

do
m

iz
ed

 C
lin

ic
al

 T
ria

l 
40

  
M

ild
 to

 
Ef

fe
ct

iv
en

es
s a

nd
 sa

fe
ty

 
rT

M
S 

st
im

ul
at

io
n:

 2
0 

se
ss

io
ns

 
Sh

am
 rT

M
S 

&
 

 
 

 
m

od
er

at
e A

D
 

of
 rT

M
S 

+ 
tD

C
S 

on
 lo

ng
  

of
 st

im
ul

at
io

n 
w

ith
 in

cr
ea

si
ng

 
Sh

am
 tD

C
S

 
 

 
 

an
d 

sh
or

t t
er

m
 c

og
ni

tiv
e 

 
in

te
ns

ity
, r

ea
ch

in
g 

m
ax

im
um

 in
 

 
 

 
fu

nc
tio

ns
 

th
e 

4t
h 

se
ss

io
n 

ov
er

 th
e 

le
ft 

 
 

 
 

 
D

LP
FC

N
C

T0
48

66
97

9 
 

D
ou

bl
e 

bl
in

de
d 

20
0 

M
C

I &
 A

D
 

To
 e

va
lu

at
e 

th
e 

cl
in

ic
al

  
C

om
bi

na
tio

n 
of

 c
TB

S 
+ 

C
T;

  
C

og
ni

tiv
e 

tra
in

in
g

 
R

an
do

m
iz

ed
 C

lin
ic

al
 T

ria
l 

 
 

ef
fic

ac
y 

of
 T

B
S 

in
 

co
m

bi
na

tio
n 

of
 iT

B
S 

+ 
C

T;
  

on
ly

 (w
ith

 p
la

ce
bo

 
 

 
 

co
nj

un
ct

io
n 

w
ith

 C
T.

 
cT

B
S;

 iT
B

S 
TB

S 
de

liv
er

y 
of

 
TB

S)
 

 
 

 
 

60
0 

pu
ls

es
 d

iv
id

ed
 in

to
 b

lo
ck

s 
 

 
 

 
 

of
 3

 p
ul

se
s a

t 5
0 

H
z,

 w
hi

ch
 a

re
 

 
 

 
 

 
ap

pl
ie

d 
at

 5
 H

z 
(e

ve
ry

 2
00

 m
s)

, 
 

 
 

 
 

w
ith

 a
 st

im
ul

at
io

n 
in

te
ns

ity
 

 
 

 
 

 
eq

ua
l t

o 
80

%
 o

f t
he

 m
ot

or
 

 
 

 
 

 
th

re
sh

ol
d 

va
lu

e 
at

 re
st

A
D

, A
lz

he
im

er
's 

di
se

as
e;

 A
D

L,
 a

ct
iv

ity
 o

f 
da

ily
 li

fe
; a

M
C

I, 
am

ne
st

ic
 m

ild
 c

og
ni

tiv
e 

im
pa

irm
en

ts
; C

T,
 c

og
ni

tiv
e 

tra
in

in
g;

 c
TB

S,
 c

on
tin

uo
us

 th
et

a 
bu

rs
t s

tim
ul

at
io

n;
 D

PL
FC

, d
or

so
la

te
ra

l p
re

fr
on

ta
l 

co
rte

x;
 E

EG
, E

le
ct

ro
en

ce
ph

al
og

ra
ph

y;
 H

z,
 H

er
tz

; i
TB

S,
 In

te
rm

itt
en

t t
he

ta
 b

ur
st

 st
im

ul
at

io
n;

 rT
M

S,
 re

pe
tit

iv
e 

tra
ns

cr
an

ia
l m

ag
ne

tic
 st

im
ul

at
io

n;
 T

B
S,

 th
et

a 
bu

rs
t s

tim
ul

at
io

n;
 T

M
S,

 tr
an

sc
ra

ni
al

 m
ag

ne
tic

 
st

im
ul

at
io

n.



Molecular Medicine rePorTS  25:  109,  2022 13

thiol, native thiol (36), nMdar, nMdar subunits (nr1, 
NR2A, and NR2B), NGF (82), Bcl‑2, Tau (83), NAA/Cr (134), 
miRNA‑106b‑25, miR‑93 (151,152) and IEG proteins (c‑Fos 
and zif268) (153). Furthermore, TMS tends to decrease the 
levels of total oxidant status, oxidative stress index, oxidant 
enzyme activity, disulfide (36), Bax, cleaved caspase‑3, 
p‑Tau (83), miR‑107, miR‑335‑5p, miR26b‑5p (70), BACE1, 
APP, CTFs, β‑secretase‑generated C99 and C89, β‑secretase 
cleavage of APP proteins, and Aβ peptides (136). in addition, 
the disease‑modifying effects of TMS treatment depend on the 
frequency and site of stimulation (166‑168). Neurobiological 
changes have been observed differentially with different 
stimulations (low or high frequency) (153) and stimulation 
sites (i.e., DLPFC, left parietal cortex, hippocampus and 
cortex) (32,36,133,136). Furthermore, TMS tends to improve 
cognitive functioning (134), cortical plasticity (49), naming 
performance (129), language function (132), recognition 
memory function (135), visual recognition memory (36), 
spatial working memory (32), visuospatial reasoning and 
trained associative memory (137) in patients with AD. 
Therefore, the anti‑AD effects of TMS facilitate an increase 
in cortical excitability, induce potentiation, stimulate synaptic 
plasticity, recover impaired molecular functions, enhance 
cognitive functions and re‑establish neural connections in 
patients with AD.

In addition, there are a limited number of research‑based 
studies in the literature demonstrating TMS‑induced neuro‑
chemical and neurobiological changes in ad. We suggest 
that future studies on the therapeutic effects of TMS on 
oxidative stress, Ca+ ions, non‑neural/glial cells (oligodendro‑
cytes, astrocytes, microglia and further NSCs), NTFs (NGF, 
BDNF, GDNF, CNTF and VEGF), nerve growth factors, 
neurotransmitters (dopamine, glutamate, aspartate, GaBa 
and NMDA), apoptosis‑related proteins (Bcl‑2, Bax, caspases 
and TUNEL‑positive cells), genetic expression, miRNA 
expression, protein expression, enzymatic activity and metab‑
olites, are required to further explore the beneficial anti‑AD 
mechanism of TMS in patients with AD. Knowledge of these 
changes may clarify the structural and functional changes in 
the brain, as well as neuroprotection, neurodevelopmental and 
neurorestorative correlation with rTMS in AD.

7. Conclusion

The main goal of the present review was to understand 
the changes in the neurobiological parameters in the brain 
following TMS in neurodegenerative disorders, particularly 
AD. Although the number of studies investigating TMS‑induced 
neurochemical and neurobiological changes in AD is still low, 
the anti‑AD and disease‑modifying effects of TMS can open a 
pathway for researchers to further explore its molecular mecha‑
nism. as the neurobiological and clinicopathological alterations 
and modifications in AD are not well studied following TMS, 
more experimental studies comprising inflammatory, apoptotic, 
neurodegenerative, genetic and neuroprotective changes, as 
well as functional brain imaging, are required to deter‑
mine the site‑ and stimulation‑dependent TMS‑induced 
disease‑modifying changes in the brain. TMS‑based NIBS 
has promising effects on functional recovery through neural 
restoration, neuroprotection and neural differentiation.
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