
 

Vaccines 2015, 3, 771-802; doi:10.3390/vaccines3030771 
 

vaccines 
ISSN 2076-393X 

www.mdpi.com/journal/vaccines 
Review 

Targeting Transcriptional Regulators of CD8+ T Cell 
Dysfunction to Boost Anti-Tumor Immunity 

Katherine A. Waugh 1, Sonia M. Leach 2 and Jill E. Slansky 1,* 

1 University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora,  
CO 80045, USA; E-Mail: Katherine.Waugh@UCDenver.edu  

2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA;  
E-Mail: LeachS@NJHeath.org 

* Author to whom correspondence should be addressed; E-Mail: Jill.Slansky@UCDenver.edu;  
Tel.: +1-303-724-8665; Fax: +1-303-724-8733. 

Academic Editor: Mary Lenora (Nora) Disis 

Received: 3 August 2015 / Accepted: 10 September 2015 / Published: 17 September 2015 
 

Abstract: Transcription is a dynamic process influenced by the cellular environment: 
healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the 
collective impact of pathways modulating cell function under different conditions. In this 
review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell 
(TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL 
resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, 
tolerance, or anergy. Although decades of work have laid a solid foundation of altered 
transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” 
CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent 
technological advances, it is now feasible to further elucidate and utilize these pathways in 
immunotherapy platforms that seek to increase TIL function. 
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1. Brief History of Cancer Immunotherapy 

In the late 19th century, New York surgeon William Coley documented spontaneous elimination of 
sarcomas in patients suffering from erysipelas, an acute streptococcal infection [1,2]. Coley then  
utilized this observation to develop a radical cancer treatment—he injected live Streptococcus pyogenes 
directly into cancer patients. Some patients, especially those suffering from spindle cell sarcomas, were 
permanently cured of tumors that had previously been deemed inoperable and “entirely hopeless”. 
Tumor regression occurred in some patients after treatment with live bacteria regardless of whether or 
not they showed symptoms of erysipelas, but injection of heat-killed bacteria had a reduced effect on 
tumor regression. Therefore, to increase virulence but reduce patient discomfort from erysipelas, Coley 
worked with others to optimize production and delivery of a therapeutic anti-cancer vaccine containing 
mixed toxins, or Coley’s Toxins, from S. pyogenes and Serratia marcescens. Vaccination elicited an 
inflammation storm and permanently cured up to 40% of his patients. Despite potential pitfalls underlying 
Coley’s trials and a lack of mechanistic understanding, these studies were the first to demonstrate that 
the immune system can be activated to treat cancer. 

Around the same time, German physician Paul Ehrlich was also applying bacteriological methods to 
cancer research. He reasoned that since a chemical dye selectively stains a microorganism or tissue,  
a similarly selective agent could be used to specifically target and kill microorganisms or transformed 
cells and leave surrounding tissues untouched like a “magic bullet” [3]. The magic bullet concept has 
recently been reintroduced in tumor immunology with the development of monoclonal antibodies as 
treatments that provide specific delivery of toxic agents to tumors as well as blockade of receptors that 
inhibit function of immune cells against tumors. 

Even with Coley’s promising clinical trials, Ehrlich’s desire to activate the immune system to 
specifically kill cancer cells was not extensively pursued for about 50 years [3]. With the development 
of inbred mouse strains, collective work by E.J. Foley, Georg Klein, Lloyd Old, and Edward Boyse 
determined tumors were immunologically distinct from normal tissues [4–8]. These and other relevant 
studies prompted Frank Macfarlane Burnet and Lewis Thomas to formally introduce the cancer 
immunosurveillance hypothesis [8–10]. They hypothesized that mutations flag continuously-arising 
nascent-transformed cells for specific destruction by lymphocytes. However, the studies that followed 
were unknowingly ill-equipped to test the hypothesis. For instance, nude mice acquired tumors at similar 
rates as wild type mice [11]. These mice were later determined to be immunocompromised rather than 
immunedeficient through spontaneous deletion of the Foxn1 gene that facilitates T cell development. 
The rate of tumor development in nude mice in this study and other seeming contradictions led many to 
reject the cancer immunosurveillance hypothesis for decades [8]. 

By the early 21st century, Robert Schreiber and colleagues updated the cancer immunosurveillance 
hypothesis into a more comprehensive “cancer immunoediting” model [8]. This model was advanced by 
the deeper molecular understanding of the immune response thanks to the advent of new technologies 
such as gene targeting, transgenic methods, and the production of monoclonal antibodies. As the field 
of tumor immunology has grown, we have learned that diverse interactions of the immune system with 
neoplastic tissues shape an evolving tumor environment and can also facilitate tumor growth. 

Starting in the late 1970s, Belgian scientist Thierry Boon and colleagues significantly advanced  
the field by showing cancers were indeed immunogenic and recognized by T cells. By dissecting the 
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anti-tumor immune response in both mice and human samples, they were the first to clone tumor  
antigens and T cells that recognized tumor antigens. Numerous categories of tumor antigens were 
identified including those that were associated with tumors, but were also identified on normal tissues 
(tumor-associated antigens) and those derived from mutations (tumor-specific rejection antigens) [12,13]. 

In the last decade, we have built heavily on the foundation of early cancer immunoediting studies. 
For some cancers, immune infiltration data from tumors, or “immunoscores”, are better predictors of 
cancer patient prognosis than traditional methods that distinguish different stages of disease [14–16].  
In particular, there is compelling evidence that associates localized accumulation of functional  
tumor-infiltrating CD8+ T cells (TIL) with increased survival of cancer patients [8,17–19]. The most 
desirable collective phenotype of multifunctional TIL includes production of cytokines such as 
interferon gamma (IFN�), toxicity toward target cells, and proliferative capacity [8]. However, tumors 
evolve to suppress, evade, and even manipulate the immune system to promote tumor growth [8,20]. 
Ultimately, TIL usually have a hypofunctional phenotype incapable of tumor clearance [21]. 

2. Rationale to Pursue Transcriptional Regulation of TIL Dysfunction 

The promise of eliciting functional anti-tumor immune response for cancer treatment has been 
developing for decades to result in a recent explosion of clinical triumphs [22]. Current therapies 
successfully utilized in the clinic to boost anti-tumor immunity include diverse methods of active and 
passive immunization [23,24]. Efforts to increase TIL function generally seek to expand the number of 
functional anti-tumor T cells, or to reduce immunoinhibitory stimuli present in the patient’s tumor 
environment [23]. However, immunotherapies that target a single pathway are often ineffective against 
established solid tumors [25–27]. 

Co-therapies used to target multiple pathways inhibiting TIL function are being translated from 
mouse models to the clinic [25,26]. For instance, dual blockade of T cell inhibitory receptors 
programmed death-1 (PD-1 or CD279) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 or 
CD152) has greatly increased progression-free survival and overall response rates of an encouraging 
fraction of patients bearing previously incurable solid tumors [24–28]. Approximately 50% of patients 
with advanced melanoma experienced tumor regression, and ongoing clinical trials, show promise in  
a variety of malignancies. Although anti-tumor responses may not clear all tumors, other promising 
combinatorial immunotherapies are in trials [23]. Current research is largely focused on predicting which 
cancer patients will benefit from specific immunotherapies [24,29]. 

Tumor-orchestrated mechanisms of immunosuppression that effectively restrict TIL function include 
chronic suboptimal antigen stimulation, soluble and cell-bound factors expressed by the tumor cells or 
stroma, and an overall toxic environment with low levels of nutrients and oxygen [30,31]. The sheer 
number of inhibitory mechanisms capable of restricting TIL function makes efficient identification of 
effective treatment combinations for individual tumors a daunting task. Furthermore, adding additional 
therapies to those already combined increases the cost and risk of adverse toxicities [25,32]. 

Many inhibitory pathways eventually converge downstream to restrict the same functions in T cells. 
Although the relay between many inhibitory signals and decreased function of TIL remains a black box, 
this body of literature is growing fast, as discussed below. CD8+ T cell perception of a unique array of 
extracellular signals generated by assaulting pathogens or malignancies are collectively reflected in 
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genome-wide mRNA expression profiles, or “transcriptomes”. Recent studies have shown that various 
states of T cell dysfunction relevant to TIL bear distinct, yet overlapping, transcriptomes that relay 
phenotypic and functional readouts of hypofunction (Figure 1) [33–37]. As reflected by the focus of 
current literature, transcriptional regulators of T cell hypofunction could therefore be of great value to 
the development and prediction of successful immunotherapies. 

 

Figure 1. Overlap of key transcriptional networks underlying hypofunction of anti-tumor, 
exhaustion of anti-pathogen, and tolerance or anergy of anti-self CD8+ T cells. 

3. Transcriptional Regulators of Anergy and Tolerance in TIL 

Many tumor antigens recognized by T cells have been identified including tumor-specific antigens 
(TSAs) generated by mutations and tumor-associated antigens (TAAs) generated by overexpressed  
non-mutated proteins [38]. T cell antigen receptor (TCR) affinity influences tolerogenic mechanisms 
and, typically, high-affinity interactions with self-antigens delete or tolerize T cells [39,40]. Upon 
activation, the remaining self-reactive T cells may become functionally competent to mediate 
autoimmune disease and tumor destruction [40,41]. However, the T cell interaction with TAAs is often 
of too low affinity or lacks the necessary immunostimulatory co-signals for T cell expansion and 
elimination of tumor cells [21]. Figure 2 illustrates a canonical pathway in TAA-specific TIL involving 
CTLA-4 competition with co-signal delivered by the surface receptor CD28 during TCR stimulation.  

Sub-threshold TCR stimulation can maintain TAA-specific T cells in an un-activated or antigen-
inexperienced state in which T cells remain “ignorant” of a growing tumor and generally do not control 
tumor growth [17,42,43]. Upon threshold TCR stimulation, T cells lacking additional immunostimulatory 
co-signals undergo activation-induced cell death or progress along a transcriptional program to tolerance 
or anergy. Because of molecular and phenotypic likeness, the historically loaded terms “anergy” and 
“tolerance” have often been interchanged. Both are generally characterized by lack of proliferation, 
absence of cytokine production such as IL-2, and inability to kill target cells in response to self-antigen 
(Figure 3) [37,44]. Distinctions between the overlapping anergic and tolerant T cell states have been 
recently reviewed [37]. We focus on transcriptional regulators of anergy and tolerance because they are 
both relevant to heterogeneous anti-tumor T cell responses. Importantly, anergy and tolerance programs 
can be overcome to generate functional CD8+ T cells and augment anti-tumor immunity. Promising 
strategies to mobilize TIL function specifically against TAAs include TCR-based gene therapies, 
chimeric antigen receptors (CARs), and dendritic cell vaccines loaded with antigens [23,45–47]. 
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Figure 2. TAA-specific CD8+ T cells often lack co-stimulation for an immune response 
against tumors. CD28 signaling was reflected in a top canonical pathway predicted by 
genome-wide mRNA expression profiling to trend towards less activation in TAA-specific 
CD8+ T cells from the tumor compared to those in circulation (p-value of overlap = 3.2E-4, 
right-tailed Fisher Exact Test, z-score = �0.816). Many signaling pathways overlap between 
T cell subsets, so it is not surprising that a CD4+ T cell signaling pathway was associated 
with the gene expression of CD8+ T cells used to generate the figure above. Differential 
gene expression corresponding to molecules enriched in this pathway are outlined in purple 
with red fill representing overexpression and green fill representing decreased expression in 
T cells from the tumor relative to the periphery, and color intensity corresponds to the extent 
of expression difference. CD28 was predicted to be a key upstream regulator that is less 
active in TAA-specific CD8+ T cells from the tumor (p-value of overlap = 1.3E-5, right-tailed 
Fisher exact test, activation z-score = �0.696). CTLA-4 was also predicted to be an upstream 
regulator of differential gene expression (p-value of overlap = 9.7E-5, right-tailed Fisher exact 
test). Differentially-expressed genes and corresponding fold-changes have been previously 
published and were reanalyzed through the use of QIAGEN’s Ingenuity® Pathway Analysis 
(IPA®, QIAGEN, Redwood City, CA, USA, www.qiagen.com/ingenuity) [35]. Both direct 
and indirect relationships were assessed in the Ingenuity knowledge base reference set with 
a confidence threshold of previous experimental observation in T cells. Note: The connecting 
arrow between SHP and T cell activation was altered to a line to better reflect inhibition 
downstream of CTLA-4. 
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Figure 3. Activated and anergic T cells differentially relay extracellular signals to the  
IL-2 locus. Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes is a 
canonical pathway enriched for molecules corresponding to differentially-expressed genes 
of tumor-specific CD8+ T cells from the tumor relative to the periphery (p-value = 4.9E-2, 
right-tailed Fisher Exact Test). These molecules are outlined in purple with red fill 
representing overexpression and green fill representing decreased expression in T cells from 
the tumor relative to the periphery, and color intensity corresponds to the extent of expression 
difference. Differentially-expressed genes and corresponding fold-changes have been 
previously published and were reanalyzed through the use of QIAGEN’s Ingenuity® 
Pathway Analysis (IPA®, QIAGEN, Redwood City, www.qiagen.com/ingenuity) [35]. Both 
direct and indirect relationships were assessed in the Ingenuity knowledge base reference set 
with a confidence threshold of previous experimental observation in T cells.  

The transcriptome of tolerant CD8+ T cells is distinct from other T cell programs, as shown in  
a mouse model [36]. Compared to memory and naïve T cells, functionally tolerant CD8+ T cells have 
increased expression of the early growth response 2 (Egr2) transcription factor and of E2F transcription 
factors 1 and 2 (E2F1 and E2F2). Overexpression of Egr2 shortly after TCR stimulation inhibits T cell 
activation, and the critical role of Egr2 in the induction of anergy in vitro and in vivo is an active area of 
intensive research [48–51]. Although E2F1 has been shown to be a cell cycle progressor in many cellular 
contexts, studies show that in murine CD8+ T cells, E2F1 and E2F2 redundantly restrict cell cycle 
progression and proliferation following sub-threshold antigen stimulation, and mice are more prone to 
autoimmunity [52–60]. E2F1 also regulates activation induced cell death in T cells through an undefined 
pathway downstream of the TCR [59,60]. 
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Not surprisingly, tolerant CD8+ T cells also have decreased expression of many effector molecules 
and of transcription factors known to control T cell function, such as T-box 21 (Tbx21 or T-bet), 
Eomesodermin (Eomes), GATA-binding protein 3 (Gata3), and signal transducer and activator of 
transcription 4 (Stat4) [36,37,61–63]. Alternative expression of chromatin modifiers and miRNAs, such 
as microRNA-181a, also accompany T cell commitment to the tolerant state [36,64,65]. This list of 
transcriptional regulators identified in tolerant CD8+ T cells will be an invaluable resource for functional 
studies in TIL. 

A recent study compared wild type to Egr2-deleted CD4+ T cells under anergizing conditions [33,51]. 
Zheng et al., merged chromatin immunoprecipitation sequencing with gene expression profiling to 
generate a list of genes that is directly regulated by Egr2 in anergic CD4+ T cells [51]. This list of 49 
genes overlaps with transcripts that are highly expressed by tolerant CD8+ T cells and hypofunctional 
TIL, such as the negative regulator of T cell function, lymphocyte-activation gene 3 (Lag3) [36,66]. 
Such analyses may provide a valuable list of novel therapeutic targets in TIL downstream of Egr2 
regulation of T cell anergy. 

4. NF-�B in Hypofunctional Anti-Self and Tumor Infiltrating CD8+ T Cells 

Nuclear factor (NF)-�B is a family of structurally related transcription factors, whose function has 
been heavily studied as a fundamental regulator of immune responses [67]. In T cells, NF-�B regulates 
a wide range of gene expression including those underlying development, activation, differentiation, and 
function. After TCR engagement, activation of NF-�B is critical for cytokine production and T cell 
survival. NF-�B signaling can promote or prevent chronic inflammation as well as autoimmunity, and 
is, therefore, tightly controlled [67,68]. In resting T cells, the NF-�B factors are normally associated with 
inhibitory proteins and sequestered in the cytoplasm. Various immune stimuli lead to degradation of 
these inhibitory proteins, generation of mature NF-�B complexes, translocation to the nucleus, and 
transactivation of many genes by NF-�B hetero- or homodimers through binding to a �B enhancer. 
Multiple signaling pathways throughout an immune response influence NF-�B-mediated gene transcription. 
For example, alternative functional outcomes result from transient activation of NF-�B during an acute 
immune response and chronic activation of NF-�B during persistent infections or cancers. 

Although anergy has been most heavily studied in CD4+ T cells, anergic CD8+ T cells have defective 
NF-�B-mediated gene transcription; the cytokine IL-2 is not transcribed due to decreased modifications 
of the NF-�B subunit RelA/p65 [69]. Hypofunctional T cells from the periphery of tumor-bearing mice 
express less RelA/p65-p50 and alternative forms of p50 bound to DNA that are restored to normal upon 
successful immunotherapy [70]. In patients, early studies using delayed-type hypersensitivity (DTH) as 
a read-out showed that responsiveness to a TAA-based vaccine against solid tumors also positively 
correlates with RelA/p65 levels in T cells [71]. Such studies originally defined T cell anergy as the 
absence of DTH to recall antigens in cancer patients [72,73]. These findings were among the first to 
suggest that transcriptional regulators of anti-tumor T cell function should be monitored during clinical 
trials to indicate responses to cancer treatment. 
  



Vaccines 2015, 3 778 
 

 

Molecular studies regarding consequences of NF-�B signaling in T cell function have since proven 
complex and are outside the scope of this review [67]. However, TCR signaling induces activation of 
NF-�B, and many suppressive factors produced by tumors can inhibit TCR-induced NF-�B activation. 
So, although NF-�B activity is blunted in hypofunctional T cells that often have reduced TCR 
components in tumor-bearing hosts, whether reduced NF-�B signaling in T cells is a cause or an effect 
of the inability to control tumor growth was unknown until the following study [74]. Barnes et al., 
utilized mice that have impaired NF-�B signaling in T cells, to determine that NF-�B signaling is 
required for tumor elimination [74]. Although many questions remain regarding specific roles of NF-�B 
in TIL, this study strongly suggests that NF-�B may be worth more in TIL than just a read-out of 
treatment responses. Implications of this study will be further explored below as there are also negative 
allegations against enhanced NF-�B signaling downstream of an inhibitory receptor overexpressed on T 
cells during chronic TCR stimulation. 

5. TIL and JAK/STAT Relay of Extracellular Signals for T Cell Programming 

The Janus kinase (JAK)/STAT and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB or 
AKT) pathways relay a vast array of extrinsic and intrinsic stimuli to alter transcription of T cells [75]. 
Upon receptor-ligand binding, associated JAKs become activated through trans-phosphorylation to 
phosphorylate their major substrates, STATs. Phosphorylation of these cytoplasmic transcription factors 
facilitates dimerization, nuclear translocation, and activation or repression of target gene transcription. 
Cytokines are key initiators of JAK/STAT pathways that can lead to T cell subset polarization; however 
T cell programs remain incredibly plastic as reflected by shifting gene expression profiles and functional 
capacities [76].  

Transcriptional consequences of JAK/STAT signaling pathways in the tumor environment have 
largely been in the cellular context of other immune or tumor cells rather than TIL [77]. There is, nevertheless, 
a prevailing perception that STAT3 signaling in the tumor environment is detrimental to anti-tumor 
immune function and represents a promising target to refocus tumor-promoting inflammation [77]. 
However, Triplett et al., showed increased levels of phosphorylated STAT3 in TIL after successful 
treatment of large established tumors with a co-therapy that boosts effector T cell function with an 
agonist antibody directed against tumor necrosis factor receptor superfamily, member 4 (TNFRSR, 
CD134, or OX40) and a small molecule inhibitor of the transforming growth factor beta (TGF-�) 
receptor [78]. Genetic deletion of STAT3 in OX40-expressing cells also significantly reduced treatment 
efficacy [78]. Triplett’s study favors a model in which STAT3 signaling is not detrimental to TIL 
function and suggests that STAT3 may have opposing roles depending on the environment of TCR 
engagement as suggested in Figure 4. STAT3 may, therefore, represent a promising target to boost  
anti-tumor function of TIL, but must be thoroughly investigated in proposed therapeutic platforms. 
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Figure 4. JAK/STAT signaling directly relays extracellular signals to transcription in T  
cells. JAK/Stat signaling is a canonical pathway enriched for molecules corresponding to 
differentially expressed genes of tumor-specific CD8+ T cells from the tumor relative to the 
periphery (p-value = 3.5E-2, right-tailed Fisher Exact Test). These molecules are outlined in 
purple with red fill representing overexpression and green fill representing decreased expression 
in T cells from the tumor relative to the periphery, and color intensity corresponds to the 
extent of expression difference. Differentially-expressed genes and corresponding fold-changes 
have been previously published and were reanalyzed through the use of QIAGEN’s Ingenuity® 
Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) [35]. Both 
direct and indirect relationships were assessed in the Ingenuity knowledge base reference set 
with a confidence threshold of previous experimental observation in T cells. 

6. Transcriptional Regulators Underlying PD-1 Signaling and Expression 

Recent studies focus on transcriptional programs downstream of inhibitory receptors that are highly 
expressed by TIL; for example, PD-1 inhibits cell cycle progression of T cells following TCR stimulation [79]. 
In vitro, PD-1 stimulation initiates transcriptional repression of S-phase kinase-associated protein 2 
(Skp2), the substrate recognition component of the Skp, Cullin, F-box (SCF) complex that catalyzes 
ubiquitination of proteins for protesomal degradation [80,81]. Subsequent accumulation of p27Kip1 
protein impairs cyclin-dependent kinase 2 (CDK2), the downstream functions of retinoblastoma (Rb), 
and the transcription factor mothers against decapentaplegic homolog 3 (SMAD3). Subsequent reduced 
transcription of E2F target genes and enhanced SMAD3 activity, respectively, lead to alterations in cell 
cycle machinery and, ultimately, to cell cycle arrest in the G1 phase. Although decreased transcription 
of Skp2 ultimately mediates PD-1 restriction of cell cycle progression in T cells, the transcriptional 
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regulators responsible are unknown, but are mediated by inhibition of PI3K/AKT as well as 
RAS/MEK/ERK pathways and incubation with IL-2 restores phosphorylation of MEK/ERK but not 
AKT proteins. 

PD-1 inhibition of cell cycle progression fits well into the context of studies in vivo and T cell anergy 
in particular. Increased levels of p27Kip1 positively correlate with cell cycle arrest of human and mouse 
CD4+ T cells anergized in vitro and murine CD4+ T cells anergized in vivo [82–86]. Productive TCR 
signaling paired with immunostimulatory CD28 co-stimulation is also necessary for downregulation of 
p27Kip1 through activation of PI3K/AKT pathways in primary human T cells [87]. As stated above, when 
such immunostimulatory co-signals are absent during TCR stimulation, T cells become anergic or 
tolerant to restrict autoimmunity. The congruence between anergic T cells and PD-1 restriction of cell 
cycle progression through p27Kip1 is interesting because, although PD-1 is thought to limit autoimmunity, 
it is not often linked in current literature with anergy [79,88,89]. 

Other transcriptional regulators in hypofunctional CD8+ T cells that are upstream of PD-1 expression 
or downstream of PD-1 signaling are also under heavy investigation. For example, PD-1 signaling alters 
expression of transcription factors STAT1, interferon regulatory factor 9 (IRF9), and basic leucine zipper 
transcription factor, ATF-like (BATF) [79,90]. In human T cells, knockdown of BATF reduced PD-1 
inhibition while enforced expression of BATF decreased cytokine production and proliferation [90]. 
BATF belongs to the activator protein 1 (AP-1) family of transcription factors and interacts with 
members of the IRF family [91]. Additionally, IRF9 is an understudied IRF family member that interacts 
with phosphorylated STAT1:STAT2 dimers to facilitate binding to interferon-stimulated response 
elements [92]. Subsequent transcriptional activation of corresponding genes drive a cell into an antiviral 
state in which proliferation is restricted. Although little is known in the context of CD8 T cells, future 
studies may identify cooperation downstream of PD-1 signaling between STAT1, IRF9, and BATF to 
restrict TIL function. 

Conversely, upstream transcriptional regulators that increase or enforce expression of PD-1 include 
T-bet, PR domain-containing 1 with ZNF domain (PRDM1 or BLIMP-1), Forkhead box protein O1 
(FoxO1), nuclear factor of activated T cells (NFATc1), and mechanisms underlying epigenetic control 
of the locus that encodes PD-1 [79,93–97]. However, much of the interplay between upstream pathways 
and downstream transcriptional regulators is largely unknown and unexplored in TIL [79]. 

7. NFAT in Hypofunctional Anti-Self and Tumor Infiltrating CD8+ T Cells 

The NFAT family of transcription factors has been heavily studied in the induction and maintenance 
of T cell activation, anergy, and tolerance [44,98–100]. In resting T cells, NFAT1 (NFATc2), NFAT2 
(NFATc1), and NFAT4 (NFATc3) are heavily phosphorylated and reside in the cytosol [44]. Calcium 
flux in response to TCR stimulation induces dephosphorylation and subsequent nuclear localization of 
these NFAT family members. In stimulated T cells, NFAT proteins form ternary complexes with 
members of the AP-1 family, Fos and Jun, to elicit specific gene expression. Various stages of this 
response influence whether or not NFAT-mediated gene expression will initiate or maintain a functional 
or non-functional T cell response. These factors include the NFAT protein itself, calcium levels, 
kinase/phosphatase competition for various NFAT residues, cellular localization, efficiency of 
NFAT:AP-1 complex formation, and an open or closed chromatin state of target binding sites. 
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Through NFAT, members of the Ikaros family of transcription factors, Ikaros (IKZF1) and Helios 
(IKZF2), have been tied to decreased IL-2 transcription in CD4+ T cells [101,102]. NFAT-dependent 
increase in expression of Ikaros in anergic T cells leads to increased IL-2 promoter occupancy, 
recruitment of histone deacetylase (HDAC), and stable inhibition of IL-2 gene expression [100,103]. 
Ikaros has since been shown to restrict autocrine IL-2 production in CD8+ T cells, and Ikaros  
haplo-insufficiency in CD8+ T cells results in better control of infection and tumor growth [104]. Thus, 
it will be interesting to determine the various therapeutic platforms in which NFAT can be manipulated 
to augment anti-tumor immunity. 

8. Transcriptional Regulators of Exhaustion in TIL 

Exhaustion represents a heterogeneous population of hyporesponsive T cells that are unique to the 
assaulting pathogen or malignancy [105]. Exhausted T cells are thought to be terminally differentiated 
and are generally defined by accumulation of inhibitory receptors, such as PD-1 and gradual loss of 
function [37,106–108]. Virally exhausted CD8+ T cells have a transcriptome distinct from naive, 
effector, memory, or anergic T cells, that includes expression of transcription factors BLIMP-1, BATF, 
T-bet, and Eomes [34,90,95,105,106,109–112]. While studies have historically focused on BLIMP-1 
control of CD8 T cell exhaustion, recent publications have also elucidated FoxO1 and FoxO3 as key 
transcriptional regulators that integrate a range of extracellular signals to alter CD8 T cell survival and 
function during chronic viral infections [27,94,113–117]. 

Although exhausted CD8+ T cells were initially observed and have been most heavily characterized 
during chronic viral infections, various states of exhaustion in TIL have been repeatedly documented  
in both murine and human solid tumor microenvironments through functional and phenotypic 
characterization [35,37,79,118]. This is not surprising because evidence suggests chronic TCR 
stimulation is a driving force behind both T cell exhaustion during chronic viral infection and TIL 
dysfunction during tumor growth [31,119]. 

BLIMP-1 is a transcriptional repressor that has emerged as a master regulator of terminal 
differentiation in a variety of cell types including T cells [120]. Some BLIMP-1 expression is critical for 
cytolytic effector function, efficient clearance of chronic viral infections, and homeostasis of short-lived 
effector and memory T cell differentiation [95,121–124]. Without BLIMP-1 transcription in hematopoietic 
cells, mice develop a lethal multi-organ inflammatory disease associated with an accumulation of  
T cells [122]. High expression of BLIMP-1 impairs CD8+ T cell function, and reduced levels rescue or 
prevent CD8+ T cell exhaustion during chronic viral infections [90,95]. This “goldilocks” aspect of 
BLIMP-1 expression in T cells may be an underlying reason it is understudied in TIL. 

Direct and indirect targets of BLIMP-1 that repress T cell function have been elucidated [125–128]. 
For example, BLIMP-1 represses the Ifng locus directly and indirectly through T-bet repression [125]. 
Additionally, T cell activation initiates an autoregulatory loop in which IL-2 induces transcription  
of BLIMP-1 to subsequently repress transcription of Fos. BCL6 directly represses transcription of 
BLIMP-1; however, under exhaustive conditions high levels of BLIMP-1 repress BCL6 to hinder T cell 
survival, proliferation, and memory differentiation [125,129]. Finally, BLIMP-1 represses DNA-binding 3 
(ID3) to limit T cell persistence [127]. 
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Although little is known, mechanistically, regarding BLIMP-1-mediated transcriptional repression in 
T cells, downstream epigenetic mechanisms have been dissected in the context of other cell lineages. 
BLIMP-1 recruits an assortment of chromatin modifying enzymes including methyltransferase G9a, histone 
demethylase LSD1, histone arginine transferase PRMT5, and histone deacetylases HDAC1/2 [130–133]. 
While BLIMP-1 usage of specific chromatin modifiers varies across cell lineages, the overall effect is a 
closed chromatin conformation resulting in reduced transcription [120]. Although evidence suggests that 
BLIMP-1 and relevant chromatin modifiers LSD1, DNMT3L, and DNMT3A are all expressed in CD8+ 
T cells during chronic infection, fundamental transcriptional regulators underlying exhaustion of CD8+ 
T cells are still largely uninvestigated in TIL [125,133–139]. 

9. Transcriptome of TAA-Specific CD8+ T Cells Reanalyzed to Identify Transcriptional 
Networks of TIL Hypofunction 

Genome-wide mRNA expression of TAA-specific CD8+ T cells isolated from lymph node  
metastases (TILN) of vaccinated melanoma patients revealed a transcriptome similar to the exhausted 
program of murine T cells during chronic infection (Gene set enrichment analysis (GSEA), p = 0.01, 
FDR = 0.09) [34,35]. Conversely, TILN shared some similarities with a compiled list of 29 genes 
associated with anergy and deletional tolerance, such as CTLA-4, but differed in expression of many 
genes, such as Egr2 [33,35,140]. However, the authors of this original study did not compare the TILN 
transcriptome to the more recently available transcriptome of tolerant CD8+ T cells [35,36]. We, 
therefore, reanalyzed their previously-published TILN data to examine such comparisons. Using GSEA, 
we found significant similarity between TILN and tolerant CD8+ T cells (data not shown; p-value < 0.05 
and FDR < 0.05, FDR-corrected p-value = 0.04) [35,36,141–144]. Consequently, less emphasis on 
distinguishing between exhaustion and tolerance may be advantageous in identification of transcriptional 
regulators as targets for restoration of function in heterogeneous TIL. 

Although BLIMP-1 is cited as a likely regulator of tumor-induced CD8+ T cell exhaustion [35], 
BLIMP-1 expression levels in TILN was not significantly increased in comparison to tumor-specific 
CD8+ T cells from the periphery [21]. Nevertheless debate over the role of BLIMP-1 in tumor-specific 
exhaustion is ongoing as TILN may not be very representative of many hypofunctional TIL from other 
tumor environments [21,35]. 

Few transcriptional regulators met the stringent statistical analysis and three-fold-change cut-off  
that was used by the original authors to determine the published list of genes that are differentially 
expressed between TAA-specific CD8+ T cells from the lymph node metastasis and in circulation  
(Table 1). However, it is not uncommon for transcriptional regulators to be controlled post-translationally, 
and subtle changes in expression of transcriptional regulators can have global effects. Nevertheless,  
our additional analysis showed that no transcription factor motifs were convincingly enriched in 
promoter regions of genes that were published as being statistically up or down-regulated by TILN 
compared to tumor-specific CD8+ T cells from circulation (p < 0.05, FDR < 0.05, Fisher’s exact test, 
TRANSFAC) [35,145]. To identify transcriptional pathways that may underlie hypofunctional TILN 
relative to functional tumor-specific CD8+ T cells in circulation, we next applied Ingenuity Pathway 
Analysis (IPA) to the list of differentially-expressed genes and corresponding fold-changes previously 
published by the original authors (Figures 2–5 and Table 2) [35,145]. As expected, these lists of 
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differentially-expressed genes are predicted to overlap with transcriptional regulators that are associated 
with anergy, tolerance, and exhaustion. 

Table 1. Transcriptional regulators are shown among previously published differentially 
expressed genes in tumor-specific CD8+ T cells in tumor lymph node metastases relative to 
those in circulation. Differentially-expressed genes and corresponding fold-changes have 
been previously published and were determined to be transcriptional regulators through the 
use of QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity) [35]. 

Gene Probe Fold change (TILN/PBMC) Gene Probe Fold change (TILN/PBMC)
ERF 16.8 ZFP36L1 4.0 
HIP2 7.5 ATF4 3.8 

CD619445 7.5 ZFP36L1 3.3 
AI718865 7.4 IRF4 3.2 

ILF2 7.1 E2F1 -3.0 
STAT3 7.1 EIF4G3 -4.9 
ATF3 6.4 SSBP4 -5.4 

BE839843 5.7 SSBP3 -5.5 
FOS 5.7 EIF3S9 -5.9 

NFAT5 5.3   

Table 2. Transcriptional regulators are shown among predicted upstream regulators of all 
previously published differentially-expressed genes in tumor-specific CD8+ T cells in tumor 
lymph node metastases relative to those in circulation (p-value of overlap <0.05, right-tailed 
Fisher exact test). Overlap between Table 1 and Table 2, or a direct relationship, is highlighted 
in green. Differentially-expressed genes and corresponding fold-changes have been previously 
published and were reanalyzed through the use of QIAGEN’s Ingenuity® Pathway Analysis 
(IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) [35]. Both direct and indirect 
relationships were assessed in the Ingenuity knowledge base reference set with a confidence 
threshold of previous experimental observation in T cells. 

Upstream 
Regulator 

Activation 
z-score 

p-value of overlap Target molecules in dataset 

STAT5A 1.342 4.89E-06 
CASP8, DUSP5, FASLG, FOS, IFNG, MCL1, S1PR5, 

TNFRSF25, TNFRSF9, TRAF3 

ID3 0 1.05E-04 
DUSP1, DUSP4, IFNG, IRF4, NFAT5, PIK3IP1, 

PIK3R1, TNFRSF25, TRAF3, TRAF5 

ID2 0 1.12E-04 
DUSP1, DUSP4, IFNG, IRF4, NFAT5, PIK3IP1, 

PIK3R1, TNFRSF25, TRAF3, TRAF5 
FOXP3 -0.555 1.22E-04 CTLA4, DUSP4, ICOS, IFNG, IRF4, RGS1 
CYLD   7.31E-04 CTLA4, ICOS, IFNG 

STAT5B 1.342 1.07E-03 CASP8, IFNG, MCL1, TNFRSF25, TRAF3 
ELF4   1.70E-03 DUSP1, DUSP5 

SATB1 -1.741 2.28E-03 DUSP4, PIK3IP1, RGS1, S1PR1, TUBA4A, VTA1 
IRF1   2.80E-03 FASLG, IFNG 
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Table 2. Cont. 

Upstream 
Regulator 

Activation 
z-score 

p-value of overlap Target molecules in dataset 

EGR3   4.16E-03 CBLB, FASLG 
JUND   4.16E-03 CTLA4, IFNG 
ATF2   4.16E-03 DUSP1, IFNG 

NFKB1   5.75E-03 FASLG, IFNG 
GATA3   7.12E-03 CTLA4, FOS, ICOS, IFNG 
CREB1   7.59E-03 FOS, IFNG 
STAT3   7.62E-03 CTLA4, IFNG, IRF4 
PRDM1   9.64E-03 FOS, IFNG 
HDAC2   1.29E-02 CD27, DCLRE1C, MYO1F 
BACH2   1.42E-02 IFNG, IRF4, MCL1 
NCOR2   1.71E-02 FOS 

IRF2   1.71E-02 FASLG 
STAT2   1.71E-02 IFNG 
MYBL2   1.71E-02 FASLG 

ATF1   1.71E-02 IFNG 
NFATC1   1.71E-02 FASLG, IFNG 

BCL6   1.99E-02 CTLA4, IFNG, IRF4 
HDAC1   1.99E-02 CD27, DCLRE1C, MYO1F 
NFATC2   2.97E-02 ICOS, IFNG 
NFKBID   3.38E-02 IFNG 
TRIM27   3.38E-02 IFNG 
CALR   3.38E-02 IFNG 

CREBBP   3.85E-02 
DGKE, DUSP4, FASLG, IFNG, MYO1F, NR3C1, 

ST6GAL1 
STAT6   4.59E-02 HIPK2, IFNG, IRF4 

10. NF-�B and NFAT in Exhausted Anti-Pathogen and Anti-Tumor CD8+ T Cells 

Virally-exhausted CD8+ T cells and hypofunctional TIL overexpress transmembrane proteins that 
negatively regulate T cell immune responses, such as PD-1 and TIM-3 [79,146]. PD-1 is a traditional 
inhibitory receptor in that signaling is initiated through recruitment of tyrosine phosphatases via  
an inhibitory motif [147]. Conversely, TIM-3 does not bear a known inhibitory motif, but rather  
binds to the tyrosine kinase Fyn and the regulatory p85 PI3K adaptor [148]. In vitro, downstream 
signaling consequences of TIM-3 in T cells include increased NF-�B- and NFAT:AP-1-mediated 
transcription as well as cytokine production. As activation of these transcription factors is also  
a downstream consequence of TCR signaling, TIM-3 may contribute to T cell exhaustion by enhancing 
TCR-signaling pathways during chronic antigen stimulation [148,149]. In vivo data that support this 
hypothesis show that persistent NF-�B signaling impairs T cell function, survival, and responses to 
bacterial infection [68]. Although TIM-3 inhibition of TIL function is an active area of investigation, 
whether TIM-3 restricts T cell function through exacerbating chronic TCR-signaling in vivo remains to 
be elucidated [110,146]. 
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Until recently, additional data regarding NFAT in CD8+ T cell exhaustion were limited and appeared 
contradictory [21,34,150]. In murine CD8+ T cells, Martinez et al., showed that overexpression of an 
NFAT1 mutant incapable of binding AP-1 decreases TCR signaling and promotes exhaustion to result 
in uncontrolled infection and tumor growth [151]. Relative to wild type NFAT1, promoter occupancy of 
the mutant is also enriched for genes associated with exhaustion. NFAT-mediated transcription lacking 
AP-1 cooperation therefore drives T cell anergy, tolerance, exhaustion, and TIL dysfunction [98–100,151]. 

11. T-Bet and Eomes in Exhausted Anti-Pathogen and Tumor Infiltrating T Cells 

As the NF-�B subunit RelA/p65 delineates rescue of anergic T cells in the periphery of cancer  
patients following immunotherapy, expression levels of T-bet and Eomes delineate reversible CD8+ T 
cell exhaustion [69–71,105]. When exhausted CD8+ T cells are divided into T-bethi PD-1int and Eomeshi 
PD-1hi, evidence in mice suggests enhanced CD8+ T cell function and viral clearance after blockade of 
the PD-1:PD-1 ligand pathway is primarily through enhanced proliferation of the T-bethi PD-1int 
population [79,105,152]. Comparable phenotypes corresponding to expression levels of T-bet and 
Eomes in exhausted CD8+ T cells has been documented among patients infected with HIV [153].  
While T-bet and Eomes drive T cell subsets, these transcription factors also have context-specific 
functions, which are relevant but, mechanistically, still largely undefined in the cellular context of  
TIL [61,109,154–156]. Although further studies are necessary to identify the relative abundance of  
T-bethi PD-1int to Eomeshi PD-1hi TIL, it may be advantageous to analyze T-bet and Eomes levels in 
immunoscores to predict cancer patient responses to immunotherapies such as PD-1 blockade [79,156]. 

12. Transcriptional Regulators Underlying TGF-� Inhibition of TIL Function 

A T cell’s environment provides distinct signals that direct development, differentiation, and function; 
TGF-� is an immunosuppressive cytokine enriched in many solid tumor environments [30]. Strategies 
to reduce tumor inhibition of TIL function by targeting TGF-� include antibodies, antisense 
oligonucleotides, and small molecules targeting TGF-� receptors [157]. Adoptive transfer of T cells 
genetically engineered to express a dominant-negative mutant of the TGF-� receptor is also in 
development. There are many reviews devoted solely to the intricate signaling underlying TGF-�/SMAD 
signaling, but one additional point in the scope of this review is that TGF-� also restricts self-reactivity 
of peripheral CD8+ T cells. However, when TGF-� signals are lacking, another cue such as lymphopenia 
is needed to drive anti-self responses [158,159]. Intracellularly, TGF-� signals are transduced through 
the SMAD transcription factors. Although data regarding TGF-�/SMAD2/3 regulation of persistent 
chronic viral infections is conflicting, this signaling pathway is crucial to prevent autoimmunity [160–162]. 

In TIL, SMAD2/3 and NFAT pathways cooperate downstream of TGF-� signaling to enhance  
anti-tumor immunity by increasing CD103 expression [163]. However, TGF-� is among the suppressive 
factors in the tumor environment that increases expression of the transcription factor Foxp1 in TIL [164]. 
To pursue the role of Foxp1 in TIL, Stephen et al., utilized expansion of tumor-specific CD8+ T cells 
genetically lacking Foxp1 before mechanistic and in vivo analyses. In this system, Foxp1 blocks anti-tumor 
function of murine TIL through transcriptional control of AP-1 complex formation, interacts in the 
nucleus with SMAD2/3, and is required for inhibition of CD8+ T cell function by TGF-�. Unlike  
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virally-exhausted CD8 T cells, Foxp1 expression is overexpressed to varying degrees by TIL from all 
queried murine and human tumor environments [109,164]. 

A recent review of the above study regarding Foxp1 highlights some clinical applications to build on 
this knowledge of TGF-� signaling, such as engineering anti-tumor T cells without Foxp1 or small 
molecule disruption of Foxp1-SMAD2/3 or -DNA [157]. In CD8+ T cells, the more heavily studied 
transcriptional regulator of PD-1 expression, Foxo1, also binds to the same predicted forkhead-DNA 
binding site as Foxp1 to effect CD8+ T cell differentiation and function, suggesting that manipulation 
of Foxo1 expression in TIL may be of interest [94,157,165,166]. However, further studies are needed to 
determine the appropriate therapeutic platforms in which targeting Foxp1 or Foxo1 might be of most use. 

13. PI3K/AKT/mTOR Signaling and Transcriptional Consequences in TIL 

There are many other signals in the tumor environment that are collectively integrated by the  
residing CD8+ T cell. Many of these signals, such as PD-1, overlap within the PI3K/AKT/mTOR 
pathway (mechanistic target of rapamycin is abbreviated mTOR) (Figure 5) [79,94,167,168]. Activation 
of mTOR kinase activity broadly impacts transcription, translation, metabolism, expansion, and 
differentiation of T cells [167]. mTOR exists in two multi-protein complexes: mTOR complexes 1 and 
2 (mTORC1 and mTORC2); upstream stimuli and downstream consequences differ between these 
complexes [167]. mTORC1 signaling alters gene expression through transcription factors c-MYC and 
hypoxia-inducible factor-1 alpha subunit (HIF-1�), which are key regulators of gene expression required 
for metabolic programs in T cells that are likely to affect TIL fitness [167,169]. 

Levels of stable HIF-1� in the nucleus are increased under hypoxic conditions, like solid tumor 
environments, in response to growth factors, inflammatory signals, and PI3K/AKT/mTOR activation [170]. 
To reduce the dangers of systemically activating T cells, clinical trials are taking advantage of targets 
that have increased expression on T cells located in the hypoxic tumor. For instance, HIF-1� induces 
high expression of 4-1BB on TIL [171,172]. Conversely, degradation of HIF-1� occurs in normoxia via 
interactions with the von Hippel–Lindau (VHL) complex, an E3 ubiquitin ligase. Upon deletion of VHL 
in tumor-specific CD8+ T cells, hypoxia modulates expression of effector molecules through HIF-1� 
and 2� to enhance function and control of persistent viral infection and tumor growth [173]. 

14. Technological Advances to Utilize Transcriptional Regulators to Increase the Persistence of 
Functional TIL 

Vaccination must induce a persistent immune response, or immunological memory, for protective 
immunity [119]. The field of research to elicit persistent cellular immunity is outside the scope of this 
review. However, increased expression of Eomes, B-cell lymphoma 6 (BCL6), TNF receptor-associated 
factor 6 (TRAF6), and transcription factor 1 (TCF1) promote memory T cells, whereas mTOR, T-bet, 
and BLIMP-1 promote short-lived T cells [61,123,124,129,174–179]. Use of pharmacologic agents to 
drive T cell differentiation toward memory in vivo, such as rapamycin inhibition of mTOR, has risks of 
broad off-target effects. [167,174,175]. 

Advances in oligonucleotide aptamer technology have recently produced an exciting increase in target 
cell specificity [174]. Aptamers are high-affinity, single-stranded nucleic acid ligands with specificity 
and avidity comparable to antibodies [180]. mTORC1 activity is down-regulated and CD8+ T cells are 
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activated following immunization with siRNA against mTORC1 conjugated to an aptamer targeting 4-1BB, 
a co-stimulatory molecule expressed after TCR stimulation [174]. This vaccine enhanced memory T cell 
differentiation and protection from tumor challenge, even though 4-1BB and mTORC1 are also 
expressed by a regulatory T cell subset that promotes tumor growth [174,181]. Conversely, the systemic 
administration of a pharmacologic inhibitor of mTORC1 was not as effective at augmenting tumor 
rejection [174]. Aptamer delivery of RNAi, therefore, offers a reasonable approach to manipulate 
intracellular pathways in the clinic [174,180,182–185]. 

 

Figure 5. Many signals overlap with PI3K/AKT/mTOR pathways in tumor-specific  
CD8+ T cells. PI3K/AKT signaling is a canonical pathway enriched for molecules 
corresponding to differentially expressed genes of tumor-specific CD8+ T cells from the 
tumor relative to the periphery (p-value = 4.1E-2, right-tailed Fisher Exact Test). These 
molecules are outlined in purple with red fill representing overexpression and green fill 
representing decreased expression in T cells from the tumor relative to the periphery; color 
intensity corresponds to the extent of expression difference. mTOR (or FRAP1) was 
previously published as being down-regulated in TIL and was predicted by our analysis to 
be an upstream regulator of differential gene expression (fold-change = �3.1, and p-value of 
overlap = 2E-2, right-tailed Fisher Exact Test). Differentially-expressed genes and 
corresponding fold-changes have been previously published and were reanalyzed through 
the use of QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity) [35]. Both direct and indirect relationships were assessed  
in the Ingenuity knowledge base reference set with a confidence threshold of previous 
experimental observation in T cells.  
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Another strategy to limit systematic effects of agents that alter cellular differentiation is removing T 
cells from patients to pharmacologically or genetically manipulate intracellular pathways, then 
adoptively transferring these cells into the cancer patient [186]. Because success of such treatments 
largely depends on long-term persistence of transferred T cells, generating a large number of anti-tumor 
T cells that have enhanced self-renewal capacity and multipotency is an area of intense interest.  
Focus includes differential expression of transcription factors in a memory T cell subset with stem cell 
qualities such as FOXP1, inhibitor of DNA-binding 3 (ID3), multiple members of the Kruppel-like factor 
(KLF) family, and the WNT-�-catenin signaling transducers T cell factor 7 (TCF7) and lymphoid 
enhancer-binding factor 1 (LEF1) [179,186–192]. 

Evidence suggests a subset of memory CD8+ T cells with stem cell-like qualities is a precursor  
that can be differentiated into other T cell subsets [187]. Culture techniques that limit differentiation of  
anti-tumor T cells away from a more pluripotent memory subset during expansion before adoptive 
transfer is an area of active research including pharmacologic manipulation of developmental pathways, 
such as mTOR and AKT inhibitors [193]. However, balancing T cell proliferation and differentiation is 
difficult during expansion of persistent anti-tumor T cells. Focus may, therefore, shift to reprogramming 
T cells or differentiating stem cells into functional antitumor T cells. For instance, ectopic expression  
of transcription factors such as OCT4, SOX2, KLF4, and c-MYC may de-differentiate T cells into 
induced pluripotent stem cells before reprogramming into a less differentiated T cell that bears the same 
tumor-specific TCR [186]. 

15. Technological Advances to Identify Novel Transcriptional Regulators of TIL 

Highly innovative pipelines have been developed to systematically identify intracellular targets that 
enhance TIL function in vivo. For example, transducing tumor-specific CD8+ T cells with pooled 
lentiviral shRNA libraries before adoptive transfer into tumor-bearing mice determined that  
protein phosphatase 2, regulatory B subunit (Ppp2r2d) is a novel target in TIL to enhance immune 
function [194]. In this system, shRNAs that competitively increased the number of TIL were identified 
by next generation sequencing and novel hits were pursued functionally. Although the discovery method 
was more robust in CD8+ T cells specific for the surrogate TSA, OVA, there was also promise in CD8+ 
T cells specific for a TAA. Many variables between these two T cell populations may have affected 
expansion, such as higher TCR affinity for a TSA. However, shRNA pools may also have been more 
relevant to the TSA-specific T cells because the two screens were generated using a broad library 
targeting kinases/phosphatases or a custom library targeting transcripts associated with CD4+ T cell 
anergy and CD8+ T cell exhaustion against a non-self viral antigen. Therefore, more robust responses 
may be obtained in TAA-specific CD8+ T cells if an shRNA library is generated to target transcripts 
associated with tolerant CD8+ T cells. Knockdown technologies may be especially useful to decrease 
“goldilocks” transcription factors for which expression is necessary for functional CD8+ T cell 
responses, but are hypothesized to inhibit TIL function when overexpressed. In vivo high-throughput 
discovery methods offer pipelines to expand our limited knowledge underlying transcriptional regulators 
of TIL dysfunction and to identify therapeutically relevant targets in vivo. 

Other genome editing technologies, such as CRISPR-Cas9 sgRNA, could also be used to investigate 
transcriptional regulators of TIL dysfunction [195]. For instance, the above pipeline could be modified 
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to utilize a custom Edit-R Lentiviral sgRNA Pooled Screening Library (GE Healthcare) to eliminate 
transcription factors that are associated with decreased CD8+ T cell function. Additionally, the CRISPR-Cas9 
system could be utilized to investigate the many transcription factors that are regulated post-translationally, 
as mutating a single residue, such as an Arginine on E2F1, can drive a cell down widely different paths [196]. 
Although the small number of anti-tumor T cells is limiting for many of the analyses proposed above, it 
is now plausible to utilize single cell methods to molecularly investigate a small number of TIL [197]. 
Such methods could be used to elucidate the intricate transcriptional regulation of heterogeneous TIL 
dysfunction for therapeutic applications. 

16. Discussion and Conclusions 

T cell programming is a dynamic process intimately linked to an array of environmental signals that 
lead to differential expression of lineage-specific transcription factors. At any given time in a patient, 
TAA and TSA-specific CD8+ T cells circulating through the blood, lymph nodes, and tumor tissue are 
a heterogeneous population at various states of activation and differentiation in response to an evolving 
malignancy and milieu. Transcriptional control of TIL hypofunction overlaps with programs controlling 
exhaustion, anergy, and tolerance. These molecular programs are plastic, and external cues temporarily 
restore T cell function. However, whether these subsets can be reprogrammed into functional TIL that 
persistently augment anti-tumor immunity in patients remains unanswered. 

Co-therapies that target multiple pathways inhibiting TIL function are being translated from mouse 
models to clinical successes, and efforts are now focused on predicting effective immunotherapy 
combinations for individual patients [25,26]. We have known for decades that there is a positive 
correlation between activation of the NF-�B subunit RelA/p65 in T cells circulating in cancer patients 
and response to immunotherapy. Manipulating transcriptional pathways underlying various states of 
CD8+ T cell hypofunction, such as NF-�B or NFAT, has since been utilized to significantly augment 
tumor clearance in mice. Although striking, these findings are not surprising because many inhibitory 
pathways eventually converge downstream to alter transcription of molecules that restrict the same 
functions in T cells. We foresee that recent technological advances may soon provide more efficient 
cancer treatments through precise definition and subsequent manipulation of transcriptional regulators 
underlying hypofunction of TIL. 
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