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Background: Prostate cancer ranks as the most frequently diagnosed cancer in men in the USA, with significant mortal-

ity rates. Early detection is pivotal for optimal patient outcomes, providing increased treatment options and potentially
less invasive interventions. There remain significant challenges in prostate cancer histopathology, including the poten-
tial for missed diagnoses due to pathologist variability and subjective interpretations.
Methods: To address these challenges, this study investigates the ability of artificial intelligence (AI) to enhance
diagnostic accuracy. The Galen™ Prostate AI algorithmwas validated on a cohort of Puerto Rican men to demonstrate
its efficacy in cancer detection and Gleason grading. Subsequently, the AI algorithm was integrated into routine clin-
ical practice during a 3-year period at a CLIA certified precision pathology laboratory.
Results: The Galen™ Prostate AI algorithm showed a 96.7% (95% CI 95.6–97.8) specificity and a 96.6% (95% CI 93.3–
98.8) sensitivity for prostate cancer detection and 82.1% specificity (95%CI 73.9–88.5) and 81.1% sensitivity (95%CI
73.7–87.2) for distinction of GleasonGradeGroup 1 fromGradeGroup 2+. The subsequent AI integration into routine
clinical use examined prostate cancer diagnoses on>122,000 slides and 9200 cases over 3 years and had an overall AI
Impact ™ factor of 1.8%.
Conclusions: The potential of AI to be a powerful, reliable, and effective diagnostic tool for pathologists is highlighted,
while the AI Impact™ in a real-world setting demonstrates the ability of AI to standardize prostate cancer diagnosis at a
high level of performance across pathologists.
Background

Early detection of prostate cancer holds paramount importance due to
its potential impact on patient outcomes and overall well-being and offers
a range of benefits, including increased treatment options and the possibil-
ity of less invasive interventions. With early detection, localized treatments
such as surgery or radiation therapy become viable, aiming to prevent the
progression of the disease to advanced stages. The long-term survival
rates are generally more favorable for individuals with prostate cancer
detected early, highlighting the significance of timely intervention.1

Traditionally, a prostate cancer diagnosis is performed through histopa-
thological analysis using light microscopy. However, there is potential var-
iability among pathologists' expertise in interpreting benign vs cancer and
Gleason growth patterns. Due to the subjective nature of the pathologist
evaluation, previous studies have reported low interobserver reproducibil-
ity in Gleason grading among urologic2 and general pathologists.3 This can
lead to under- and over-grading of prostate cancer which can potentially
impact patient care.4
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Artificial intelligence (AI) has substantially advanced diagnostic
accuracy in prostate biopsy histopathology by revolutionizing the
analysis of pathology images. AI algorithms excel in processing
large datasets with unparalleled speed and precision, offering a
comprehensive examination of biopsy samples. These algorithms are
particularly adept at recognizing intricate patterns including between
benign and cancer as well as different Gleason grades, providing pa-
thologists with invaluable support for more accurate and consistent
diagnoses.5–7

In a previous study, Pantanowitz et al. developed, validated, and de-
ployed an AI-based algorithmwith an area under the ROC (receiver operat-
ing characteristic) curve (AUC) of 0.997 (95% CI: 0.995–0.998) and of
0.991 (0.979–1.00) for prostate cancer detection in internal and external
validation sets, respectively. Additionally, this algorithmwas able to distin-
guish between low grade (Gleason score 6 or ASAP) and high grade
(Gleason score 7–10) tumors (0.941; 95% CI: 0.905–0.977).8 This algo-
rithm is the basis for the Galen™ Prostate AI-based solution from Ibex Med-
ical Analytics.
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Although the use of AI algorithms is extremely beneficial for patholo-
gists and patients, they are susceptible to bias during their development
and validation.9,10 This can lead to poor performance of the algorithm
when employed on cohorts that are different from the ones used for its de-
velopment. Therefore, independent validation of the algorithms for pros-
tate cancer grading should be performed across different patient
populations, pathology labs, digital pathology scanner providers, and refer-
ence standards derived from intercontinental panels of uropathologists.7

In this study, the Galen™ Prostate AI algorithm was validated for cancer
detection using prostate core needle biopsies (PCNBs) from Puerto Rican
men at CorePlus Servicios Clínicos y Patológicos (CorePlus), an indepen-
dent laboratory in Puerto Rico. This AI algorithm was then implemented
into routine clinical use. Results show a similar high diagnostic accuracy
for cancer in this Puerto Rican population as in the original populations
vs benign with an AUC of 0.994 (95% CI: 0.988–0.997). There is an addi-
tional demonstrated utility for Gleason grading distinguishing between
GG1 and GG2+ with an AUC of 0.901 (95% CI 0.858–0.934). Lastly, the
algorithm was implemented as a quality control second read system for
3 years in our pathology laboratory. Here, we introduce the term “AI
Impact™” to quantify the effect AI had on the diagnostic routine, including
between pathologists. We show an overall AI Impact™ of 1.8% for the entire
3-year period.

The validation of the Galen™ Prostate AI as a second read among a di-
verse cohort of Puerto Rican men in this study is of significant interest. Ac-
cording to the American Cancer Society, in 2023, approximately 288,300
new prostate cancer cases were expected to be diagnosed in the USA. Pros-
tate cancer will continue to be the most diagnosed cancer in men, account-
ing for 14% of all new cancer cases diagnosed.11 In terms of mortality,
around 34,700 prostate cancer-related deaths are estimated to occur in
the USA. This makes prostate cancer the second leading cause of cancer-
related mortality in men in the USA; however, in Puerto Rican men, it is
the first cause of cancer-related death.12

The study by Chinea et al. showed that non-Hispanic Blacks (NHB) have
the highest prostate cancer-specific mortality (PCSM) in the USA, followed
byHispanics andnon-HispanicWhites (NHW).However,when the group of
Hispanics was further divided into subgroups (includingMexicans, Cubans,
Puerto Ricans, South or Central Americans, and Dominicans), Puerto Rican
men had a significantly higher PCSM than even NHB.13 Due to the high
prostate cancer specific mortality in Puerto Rican men, an improvement in
prostate cancer screening procedures for this population is needed.

Methods

Sample selection

For the validation study, 101 formalin-fixed paraffin embedded PCNB
cases randomly selected from 2020, were de-identified and the 1279 asso-
ciated slides were fully digitized as whole-slide images (WSIs). Benign and
malignant tissue from PCNBwas stained using the traditional H&E staining
method. Images were obtained by scanning using the P-250 PANNORAMIC
digital slide scanners (3DHISTECH, Ltd.; Budapest, Hungary) at 40×mag-
nification with a resolution of 0.24–0.25 μm/pixel. Each slide has one pros-
tate core divided into three levels (parts) requiring the algorithm to run on
each level per slide.

Galen™ prostate algorithm

The prostate algorithm, Galen™ Prostate AI, was obtained from Ibex
Medical Analytics in Israel. This algorithm was based on a multilayered
convolutional neural network as described by Pantanowitz et al.8 The algo-
rithm was tested and validated internally by Ibex prior to the study.

Ground truth

Ground truth was established from the original diagnosis of digitized
slides by four US board-certified pathologists with a combined 60 years'
2

experience in general pathology. The diagnosis was made in a manner con-
sistent with the International Society of Urological Pathology and College
of American Pathologists guidelines14 with no time constraint.

Algorithm testing

Algorithm accuracy to distinguish benign and malignant tissue was
evaluated using—AI-generated alerts compared to an independent patholo-
gist reviewer, using the original cutoff setting for the algorithm. The pathol-
ogist evaluation was considered the ground-truth ascertainment set. Alerts
were raisedwhen encountering discrepancies between the automated anal-
ysis and the pathologist's diagnosis, prompting a second pathologist review.
Two types of alerts can be raised: (a) slides from benign cases that received
a high cancer score; and (b) slides from Grade Group 1 cancer cases that re-
ceived Grade Group 2 and above score. However, in this study, the focus
was to discriminate between cancer and benign tissues.

Statistical analysis

The performance of the Galen™ Prostate AI algorithm as a classifier test
for cancer status was assessed through the AUC of a ROC curve. Also, a con-
tingency table was built to visualize the algorithm performance and deter-
mine accuracy, clinical sensitivity and specificity, and negative- and
positive-predictive values.

Algorithm applied in routine clinical use

The Galen™ Prostate AI algorithm has been implemented in clinical use
at CorePlus from2020 to 2023 as a second-read system. In this capacity, the
algorithm reviews all slides, functioning as a 100% quality control tool.
Slides were digitized by the P1000 digital slide scanners (3DHISTECH,
Ltd.; Budapest, Hungary) at 40× magnification with a resolution of 0.24–
0.25 μm/pixel then analyzed by the Galen™ Prostate AI algorithm, followed
by manual review by a pathologist in a routine workflow. Alerts raised by
Galen™ Prostate AI are reviewed by the assigned pathologist with occa-
sional intradepartmental consultation and resolved before case sign-out.

Results

The patient characteristics of the validation cohort are shown in Table 1
and are representative of the Hispanic population undergoing prostate can-
cer biopsies in Puerto Rico for age, PSA values and Gleason score in which
all grade groups (GGs) are represented.15

The study compared the cancer diagnosis aided by the Galen™ Prostate
AI system to that of CorePlus pathologist established ground truth. To this
end, the same cut-off was used to raise cancer alerts as was originally vali-
dated for the AI algorithm. This cut-off is somewhat arbitrary, in the sense
that it is configured to strike a balance between the number of alerts raised
by the system (the specificity) and the probability of catching a missed can-
cer (the sensitivity). A lower cut-off will result in more alerts (the vast ma-
jority of which will be false positives), but a higher chance of detecting
cancer that had been misdiagnosed.

A total of 1279 slideswere analyzed in the validation. Out of 1022 slides
that were diagnosed as benign by CorePlus in this validation set, 986 slides
(96.5%) received a cancer score below the cut-off, i.e., they did not raise an
alert by Galen™ Prostate AI. Of the 230 cancer slides, 221 (96.1%) passed
the cut-off, i.e., a cancer alert was raised by Galen™ Prostate AI. The AUC
for cancer detection in the validation set was 0.994 (95% CI 0.988–
0.997), with a 96.7% (95% CI 95.6–97.8) specificity and a 96.6% (95%
CI 93.3–98.8) sensitivity. Importantly, the Galen™ Prostate AI had a NPV
of 99.2% (95% CI 98.4–99.6) indicating the high certainty of negative
calls by the algorithm (Fig. 1A and B).

During the validation, ground-truth ascertainment for cancer vs benign
diagnosis resulted in algorithm alerts for 17 slides across 12 cases. The
alerts are on the slide level and are also aggregated on the case level. If a
slide is called cancer by the algorithm, but benign by the ground truth, an



Table 1
Distribution of patient age and diagnosis in the study.

Number of
cases

Number of H&E
slides

Age (years) distribution (%)

30–39 40–49 50–59 60–69 70–79 80–89

101 1279 1 4 16 43 30 7

Number of cases PSA score–cases

N/A 0–4 5–9 10–19 > 20

101 4 38 41 9 9

Diagnosis Benign ASAP Cancer

Slides 81.6% 2.1% 18.3%
GG-1 GG-2 GG-3 GG-4 GG-5
9.5% 4.7% 2.3% 0.3% 1.3%

Cases 47.3% 2.1% 52.7%
GG-1 GG-2 GG-3 GG-4 GG-5
19.3% 22.3% 3.1% 4.3% 1.2%

GG= Gleason Grade Group.
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alert will only occur if the case diagnosis was benign by the ground truth.
Following pathologist review, all 17 slide alerts were resolved and shown
to be triggered by glands (normal, atrophic, and seminal vesicle) as well
as inflammation (Table 2), features that may mimic malignant glands.

Likewise, as to the cancer diagnosis, the Gleason grading of the Galen™
Prostate AI system was compared to that of the CorePlus pathologists. For
this grading analysis, two sets of slides were used which included low
grade (GG1 and ASAP) and high grade (GG2+). ASAP was included in
the low grade as it is difficult to distinguish it from GG1 cancer and results
are often subjective. Using the same cut-off as validated in the original algo-
rithm, out of 146 slides that were diagnosed by CorePlus as low grade, 113
slides (77.4%) received a score below the GG2+ cut-off, i.e., also scored as
low grade by Galen™ Prostate AI. Out of 111 high-grade slides, 89 slides
(80.2%) received a score above the cut-off and scored by Galen™ Prostate
AI as high-grade as well. The AUC for Gleason grading in the validation
set was 0.901 (95% CI 0.858–0.934) with an 82.1% specificity (95% CI
73.9–88.5) and a 81.1% sensitivity (95% CI 73.7–87.2) (Fig. 2A and B).

During the validation, ground-truth ascertainment for GG1 vs GG2 and
above resulted in algorithm alerts for 18 GG1 slides across 8 cases. Follow-
ing pathologist review, three slides from two cases were confirmed as GG2
(Table 3).
Fig. 1. Sensitivity and specificity analysis of the Galen™ Prostate AI algorithm for cancer
accuracy of the algorithm to identify cancer vs. benign tissues. The blue curve repr
(B) Contingency table for comparison of Galen™ Prostate AI prostate cancer diagnosis
the reader is referred to the web version of this article.)
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Following validation, the Galen™ Prostate AI algorithm was incorpo-
rated into the pathology lab as a second-read system for prostate cancer.
The term “second read” indicates that following a primary reviewby the pa-
thologist, the algorithm is applied to all the WSIs of the case. Cancer alerts
and Gleason alerts are generated at the slide level and aggregated at the
case level. When the Galen AI finds a suspicious focus, it alerts the pathol-
ogist to the slide containing the area of interest. Fig. 3 shows the workflow
for the second-read implementation of this algorithm in our laboratory. The
way alerts are visualized is by presenting heatmaps over areas of interest.
As an example, shown in Fig. 4 is an algorithm generated heatmap indicat-
ing high areas of probability of cancer in a prostate biopsy. Areas of red
indicate a high likelihood of cancer.

Table 4 shows the overall results for the Galen™ Prostate AI algorithm
used for 3 years as a second-read system at the case level. Between June
2020 and May 2023, 9267 cases (122,441 slides) were processed by the
second-read system at CorePlus. Cancer alerts were raised for 5.7%
(3239/57119) of the slides or 39.5% (1733/4385) of the cases diagnosed
by the pathologist as benign. After review by the pathologist, 0.3% (155/
57119) of the benign slides and 2.9% (128/4385) of benign cases required
a change of diagnosis. A cancer AI Impact™ score of 1.5% was computed
from the ratio of total revised benign cases to the total number of cases ×
detection in samples from Puerto Rican men. (A) ROC curve analysis to evaluate the
esents the data transformation and balance between sensitivity and specificity.
to ground truth. (For interpretation of the references to color in this figure legend,



Table 2
Cancer alerts in validation study—slides from benign cases with the highest cancer
scores.

Slide Cancer score Review comments

0176 J1 98.3 Atrophy
0176 N1 96.2 Atrophy
0405 G1 95.4 Inflammation
0406 C1 98.3 Atrophy
0407 I1 96.6 Adenosis
0576 F1 97.4 Inflammation
0576 L1 99.0 Ganglion cells
0663 A1 98.3 Seminal vesicle glands
0663 C1 97.8 Seminal vesicle glands
0900 D1 95.2 Inflammation
0903 B1 95.2 Normal glands
1170 C1 95.2 Atrophy
1449 L1 96.4 Normal glands
1645 H1 95.2 Atrophy
1645 K1 98.3 Atrophy
1645 M1 97.4 Atrophy
1858 I1 98.6 Seminal vesicle glands

Table 3
Gleason alerts in validation study—slides from GG1 cancer cases with the highest
scores for GG2+.

Slide Gleason score Resolution Comments

0177 A1 98.4 Retain Dx
0843 F1 99.7 Retain Dx
0843 G1 98.1 Retain Dx
0898 K1 99.4 Retain Dx
0912 I1 99.4 Confirmed Grade Group 2 (3 + 4) with

<5% Gleason pattern 4
1861 B1 98.1 Retain Dx
1983 L1 100 Retain Dx
1994 A1 99.1 Retain Dx
1994 H1 99.1 Retain Dx
1994 L1 99.4 Retain Dx
1994 M1 100 Retain Dx
1783 E1 98.4 Confirmed Grade Group 2 (3 + 4) with

<5% Gleason pattern 4
1783 M1 99.1 Confirmed Grade Group 2 (3 + 4) with

<5% Gleason pattern 4
1783 F1 99.4 Retain Dx
1783 G1 98.4 Retain Dx
1783 H1 99.1 Retain Dx
1783 K1 99.4 Retain Dx
1783 L1 98.1 Retain Dx
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100. In addition, Gleason alerts were raised during the validation on 2.1%
(563/26189) of the slides or 19.2% (380/1984) of the cases diagnosed by
the pathologist as GG1. After review by the pathologist, only 0.11% (28/
26189) of the GG1 slides and 1.21% (24/1984) of the GG1 cases were al-
tered due to the Gleason alerts (Table 5). A Gleason AI Impact™ score of
0.26% was computed from the ratio of total revised ASAP/GG1 cases to
the total number of cases × 100. Therefore, the total overall AI Impact™
from revised benign cases and revised ASAP/GG1 cases was 1.8%.

Finally, an inter-rater reliability analysis between pathologists was per-
formed over the same 3-year period for prostate cancer diagnosis. In Fig. 5,
the AI Impact™ per individual pathologist is shown. Individual interpreta-
tions can vary which is not unexpected and, in this example, varied from
an AI Impact™ of>3.5% for pathologist A and an AI Impact™ of<1% for pa-
thologist B. The use of the Galen™ Prostate AI algorithm in a second-
read implementation had the effect of providing alerts for review such
that the false-negative rate of the group was reduced by the amount indi-
cated by the AI Impact™.
Fig. 2. Sensitivity and specificity analysis of the Galen™ Prostate AI algorithm for Gleaso
accuracy of the algorithm to identify Gleason Grade Group 1 vs. Gleason Grade Group 2
sensitivity and specificity. (B) Contingency table for comparison of Galen™ Prostate AI pr
this figure legend, the reader is referred to the web version of this article.)
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Discussion

This study describes the validation of the Galen™ Prostate AI algorithm
on a diverse Puerto Rican cohort and represents, to the best of our knowl-
edge, thefirst clinical implementation in the Americas using AI as a prostate
cancer diagnostic tool routinely on all PCNBs samples. Though there have
been many previous studies demonstrating the utility of various AI algo-
rithms for prostate cancer detection, we are not familiar with any published
reports of implementation in a real-time clinical application.

Perincheri et al.,16 in one of the larger previous validation studies
assessing AI in prostate cancer, evaluated the performance of an FDA ap-
proved algorithm17 to analyze 1876 WSIs of PCNBs across 118 cases
using the original, non-AI subspecialized genitourinary pathologist
n grade in samples from Puerto Rican men. (A) ROC curve analysis to evaluate the
and above. The blue curve represents the data transformation and balance between
ostate Gleason grade to ground truth. (For interpretation of the references to color in



Fig. 3. Implementation of a second-read workflow for prostate cancer detection.
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diagnosis as ground truth. They report the AI algorithm had a sensitivity
and PPV of >97% and a specificity and NPV of over 99%. Likewise, in re-
cent, but somewhat smaller validation studies the same FDA approved algo-
rithm was validated by comparing multiple pathologists' diagnoses to an
established ground truth. Good sensitivity and specificity at the WSI level
were reported by da Silva et al.18 while at the case level, sensitivity and
NPV were 100%, but a lower specificity of 78%. The authors contend this
performance capability reduces the probability of a false negative (FN)
while allowing a tolerable number of patients to be flagged as suspicious
who are benign. Raciti et al.19 report an increased sensitivity of the general
pathologistswhenusing theAI algorithm, especially in smaller, lower grade
tumors. A very recent report by Eloy et al.20 demonstrates equivalent per-
formance to the pathologist ground truth using the AI algorithm, but also
additional benefits of a statistically significant reduction in IHC orders, re-
quirement for second opinions and reporting time. Lastly, in a separate in-
dependently developed algorithm, Kott et al.21 report the ability of their
algorithm to distinguish prostate cancer from benign tissue with a sensitiv-
ity and specificity of 93% and 90%, respectively. In Gleason grading, the
same algorithm could distinguish benign from Gleason 3, Gleason 4, and
Gleason 5 with an 83% sensitivity and a 94% specificity.

In the current studywith a cohort of Puerto Ricanmen, the Galen™ Pros-
tate AI had a sensitivity and specificity of 96.6% and 96.7%, respectively. In
validation, Galen AI did not miss any cancer at the case level out of 1279
WSI. At the slide level, Galen™ called nine slides benign that were cancer.
Seven of the nine were GG1, the other two were GG2 and GG4. Like the
original Pantanowitz et al. report8 and the report from Kott et al.,21 the
Galen AI algorithm performance on Gleason grading was somewhat lower
Fig. 4. Example of a second-read review by the Galen™ Prostate AI algorithm in a prostate
Prostate AI algorithm identified with a heatmap over the same area of a high probabilit
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than benign vs cancer performance with a sensitivity of 77.4% and specific-
ity of 80.2% compared to the pathologist grading. Perhaps this finding is
not surprising, since it is being compared to a pathologist grading that
this Gleason variability is within 30% of human interobserver variability.2

Nevertheless, AI should bring more consistency to the grading.
It is clear from this validation and the literature that AI algorithms can

reach pathologist level accuracy.5–7 The Galen™ Prostate AI algorithm
was implemented in a second-read capacity at CorePlus driven by high sen-
sitivity (96.1%) and NPV (99.1%) of reporting cancer vs benign.

One of the better ways to reduce errors in pathology is to have a case re-
view, ideally by expert pathologists.22 However, manual QC review re-
quires extra pathologist workload which in common practice is around 1–
10% of cases.23 An AI second-read system provides the benefit of having
a 100% QC of all cases, thereby alerting to any potential error on each
case reviewed.

Another benefit of an AI second-read system is to assist pathologists
withmaintaining accuracy in diagnosis. For example, the true rate of FN re-
sults among pathologists is difficult to know, with literature reports esti-
mating between 1 and 10%.24,25 The subjective nature of the work is one
possible reason for this. Supporting this notion, one study suggests that er-
rors correlate more to the individual pathologist and less to their years of
experience or workload.22 AI can compensate for differences between pa-
thologists, bringing the FN rate to a low value consistently. This study
clearly indicates that performance can vary significantly between patholo-
gists. However, the use of the Galen™ Prostate AI provided a compensation
effect such that the performance of each pathologist and the group im-
proved. This improvement can be described by the “AI Impact™”, the per-
centage of cases alerted and changed before signing out that otherwise
would have been either FNs or lower grade cancer had the AI not been in
place. In our real-world data, AI Impact™ ranged from 0.75% up to 3.5%
per individual pathologist, with a normalized group effect of 1.8%.

Lastly, there are major costs associated with interpretive errors in pa-
thology, with estimates of $21,000 and $70,000 per case at two major
institutions.23 A reduction in diagnostic error will almost certainly lead to
substantial savings over time for the patient and healthcare system in addi-
tion to improvement of patient care. However, at this early stage of AI im-
plementation into routine practice, another thing to consider is that AI
might detect cancers that potentially place the patient at risk for overdiag-
nosis and harm due to therapeutic interventions.26 Additional studies are
needed to evaluate such implementations' impact on the overall clinical
management of patients.

In summary, the benefits of utilizing a proven accurate, sensitive, and
specific AI algorithm for assisting pathologists in prostate cancer diagnosis
have been shown and discussed here. These include improved diagnostic
accuracy resulting from a lower FN rate, normalization of diagnostic
cancer case. (A) H&E staining shows an areawith cancer. (B) Review by the Galen™
y of cancer.



Table 4
Results of AI algorithm as second read on cancer diagnosis over a 3-year period.

Jun’20–May’21 Jun’21–May’22 Jun’22–May’23 Total

Num. (%) Num. (%)

Slides
#Slides 40,609 (100) 40,510 (100) 41,322 (100) 122,441 (100)
#Slides in Benign cases 19,724 (48.6) 18,735 (45.4) 18,660 (45.2) 57,119 (46.7)
#Benign alerted for cancer 1261 (6.4) 920 (4.9) 1058 (5.7) 3239 (5.7)

#Revised benign slides 61 (0.3) 57 (0.3) 37 (0.2) 155 (0.3)

Jun’20–May’21 Jun’21–May’22 Jun’22–May’23 Total

Num. (%) Num. (%)

Cases
#Cases 3107 (100) 3089 (100) 3071 (100) 9267 (100)
#Benign cases 1558 (50.1) 1428 (46.2) 1399 (45.6) 4385 (52.2)
#Benign alerted for cancer 656 (42.1) 528 (40.0) 549 (39.2) 1733 (39.5)

#Revised benign cases 56 (3.6) 47 (3.3) 33 (2.4) 136 (3.1)
AI Impact™ 1.5%

Table 5
Results of AI algorithm as second read on Gleason revisions over a 3-year period.

Jun’20–May’21 Jun’21–May’22 Jun’22–May’23 Total

Num. (%) Num. (%)

Slides
#Slides 40,609 (100) 40,510 (100) 41,322 (100) 122,441 (100)
#Slides in ASAP/GG1 cases 8118 (20.0) 8773 (21.7) 9298 (22.5) 26,189 (21.4)
#ASAP/GG1 Gleason alert 162 (2.0) 161 (1.8) 240 (2.6) 563 (2.1)

#Revised GG1 slides 11 (0.14) 9 (0.10) 8 (0.09) 28 (0.11)

Jun’20–May’21 Jun’21–May’22 Jun’22–May’23 TOTAL

Num. (%) Num. (%)

Cases
#Cases 3107 (100) 3089 (100) 3071 (100) 9267 (100)
#ASAP/GG1 cases 623(20.1) 670 (21.7) 691 (22.5) 1984 (21.4)
#ASAP/GG1 Gleason alert 107 (17.2) 111 (16.6) 162 (23.4) 380 (19.2)
#Revised ASAP/GG1 cases 9 (1.44) 7 (1.04) 8 (1.2) 24 (1.21)

AI impact™ 0.26%

Fig. 5. AI Impact™ of the Galen™ Prostate AI algorithm for prostate cancer detection across pathologists over a 3-year period.
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performance between pathologists, Gleason grade standardization, and
with the second-read approach, 100% QC of cases at sign-out. Each of
these has already benefited patients referred to our facility for years. At
the time of this writing, we have since implemented a first-read application
using the same AI algorithm described here which gives the additional ben-
efits of reducing the pathologist workload by supporting them with expert
level Gleason grading, locating clinically significant findings such as peri-
neural invasion, and performance of mundane tasks such as tumor mea-
surement. Lastly, AI algorithms have been developed that include not just
diagnostic assistance, but predictive and prognostic information as well.27

Such algorithms should help round out a full suite of AI capabilities that
will enable precision pathology to improve diagnostic accuracy, benefit
patient care and reduce healthcare costs.
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