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Abstract: Rapid developments in stem cell research in recent years have provided a solid foundation
for their use in medicine. Over the last few years, hundreds of clinical trials have been initiated in a
wide panel of indications. Disorders and injuries of the nervous system still remain a challenge for the
regenerative medicine. Neural stem cells (NSCs) are the optimal cells for the central nervous system
restoration as they can differentiate into mature cells and, most importantly, functional neurons
and glial cells. However, their application is limited by multiple factors such as difficult access
to source material, limited cells number, problematic, long and expensive cultivation in vitro, and
ethical considerations. On the other hand, according to the available clinical databases, most of
the registered clinical trials involving cell therapies were carried out with the use of mesenchymal
stem/stromal/signalling cells (MSCs) obtained from afterbirth or adult human somatic tissues. MSCs
are the multipotent cells which can also differentiate into neuron-like and glia-like cells under proper
conditions in vitro; however, their main therapeutic effect is more associated with secretory and
supportive properties. MSCs, as a natural component of cell niche, affect the environment through
immunomodulation as well as through the secretion of the trophic factors. In this review, we discuss
various therapeutic strategies and activated mechanisms related to bilateral MSC–NSC interactions,
differentiation of MSCs towards the neural cells (subpopulation of crest-derived cells) under the
environmental conditions, bioscaffolds, or co-culture with NSCs by recreating the conditions of the
neural cell niche.

Keywords: neural stem cells; mesenchymal stem cells; niche; coculture; cell interaction; nervous
system regeneration

1. Introduction

Currently, there is no effective therapy to repair and restore the function of the central
nervous system (CNS). The discovery of newly generated cells in the adult brain was a
breakthrough in neurobiology as it provided irrefutable arguments that the processes of
adult neurogenesis in the brain are actually happening. The term ‘neurogenesis’ means
literally ‘the birth of the neurons’ and includes neurogenesis at prenatal (embryonic stage)
and postnatal (adulthood) age. Adult neurogenesis is the process of the formation, migra-
tion, maturation, and integration of new neurons in the brain of adult mammals, including
humans. So far, two active neurogenic zones in the CNS have been distinguished: the
subventricular zone (SVZ) of the lateral ventricle, located along the ependymal cell layer,
and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. These areas
are perfect examples of neural stem cells (NSCs) displaying heterogeneity: SVZ generates
olfactory bulb interneurons and corpus callosum oligodendrocytes while SGZ develops
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dentate granule neurons and astrocytes [1]. However, researchers discovered more areas in
the adult brain where new neurons may occur, including the hypothalamus, the striatum,
the amygdala, periventricular zones, and the frontal and temporal cortex [2,3].

Providing the niche—a comprehensive environment containing growth, nutritional,
and regulatory factors—is necessary to form new neurons. Injury of the nervous system
can activate stem cells residing in the niche, leading to the young neuroblast migration to
the site of damage [4,5]. Researchers attempt to translate this phenomenon to the clinical
therapy. The idea of endogenous neurogenesis activation collapsed because of a limited
number of newly generated cells which proved to be insufficient to achieve a clinical effect.
In the next attempts, the allogeneic NSCs were transplanted near the site of damage to
increase neuroblasts; however, the same problems still arose, i.e., poor cell survival and low
proliferation. It seems that the failure of NSC transplantation is related to the lack of cell
niche factors that protect and support newly generated cells. Mimicking the multifactorial
niche would therefore improve the NSCs therapeutic efficiency.

To create a functional microenvironment an additional, a supportive type of cells is
required. Mesenchymal stem/stromal/signalling cells (MSCs) appear to play a supportive
role through their paracrine and immunomodulatory properties (Figure 1). MSCs can mi-
grate to damaged sites of the brain where they produce neuroprotective and vasoprotective
effects [6,7]. Furthermore, they can promote cell regeneration in injured cerebral cortex [8],
while their secretome has a favourable impact on neurons after traumatic brain injury [9].
However, research is still underway as to whether MSCs may interact with NSCs or their
niche to increase the regenerative capacity of NSC differentiation towards mature and
functional neurons. MSCs and NSCs alone have a low regenerative potential in the CNS,
but their unique features can create a synergistic relationship that is essential for therapeu-
tic effect enhancement. While NSCs could provide new neural progenitors, MSCs could
immunoprivilege the microenvironment and support the survival and differentiation of
newly generated neuroblasts through the adjuvant effect and cell-cell contact [10] (Figure 1).
It was recently reported that both cell types could have beneficial effects; however, the
mechanism responsible for their therapeutic properties seems to be different from what was
observed in the animal model of Alzheimer’s disease [11]. The implementation of such a
therapy requires a lot of further research and understanding of the mechanisms controlling
the processes which take place in the natural niche. In this review, we summarise the
knowledge of both neural and supportive cells and their interactions.

Figure 1. Potential abilities of MSC and NSC cooperation.
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Neural Stem Cells Niche

The complex environment comprising many types of cells and the extracellular matrix
(ECM), as well as the signalling molecules associated with each population of stem cells, is
collectively termed as the stem cell niche. The niche is a local microenvironment that main-
tains self-renewal capacity and the potential for multidirectional NSC differentiation [12].

A stem cell niche provides a protective environment that regulates proliferation, dif-
ferentiation, and apoptosis to control stem cell reserves [13,14]. Therefore, maintaining
a balance between the quiescence and activity of stem cells is a feature of a functional
niche [15]. Different signals and components mediate the communication between different
cell types that constitute the niche. The NSC niche also contains other types of cells, such as
radial glia, neuroblasts, neural progenitor cells, neurons, astrocytes, and ependymocytes as
supportive cells [16]. Moreover, vasculature also plays an important role through endothe-
lial cells and pericytes with their paracrine factors [17,18]. In the NSC microenvironment,
the major role of ECM focuses on neural development and regeneration processes, such as
neurogenesis, nerve repair, neuronal cell migration, and axonal growth. The biophysical
properties of ECM that are of importance for its function include elasticity, matrix pore size,
structure, and topography. The interactions between the aforementioned niche components
are depicted in Figure 2.

Figure 2. Interactions in neural stem cell niche.

The behaviour of the neural cell niche in pathological conditions is not fully under-
stood, which is why ongoing research is trying to improve our understanding of these
mechanisms in order to design therapies which shall not only support the regeneration of
the damaged brain but also the entire central nervous system.

The differentiation toward a more specialised form of NSCs could be controlled by the
modulation of the niche-constructing factors. Extracellular ligands are a key component of
the regulatory niche necessary to maintain NSCs in the process of self-renewal, differen-
tiation, cell adhesion, and migration. Some of many extracellular factors associated with
cell specification and cell signalling include basal fibroblast growth factor (FGF), epidermal
growth factor (EGF), CXCL12, stromal cell-derived factor 1 (SDF-1), Sonic hedgehog (Shh),
bone morphogenic proteins (BMP), and Notch [19]. The regulation of these factors can help
in the regeneration of damaged brain sites by selectively directing cells in a neuronal direc-
tion. Current research mostly focuses on the possibilities of increasing the differentiating
potential towards mature, functional neurons. One of the methods of modification is to
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change ECM so as to limit the differentiation in the direction of glia or astrocytes in favour
of the differentiation into neurons. In recent reports, Wang et al. constructed a neuronal
matrix in which they anchored the neurotrophic factors: brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), and chondroitinase ABC [20]. The produced matrix
implanted in post-brain-damage mice reduced the glial furrow and increased the neuro-
genic zone in the brain. The results of that study proved how important it was to supply
the cell niche with the factors determining the future of NSCs, i.e., both those supporting
neurogenesis and the ones eliminating NSC differentiation into microglia cells.

One of the problems is the invasiveness of surgical methods that affect the CNS. The
possibility of providing favourable factors by other means than intracerebral administration
of a therapeutic agent capable of migrating to the niche of neural stem cells seems to be a
potential solution. To obtain signal enrichment from the NSC niche, the unique properties
of mesenchymal stem cells can be used.

2. Neural Stem Cells

NSCs in the adult brain are present in two states: they can be active or quiescent, which re-
lates to two important niche-controlling processes, neurogenesis, and quiescence, respectively.

Quiescent NSCs (qNSCs) are characterised by a low metabolic rate and high sensitivity
to environmental signals. Unlike stem cells derived from other tissues, NSCs undergo
multiple stages of activation at any time [21,22], which maintains the balance between pro-
liferation and quiescence, limits the metabolic stress, and, as a result, restrains senescence
and transformation processes. It regulates the rate of neurogenesis and neurogenic capacity
of the human brain [23]. In order to prevent NSCs from premature exhaustion, qNSCs
present the expression of the cyclin-dependent kinases—p57, p27, and p21. A similar
role was shown for chromodomain helicase DNA-binding protein 7(CHD7) [24–27]. NSC
quiescence maintenance is also provided by a balanced activation of canonical and non-
canonical WNT activity. In SVZ, it is induced by a non-canonical signalling pathway via
Rho-GTPase CDc42 activation, promoting anchorage to the niche and Notch1, as well as the
N-cadherin upregulating expression [28]. Recently, several studies have investigated the
role of circadian rhythms on the proliferation and differentiation of adult neural stem cells.
A circadian clock regulates metabolic processes; thus, it can limit the exhaustion of qNSCs
by restraining their activation into the cell cycle or, conversely, wake them up [29,30].

The activation of qNSCs is described as the first stage of neurogenesis. Neurogenesis
and gliogenesis are strictly controlled by a plethora of synergistic and antagonistic fac-
tors, such as cytokines, morphogens, or neurotransmitters of the niche microenvironment
(Figure 3). Morphogens are critical for tissue specification during embryonic and adult
CNS development. Fundamental examples of morphogens include: BMP signalling, which
regulates the neurogenesis by promoting astroglial commitment of NSCs as well as their
quiescence [31]; Notch signalling, which induces the maintenance and proliferation of
NSCs, also involved in brain damage and repair processes of stroke, Alzheimer’s disease,
and CNS tumours [32,33]; Wnt, which promotes quiescence and self-renewal of NSCs [34];
and Shh, which is responsible for NSC maintenance [35,36].

NSCs secrete several soluble factors, such as growth and neurotrophic factors or cy-
tokines, which assert the protection of existing neural cells and the replacement of the
lost ones. bFGF and RA increase the potential to differentiate into neurons and PDGF
strengthens oligodendrocyte development, while EGF, CNTF, and bone morphogenic pro-
teins (BMPs) enhance differentiation into astrocytes [13,37,38] (Figure 3). Although neural
precursor cells (NPCs) give rise to all three cell types in CNS, they are not multipotential
during early stages of gestation—they differentiate only toward neurons. Then, they can
differentiate into astrocytes and oligodendrocytes. Those processes are strictly regulated
externally by cytokines, as well as via internal cell programs, such as epigenetic modifica-
tion [39–44]. The members of interleukin-6 (IL-6) family, including leukaemia inhibitory
factor (LIF) or ciliary neurotrophic factor (CNTF), as well as retinoic acid, have been shown
to jointly induce the astrocytes generation from NPCs [39]. Other growth factors involved
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in adult neurogenesis regulation also help to promote the proliferation and neuron genera-
tion of NPCs. Additionally, IGF was reported to inhibit BMP signalling, thus stimulating
differentiation of NPCs into oligodendrocytes [45,46].

Figure 3. Activation and differentiation of NSC processes are controlled by multiple signalling
molecules. Abbreviations: bone morphogenic proteins (BMPs), ciliary neurotrophic factor (CNTF),
epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF),
and retinoic acid (RA).

Adult neurogenesis is strongly regulated by microglia, as well as by inflammatory
processes. In pathological conditions, the reparatory mechanism of neurogenesis in the
adult brain cannot be activated as it is inhibited by microglia that releases, such cytokines
as IL-6 and tumour necrosis factor—α (TNF-α). It has been shown that microglia can
promote neurogenesis when anti-inflammatory molecules prevail in the niche, or when
physical exercise is performed [47–50]. It has been reported that, surprisingly, the cellu-
lar accumulation of reactive oxygen species can actually promote cell proliferation and
survival [51–53]. Consistently, several available reports have already shown that NSC
treatment with exogenous reactive oxygen species sufficiently promoted the proliferation
of self-renewal of NSCs due to the activation of PI3K/AKT pathway [54].

Furthermore, NSCs have been shown to possess a significant ability to migrate, even
across long distances, and integrate to the injured regions of the brain of all ages [55]. The
migration is possible thanks to the SDF-1 up-regulation in astrocytes and endothelial cells
of injured tissue and its CXC receptor 4 (CXCR4) on NSC surfaces [56].

Current Challenges in Neural Stem Cells Therapy

It has been demonstrated that endogenous NSCs can respond to brain injuries and
help in its repair. NSCs can administrate the niche by paracrine and autocrine signals.
Although it is hard to determine the niche signals origin, several studies have shown the
impact of the factors released by NSCs on the niche. For example, upon an increased level
of intracellular calcium, NSCs release vasolidating factors that activate pericytes to increase
blood flow [57]. NSCs can promote qNSC activation by expressing vascular endothelial
growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C [58].

In recent years, a growing body of evidence has pointed to the immense importance of
NSCs in terms of their application in cell therapy. Currently, as many as 74 clinical studies
are registered on clinicaltrials.gov. There is a steadily growing interest in the application of
these cells in order to treat neurological diseases, including ischemic stroke, Parkinson’s
and Alzheimer’s diseases, amyotrophic lateral sclerosis (ALS), or spinal cord injury (SCI).
As endogenous the restorative abilities of NSCs are ineffective, a plethora of sources on
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NSCs have been tested, including foetal and adult CNS-derived NSCs, neural progenitor
cells from pluripotent stem cells, as well as non-neural stem cells (Table 1). So far, no ideal
source available has been selected [59]. Each of these sources has its pros and cons, which
is summarised in the table below.

Table 1. The summary of potential advantages and disadvantages according to use of different neural
stem cells sources in cell-replacement therapy [14,55,60,61].

Source of NSCs Advantages Limitations

Fetal CNS
primary, undifferentiated cells

extensive proliferation potential
limited differentiation potential

availability
limited numer of cells

safety-considerable genetic instability

Adult CNS
differentiation potential into functional neural cells

genetic stability
compatibility to microenvironment of the brain

availability
safety

limited proliferation potential

ESCs unlimited proliferation potential
pluripotency

ethical issues
safety concerns—high tumorigenic risk

limited availability
risk of unwanted transdifferentiation

iPSCs

availability
unlimited proliferation potential

pluripotency
can be expanded indefitely in vitro (in theory)

safety concerns—possible genetic instability
risk of unwanted transdifferentiation

Other sources

availability from many sources
safety

extensive proliferation potential
extensive paracrine activity (neurotrophic effect)

autologous tranplantations
genetic stability

limited proliferation and differentiation
potential—poor direct neuroregenerative effect

CNS—central nervous system, ESCs—embryonic stem cells, iPSCs—induced pluripotent stem cells, NSCs—neural
stem cells.

3. Mesenchymal Stem Cells (MSCs)

MSCs are a highly heterogeneous group of cells characterised by rapid proliferation
capacity, phenotypic plasticity, and multi-differentiation into functional cell types. Along
with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSs), which are
also extensively studied, they are currently one of the most prosperous and promising
therapeutic methods in regenerative cell-based therapies.

The most significant asset for which MSCs are frequently used in today’s medicine is
their relatively high availability in the niches of the adult organism. The major sources of
mesenchymal cells include: bone marrow (BM-MSCs) [62], adipose tissue (AD-MSCs) [63],
placenta [64], umbilical cord tissue, mainly Wharthon’s jelly (WJ-MSCs) [65], umbilical cord
blood (UCB-MSCs) [66], dental pulp [67], muscles [68], dermis [69], and many others. The
acquisition of MSCs is considered as a readily available, uncomplicated, and safe source of
cells. Moreover, there are no ethical dilemmas which accompany the acquisition of ESCs or
NSCs. The therapeutic benefits of MSCs can also be obtained by combining cells with other
structures, such as biomaterials or scaffolds, which seems to be an innovative method in
injuries repair [70].

3.1. Supportive Mechanism of MSCs

MSCs can significantly influence the regeneration of damaged tissues due to the ability
to repopulate at the site of injury, immunomodulatory capacity, and paracrine activity,
which consists of secretory activity and exosome release. Through intercellular contacts,
MSCs can receive appropriate stimuli signals to independently create identical copies of
themselves through mitotic division, and then to migrate, repair, and replace damaged
cells [71,72]. This communication is enabled by key mediators which are known as ex-
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osomes or extracellular vesicles (EVs) [73]. Those naturally released liposomes, mainly
filled with proteins, lipids, nucleic acids, and even organelles, are involved in the intercel-
lular transportation of their contents to maintain physiological homeostasis [74]. Current
research shows that EVs isolated from MSCs can be an alternative to standard transplan-
tation technology of MSCs because of numerous advantages, such as greater safety or
lower immunogenicity. Some reports also show that EVs may support regeneration in
animal models of stroke [75], brain [76], and spinal cord injuries [77], but it is unlikely
that they will have greater therapeutical effectiveness than the standard MSC therapy [78].
What is important, however, is that exosomes can overcome the blood–brain barrier and
interact with nerve cells. In order to enhance properties of exosomes, their combinations
with various nanoparticles are used. Some observations of exosomes in a mouse model
of Alzheimer’s disease showed that they migrated towards inflammation sites, but got
dispersed when entering the bloodstream in non-inflammation conditions. Furthermore, it
was observed that exosomes enriched with gold nanoparticles were selectively captured
by neurons [79]. The combination of MSC-derived exosomes and magnetic nanoparticles
increased the desirability of exosomes for ischemic stroke. In addition, they exhibited an
increased secretion of therapeutic agents, thanks to which they promoted anti-inflammatory
response, angiogenesis, and antiapoptosis [80].

An ability to interact with the immune system components is another feature that
enables MSCs to effectively regenerate tissue after damage [81]. MSCs suppress the immune
response by changing the cytokine profile of T-cells to anti-inflammatory ones [82]. MSCs
also interact with monocytes and macrophages [83,84], modulate B-cell functions [85], or
inhibit T-cell proliferation [86]. Furthermore, some immunomodulatory factors secreted
by MSCs, such as IL-6 or TNF-α, may function in both directions: anti-inflammatory or
pro-inflammatory, depending on the external injury microenvironment [87]. MSCs can
secrete cytokines such as IL-6, hepatocyte growth factor, prostaglandin 2, inducible nitric
oxide synthase, and TGF-β1 that regulate CD4+ T-cell subsets, suppress immune response,
and protect neurons from apoptosis [88,89].

Despite the fact that both processes—MSC proliferation and trafficking of exosomes
between cells—play an extremely important role, what seems to be of key significance is the
support of the injury repair provided by MSC secretome activity and a vast number of bio-
active molecules, such as chemokines, growth factors, cytokines, and proteins, which are
released to extracellular space [90]. These specifically released biomolecules perform a wide
range of actions, activating or inhibiting some signalling pathways, stimulating or attenuat-
ing receptors, and affecting a range of properties. They can act as proangiogenic (VEGF,
IL-6, and MCP-1) [91], anti-apoptotic, immunomodulatory (IL-6, IL-10, CCL-2) [92,93], or
neuroprotective (NGF, BDNF, NT-3, NT-4/5, GDNF, LIF, and EGF) [94] factors, and may
also be responsible for the migration of MSCs as well as other types of cells. Moreover, only
the implantation or even just a presence of MSCs at the site of tissue damage may trigger
the influx of other proteins, cytokines, or interleukins already present in the organism and
associated with the stimulation of endogenous tissue repair processes.

3.2. Strategies to Increase the Neurogenic Potential of MSCs

In regenerative medicine, MSCs can be used as a source of neural cells or as a sup-
port for NSCs. The neural transdifferentiation of MSCs can be achieved by providing
signalling molecules. Neural phenotypes were acquired by MSCs after adding all-trans
RA or 2-(3-ethylureido)-6-methylpyridine (UDP-4). Furthermore, UDP-4 was reported
to increase specific neural genes and protein expression in MSCs [95]. Another strategy
exploits the high heterogeneity of a MSC population containing NSC-like cells or cells
which can differentiate into NSC-like cells. Some clones were found to exhibit neural
phenotypse undifferentiated or/and exposed to the neural differentiation condition [96].
The same authors also reported that MSC population could be contaminated by NSCs [93].
In the presence of specific signals, MSCs lose typical markers and resemble NSCs, thereby
acquiring neural morphology with expression of neural genes and proteins. Such differen-
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tiated MSCs were shown to be more effective in the treatment of experimental autoimmune
encephalitis mouse model than nondifferentiated MSCs [97]. It was also reported that
MSCs changed their secretory properties in the presence of neurogenic differentiation
media and those upregulated cytokines are known to be essential for astrocytes devel-
opment [98]. Except for the addition of components influencing neural differentiation to
culture media, other strategies are also being looked for to increase neurogenic potential
of MSCs. Here, we focused on two promising approaches—neurosphere culture and 3D
culture with cellular scaffolds.

3.2.1. Neurospheres from MSCs

Although neurosphere assay is one of the characteristic properties that help to identify
such cells as NSCs, it does not mean that it is only unique for this stem cell population.
Under favourable conditions, MSCs can form aggregates resembling neurospheres (Table 2).
Many protocols for the sphere culture of MSCs use reagents similar to the neurosphere
culture of NSCs, such as EGF, bFGF, and N2 or/and B27 supplements. Not all of the
aforementioned components are necessary to establish neurospheres; however, the com-
plete medium is the most efficient [99]. The neurosphere could be generated by MSCs
derived from different sources. The umbilical cord appears to be the most efficient source
in comparison to bone marrow and adipose tissue. Primary neurospheres derived from
UC-MSCs were found to be larger than those from BM-MSCs and AD-MSCs, and they also
formed more secondary spheres [100]. MSCs from different sources can form neurospheres
in the same formula medium [99–101]. Time needed for neursphere culture formation
may vary depending on the research groups; aggregates are formed even during the first
24 h. Viability of MSCs drastically decreases after the fourth day of culture, which is why
it usually lasts no longer than 3 days in vitro. Long-term neurosphere cultures (3 weeks)
of MSCs were reported to impair cell proliferation and clonogenicity while increasing
senescent processes [102].

Table 2. Methods of forming MSC neurospheres.

MSCs Source EGF FGF Supplement Additional Conditions Bibliography

adipose tissue
bone marrow
Wharton jelly

+ + N2 Ns [100]

adipose tissue + + - Ns [103]

adipose tissue
1. −
2. −
3. +

1. +
2. −
3. +

1. −
2. +
3. +

Three different media (medium
1 and 2 contained L-glutamin and

β-mercaptoehanol)
[104]

adipose tissue + + B27 Ns [105]

adipose tissue + + N2, B27 Ns [101]

bone marrow + + - Low attachment surface [106]

bone marrow + + N2, B27 Ns [96]

breast milk + + N2, B27 Ns [107]

dental pulp + + N2, B27 Ns [108]

umbilical cord + + - Low attachment surface [109]

umbilical cord + + N2, B27 Ns [99]

Wharton jelly + + B27 Presence of heparin in medium [110]

Wharton jelly 1. +
2. +

1. −
2. +

1. N2
2. B27

Low attachment surface, cultured
for 21 days [102]

Wharton jelly 1. +
2. +

1. −
2. +

1. N2
2. B27 Nonadherent conditions [111]

Wharton jelly 1. +
2. +

1. −
2. +

1. N2
2. B27 Ns [112]

Abbreviations: EGF—epidermal growth factor, FGF—fibroblast growth factor; 1. First medium, than changed to 2.
Medium. Ns—further conditions were not specified.
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Neurosphere formation was found to increase the potency of the neural differenti-
ation of MSCs into neuronal and glial linage [100,109]. The principle of inducing MSC
neurosphere neural differentiation is similar to the differentiation of the NSC neurosphere.
The sphere is seeded on a coated surface in medium with serum [100,103] or without
mitogens [110]. MSCs cultured as spheres exhibit a higher expression of the neural pro-
genitor, the mature neuron, and glial markers under neural differentiation than MSCs
from standard culture [109]. However, some other papers reported a higher expression
of neuronal markers, but no expression of glial marker GFAP in cells derived from the
neurosphere upon neural differentiation [110]. With regards to their morphological and
functional properties, the differentiated cells resembled neurons, astrocytes, and oligoden-
drocytes. Furthermore, neuron-like cells derived from AD-MSCs neurosphere displayed
voltage-dependent sodium current with fast activation and fast inactivation [104].

However, some differences between MSC neurospheres and NSC neurospheres were
observed. The transcriptional profile of UC-MSC neurospheres was found to include
transcriptional profiles of both MSCs and NSCs [99]. A lot of research findings show
that culture system of MSC neurospheres increases the expression of pluripotent markers,
such as Nanog, Oct3/4, and Sox2 [99,101,109]. However, some other research groups
did not confirm this observation [102,110]. A Japanese research team developed MSC
aggregates called MUSE cells (multilineage-differentiating stress-enduring cells), which
do not only express pluripotency markers but they also differentiate into cells of all three
layers [113,114].

3.2.2. 3D Neural Scaffold of MSCs

Scaffold generation is the next strategy to consider in order to increase the neural
capacities of MSCs. The scaffold structure resembles the ECM environment as it mimics
the cellular niche [115], which could enhance the potential differentiation of MSCs into
neuroglial cells in vivo. The scaffold helps to graft cells directly to the injured area where
cells could regenerate injured structures [116,117].

The scaffold properties can influence the differential potential of MSCs, and a wide
range of approaches have already been tested (Table 3). Multiple research groups developed
structures from various materials, including natural resources, such as chitosan, collagen,
silk, or synthetic polymers (i.e., poly-L-lactide or graphene). The next initiative of scaf-
fold functionalisation was to increase neural differentiation by molecules, such as growth
factors [117,118] or short peptides [119]. Combining two compounds might also change
the outcome, as the incorporation of carbon nanotubes was found to improve the neural
potential of collagen scaffold for MSCs [120]. The alignment of fibres is another important
property—linear polymers may orient the extension of regenerating axons [117,121]. Elec-
tric stimulation could improve therapeutic effects, which was observed as an increased
expression of neural markers [122,123].

Table 3. Neural scaffolds for MSCs.

Scaffold Material MSCs Source Additional
Information Observed Result Bibliography

carbon nanotubes bone marrow (c) Single/multi-COOH
group addition

- Increased expression of neuronal
markers in vitro [124]

collagen hydrogel
+ carbon nanotubes bone marrow (r) Ns

- Increased secretion of neurotrophic
factors compared to 2D conditions

- Increased expression of neural
markers compared to
collagen scaffold

[120]

chitosan umbilical cord (h) BDNF incorporation
- Any toxic effect observed
- BDNF released by scaffold for 30 div [118]
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Table 3. Cont.

Scaffold Material MSCs Source Additional
Information Observed Result Bibliography

collagen bone marrow (r) Ns

- Increased survival rate in vivo and
improved behavioural outcomes

- Activation of M2 anti-inflammatory
macrophages in vivo

[125]

collagen placenta (h) Linear ordered fibres
- Promotion of axonal regeneration,

synapse formation and
remyelination in vivo

[121]

collagen umbilical cord (h) Ns

- Promotion of endogenous
neurogenesis, neuron maturation,
remyelination, and synapse
formation in vivo

- Improved locomotor recovery

[117,126]

fibrin or platelet
lysate Wharton jelly (h)

Hydrogels consisted of
fibrin or platelet lysat

with 5% or 21% of
oxygen in the
atmosphere

- Increased expression of neural
markers compared to 2D conditions

- Increased expression of
neurotrophic factors

- Reduced mortality of hippocampal
cells under oxygen–glucose
deprivation

[127]

gelatine sponge bone marrow (c)

Genetically modified
MSCs overexpressing

TrkC—receptor for
NT3,

coculture with
Schwann cells

overexpressing NT3

- Differentiation into neuron-like cells
with electrophysiological function
and formation of synapse structures
in vitro

- Regeneration of nerve tract in vivo,
- Motor function improvement in

paralysed limb

[116]

gelatine sponge bone marrow (r)

Genetically modified
MSCs overexpressing
NT-3 and receptor of

NT-3: TrkC

- Differentiation into neural-like cell
in vitro

- Transdifferentiation into
myelin-forming cells in vivo

- Promotion of host axonal
regeneration and survival of host
neurons in vivo

[128]

PLGA bone marrow (r) Ns - Expression of MAP2 by MSCs
in vitro and in vivo [129]

PLGA nanofibers dental pulp (h)
Aligned and

nonaligned fibres,
NGF incorporation

- Upregulation of nestin expression [115]

PLLA nanofibers conjunctiva (h) Electrospinning - Expression of neurocytes marker [130]

rGO+PEDOT rat (ns)

Provided electric
stimulation by

triboelectric
nanogenerator

- Enhanced proliferation of MSCs
- Improved neural differentiation [123]

silk fibroin bone marrow (h)

Integrin-binding
laminin peptide motifs

(YIGSR, GYIGSR)
incorporation

- Promotion of MSCs stemness
- Induction of neural differentiation in

neural culture medium
[119]

silk fibroin, rGO conjunctiva (h) Electrical stimulation
with 100 Hz or 0.1 Hz

- Increased expression of neuronal
markers under 100 Hz stimulation [122]

Abbreviations: c—canine, h—human, r—rat, ns—not specified; BDNF—brain-derived neurotrophic factor, NGF—nerve
growth factor, NT3—neutrotrophin 3, PEDOT—poly3,4-ethylenedioxythiophene, PLGA—poly(lactic-coglycolic) acid,
PLLA—poly-L-lactic acid, rGO—reduced graphene oxide, TrkC—tropomyosin receptor kinase C.
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Neural scaffolds for MSCs appeared to be very promising in vivo. In spite of different
approaches, transplantations of MSC scaffolds supported the regeneration of neural struc-
tures in rats and dogs with spinal cord injuries [116,126,128]. Neuron-like cells derived
from MSC scaffolds were reported to integrate into the spinal cord and reconstruct neural
circuits [116,128]. MSCs transplanted on collagen scaffolds were observed to direct polari-
sation of endogenous macrophages into anti-inflammatory M2 phenotypes [125]. Grafts
did not only increase the number and survival rate of neural cells, but they also improved
behavioural outcomes of injured animals [116,117,125,126].

3.3. Current Clinical Use of MSCs and Future Perspectives

There are many ambiguities in the use of MSCs in the treatment of neurological
diseases. Some studies have shown several beneficial effects, while the opposite results have
also been reported. MSCs have been extensively studied with regards to their application
in the treatment of ischemic stroke. It has been found that, due to their plasticity, MSCs
can differentiate into a neuron-like phenotypes and have enormous immunomodulatory
potential [131]. The preclinical results seemed to be promising [132], but they also showed
many side effects of the treatment, including embolism, creation of tumors, or even β-
amyloid accumulation [133]. In addition, the safety and effectiveness of MSC administration
routes into the injured nervous cells should be carefully considered and optimised in future
clinical stem cell therapies [134,135]. Some studies have shown a huge potential of 3D
spheroids in therapeutic applications as a novel strategy for cell therapy in strokes [136].

One of the most frequently discussed problems surrounding the clinical usefulness of
MSC treatment is the time-limited capacity for therapeutically effective proliferation [137],
as the potential for the intensive division of MSCs is known to decrease significantly above
the seventh passage. After this transition, some morphological, phenotypic, and chromo-
somal changes appear, and the ageing process begins. MSCs can no longer regenerate
and differentiate as intensively as they did in the early passages. These properties are
also associated with the medium and conditions of cell cultures [138]. Another common,
but equally important, factor regards the sensitivity of MSCs to environmental changes in
oxygen concentration. Interestingly, 5% oxygen concentration hypoxia has been shown
to significantly increase cell proliferation [139]. Other factors that have a huge impact on
the therapeutic effectiveness of MSCs and affect their heterogeneous plasticity are related
to the source of stem cells, age and inter-individual variability of the donors, and the
procedure of tissue collection and isolation [140,141]. According to the current literature,
phenotypic reprogramming of MSCs, depending on environmental changes during in vitro
culture, can significantly modulate the regenerative properties as well as the safety of cell
transplantation [142,143].

4. MSC and NSC Interaction

Interactions between differentiated MSCs and NSCs are observed in coculture systems
which combine the benefits from both cell types (Table 4). NSC differentiation in vitro
is improved by interaction with MSCs. Moreover, NSCs could also promote the neural
differentiation of MSCs [144]. MSCs do not only influence the differentiation process, but
also increase the proliferation and survival of NSCs [145,146]. Coculture with MSCs was
shown to preserve the stemness of NSCs, even in the absence of EGF and bFGF in culture
medium [145,147]. Cell-to-cell direct contact offers greater benefits than transwell culture
or NSC culture in MSC-conditioned media [10]. In mixed neurosphere systems, the shell of
the structure is formed by NSCs, whereas MSCs create the core [148]. Moreover, coculture
can change the differentiation profile of MSCs [145] and the transcription profile of both
stem cell types is modified during coculture as well [149].
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Table 4. Effects of MSC coculture with neural cells in vitro.

Neural Cells Source MSCs Source Additional
Information Observed Result Bibliography

NSCs and NPCs

Adult brain (m) AT (r) Coculture as spheres,
on chitosan surface

- Promotion of NSC survival
in vitro and in vivo [148]

Adult hippocamp,
ventrical zones (r) BM (r) Adherent culture of

BM-MSCs and NSCs
- Increased oligodendral

differentiation of NSCs [150]

Adult hippocamp (r) BM (h) NSCs cultured over
MSCs

- Stimulation of NSC
differentiation into astrocytes
and oligodendrocytes

[149]

Brain (m) AT (m)

NSCs were irradiated
before,

and the transwell
system coculture was

used with MSCs

- Higher survival of irradiated
NSCs after coculture

- Higher clonogenicity of
irradiated NSCs after coculture

[151]

Hippocampal NPCs (r) MSCs, ns (h) Ns

- NPCs treated with amyloid-β
(Alzheimer disease model)

- Increased neurogenesis of
treated NPCs and enhanced
neuronal differentiation

[152]

Whole brain extracts (r) BM (r) Lack of mitogens
in medium - Preservation of NSCs stemness [147]

Fetal tissue (h) BM (h)

NSCs over MSCs or
MSCs over NSCs,
With or without

Notch-1

- Increased expression of Notch-1
and Hes-1 by NSCs

- Increased proliferation of NSCs
- Enhanced stemness of NSCs

[145]

Fetal tissue (h) BM (h) Transwell system
coculture

- Promotion of neuronal
differentiation of BM-MSCs

- Increased NGF and BDNF
secretion

[144]

Cell line (ATCC,
Catalog #CRL-2925), (m) AT (h) Mixed coculture,

in vitro ischemia model - Inhibition of NSCs apoptosis [146]

NPC cell line
(Millipore) (r)

WJ termed and
pretermed (h)

Direct coculture and
transwell coculture

- Increased expression of glial
markers of NPCs in
direct coculture

[10]

NSCs derived from
iPSCs (h) AT (h) Culture inserts, MSCs

over NSCs

- Prevention of
lipopolysaccharide-induced
activation of nuclear factor-κB
(NF-κB) in NSCs

- Smaller scars and better
preservation of β-III
tubulin-positive axons after
transplantation of NSCs and
MSCs to rats with spinal
cord injuries

[153]

Differentiated cells

Fetal brain astrocytes (h) BM (h) MSC neurosphere
- Synapse formation
- Generation of electrically

active neurons
[106]

Astrocytes (m) AT (h)

Astrocytes derived
from the ALS
mice model,

Transwell system
coculture

- Enhanced glutamate uptake
- Increased secretion of

neuroprotective agents
[154]
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Table 4. Cont.

Neural Cells Source MSCs Source Additional
Information Observed Result Bibliography

Fetal hippocamp,
neurons (m) UCB (h)

Transwell system
coculture, neurons

treated with Aβ42 (the
Alzheimer

disease model)

- Prevention of reduction in
synaptic density caused by Aβ42
peptide in the Alzheimer
disease model

[155]

Neurons differentiated
from SH-SY5Y (h) UCB (h) OGD-stressed neurons,

MSCs inserts
- Rescue of neuronal cells

from apoptosis [156]

Organotypic
hippocampal slices (r) WJ (h) OGD-stressed

hippocampal slices

- Neuroprotective effect of MSCs
- Enhanced neural differentiation

of WJ and WJ-MSCs
[75]

Organotypic
hippocampal slices (r) WJ (h)

OGD-stressed
hippocampal slices,

transwell system
coculture

- Decreased apoptosis and
vascular atrophy of hippocamp [6]

Abbreviations: h—human, m—mouse, r—rat; AT—adipose tissue, BDNF—brain-derived neurotrophic factor,
BM—bone marrow, iPSCs—induced pluripotent stem cells, MSCs—mesenchymal stem cells, NGF—nerve growth
factor, NPCs—neural progenitor cells, NSCs—neural stem cells, OGD—oxygen glucose deprivation, UCB—
umbilical cord blood, WJ—Wharton jelly.

MSCs can affect the differentiation of neuroglial cells as well. The coculture of MSC
neurospheres and primary astrocytes was first found to induce synapse formation, and
the observed structures (dendrites, cell bodies, and spines) were identified as parts of the
neuron. Then, their electrical activity and action potential were detected [106]. Furthermore,
MSCs were reported to rescue neural cells from apoptosis in a oxygen–glucose deprivation
model [75,156]. Astrocytes in the ALS mice model were found to increase glutamate uptake
after coculture with MSCs [154], and MSCs were shown to prevent a reduction in synaptic
density in the in vitro Alzheimer’s disease model [155].

The observed therapeutic effects are associated with the secretion of trophic factors,
both by MSCs and NSCs. MSCs were proven to modulate stressed neuronal cell survival
by increasing the expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10)
and decreasing the expression of pro-inflammatory factors (NF-κB and COX-2) [156].
It was not only TGF-1 expression that was increased by MSCs, but also the expression
of TGF-1 receptor in NSCs [149]. Moreover, an inhibition of TGFβ signalling blocked
differentiation processes [149]. It was shown that thrombospondin-1 secreted by UCB-
MSCs protected hippocampal neurons from synaptic density loss in the in vitro Alzheimer’s
disease model [155]. In the presence of hippocampal culture slices, Wharton jelly and WJ-
MSCs were found to enhance neuroprotective effects by secretion of neurotrophic factors
(TGFβ and VEGF) and an increased expression of neurotrophic factors genes (GDNF
and bFGF), as was the case with ADSC [75,157]. NSCs can also influence the neuronal
differentiation of MSCs via BDNF and NGF secretion [144].

Numerous investigations showed that Notch-1 signaling was involved in the in-
teraction between MSCs and NSCs [145,148,149]. However, some researchers reported
that Notch-1 did not regulate differentiation-induced expression of neuroglial markers in
ADSC [158]. Others suggested that the Wnt–MSC signaling pathway increased the neuro-
genesis of NPCs in the Alzheimer’s disease model by stimulating the Wnt pathway [152].
MSCs reduced the concentration of intracellular calcium [Ca2+] and generation of reactive
oxygen species in stressed neurons, which resulted in decreased neuronal apoptosis [156].

The co-transplantation of MSCs with NSCs exerted a therapeutic effect in vivo. Due to
their immunomodulatory activity, MSCs provided the environment for grafted NSCs [159],
which enhanced NSC survival in vivo [146,148,160]. The presence of MSCs reduced the
number of NSCs required for graft [148], resulting in a greater functional recovery in rats
after spinal cord injury [160], and prolonging therapeutic benefits in rats with Huntington
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disease [159]. The transplantation of SDF1-overexpressing NSCs and MSCs was reported
to improve behavioural functions. [147]. However, co-transplantation of MSCs and NSCs
resulted in tumour formation, whereas tumours were not observed in NSC- and MSC-only
groups [147].

5. Conclusions

The interaction between stem cells and companion/supporting cells is crucial for
homeostasis and tissue regeneration. In many organs, MSCs sustain the survival of stem
cells and the proliferation of transit-amplifying cells (TACs), which then differentiate into
target cell types. Although there is still insufficient evidence, it seems that mesenchyme as
a component of the cell niche may play a role in the homeostasis between the population
of quiescent SCs and the population of progenitors that proliferate, differentiate, and
migrate from cell niche. The same interactions are described between NSCs and MSCs. As
NSCs are potentially an unlimited source of all neural cell types and MSCs display a high
paracrine activity, their combined therapeutic use for neurological disorders seems to be
highly prospective. MSCs can be considered as a source of NSC-like cells as they can form
neurospheres. Nevertheless, most available studies do not provide enough strong evidence,
as neural potential is measured through early neural markers, such as nestin, β-III-Tubulin,
or GFAP. The possibility of MSC differentiation into mature neuronal or glial cells is still
a topic of discussion. However, their function in therapy seems to be different given the
supportive and regulative components of NSC niches. Both NSCs and MSCs have distinct
genetic programs that complement each other and form an inseparable unit to maintain
tissue homeostasis.

Based on the available scientific literature, the combination of MSCs and NSCs appears
to represent a promising therapeutic prospect (Figure 4). NSCs could be delivered as a
source of cells that differentiate into mature neural and glial cells. MSCs, in turn, could
support the transplantation of NSCs through neuroprotective, immunomodulatory, and
pro-angiogenic activity. An additional advantage in the use of MSCs is the ease of isolation
from multiple sources and the lack of tumourigenesis. Although the mechanisms of this
mutual interaction remain unexplored, the effects are already very promising. Nonetheless,
more research into the use of this combination is still needed, especially in animal models
and human clinical trials (Figure 4).

Figure 4. Combining the therapeutic benefits of NSCs and MSCs provide a new perspective
for therapy.
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Abbreviations

ALS amyotrophic lateral sclerosis
AD-MSCs adipose-derived MSCs
BDNF brain-derived neurotrophic factor
bFGF basal fibroblast growth factor
BM-MSCs bone marrow-derived MSCs
BMP bone morphogenic proteins
CNS central nervous system
CNTF ciliary neurotrophic factor
ECM extracellular matrix
EGF epidermal growth factor
EVs extracellular vesicles
ESCs embryonic stem cells
GDNF glial cell-derived neurotrophic factor
IGF insulin-like growth factor
IL interleukin
iPSCs induced pluripotent stem cells
ISCT International Society for Cell and Gene Therapy
LIF leukaemia inhibitory factor
MSCs mesenchymal stem/stromal/singaling cells
NGF nerve growth factor
NPCs neural progenitor cells
NSCs neural stem cells
qNSCs quiescent NSCs
PDGF platelet-derived growth factor
SCI spinal cord injury
SDF-1 stromal cell-derived factor 1
SGZ subbgranular zone
Shh Sonic hedgehog
SVZ subventricular zone
TACs transit-amplifying cells
TNF tumour necrosis factor
UC-MSCs umbilical cord-derived MSCs
UCB-MSCs umbilical cord blood-derived MSCs
VEGF vascular endothelial growth factor
WJ-MSCs Wharton jelly-derived MSCs
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67. Karaöz, E.; Doğan, B.N.; Aksoy, A.; Gacar, G.; Akyüz, S.; Ayhan, S.; Genç, Z.S.; Yürüker, S.; Duruksu, G.; Demircan, P.C.; et al.
Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell Biol. 2010, 133, 95–112. [CrossRef]
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