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Abstract: Soft material-based pneumatic microtube actuators are attracting intense interest, since their
bending motion is potentially useful for the safe manipulation of delicate biological objects. To increase
their utility in biomedicine, researchers have begun to apply shape-engineering to the microtubes
to diversify their bending patterns. However, design and analysis of such microtube actuators are
challenging in general, due to their continuum natures and small dimensions. In this paper, we
establish two methods for rapid design, analysis, and optimization of such complex, shape-engineered
microtube actuators that are based on the line-segment model and the multi-segment Euler–Bernoulli’s
beam model, respectively, and are less computation-intensive than the more conventional method
based on finite element analysis. To validate the models, we first realized multi-segment microtube
actuators physically, then compared their experimentally observed motions against those obtained
from the models. We obtained good agreements between the three sets of results with their maximum
bending-angle errors falling within ±11%. In terms of computational efficiency, our models decreased
the simulation time significantly, down to a few seconds, in contrast with the finite element analysis
that sometimes can take hours. The models reported in this paper exhibit great potential for rapid
and facile design and optimization of shape-engineered soft actuators.

Keywords: microtube pneumatic actuator; Euler–Bernoulli beam model; line-segment model;
poly(dimethylsiloxane) (PDMS); soft robot

1. Introduction

The past decade has seen the rapid rise of soft material-based robots as a new paradigm in
robotics [1–7]. Such “soft robots” are deemed especially useful for biomedicine [8,9] due to their
inherent softness, deformability [10,11], and resulting ability to safely manipulate delicate, fragile
objects. Of special interest are those based on pneumatic actuation [12–17], since other soft robots
utilizing heat [18], electromagnetic fields [19], or light [20–23] for their actuation often entail safety
issues associated with high-level voltages [5], electric fields [4], or ultra-violet (UV) light [22]. Regarding
the pneumatic soft actuator, the most recent research emphasis has been on its miniaturization for
intra-body applications [3]. Balloon-finned micro-fingers [12], the nanofiber-reinforced pneumatic
actuator [14], and the magnetically assisted bilayer bending actuator [15] are good examples. However,
such small, soft, and safe (S3) actuators are difficult to design, optimize, and fabricate, due to their
continuum natures and small dimensions.

Recently, we developed a highly unconventional technique for fabricating soft material-based
tubes at millimetric and sub-millimetric scales, greatly facilitating the realization of microtube-type
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S3 pneumatic bending actuators [24]. As shown in Figure 1a–c, their bending motion arises from the
difference in the microtube’s top and bottom wall thicknesses and the resulting mismatch in their
elongation levels under pneumatic inflation. This means that the microtube’s bending pattern can be
diversified beyond the simple, circular motion by engineering the microtube’s wall thickness profile as
a function of position. Indeed, we amplified the original simple, single-turn bending motion into a
complex multi-turn spiraling by placing a hump in the thickness profile [24]. It is expected that more
sophisticated shape-engineering could modulate the wall thickness profile multiple times along the
microtube’s length, and would bring more variations to the microtube actuator’s bending pattern,
greatly increasing its utility.
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Figure 1. (a) A schematic diagram of a microtube actuator. (b) Definitions of the microtube actuator’s
structural parameters in a cross-sectional view. (c) A schematic diagram showing the origin of the
microtube actuator’s bending motion upon pneumatic inflation.

Currently, the techniques for design and analysis of such multi-segment shape-engineered
microtube actuators are very limited, as recently reviewed by Hadi Sadati et al. [25]. The finite element
method (FEM) is a powerful scheme for simulating a microtube actuator’s deformation [26,27], but it
is very computation-intensive. Euler–Bernoulli’s beam theory has been adopted as a lighter alternative
to analyze actuators efficiently [24,28–33]. Gorrison et al. utilized it to develop a model that agreed
well with the experimentally observed deformation patterns of microtube actuators [28,29]. Shapiro et
al. successfully modeled bi-bellow actuators using Euler–Bernoulli models reinforced with material
characteristics such as hysteresis [32,33]. They were also used by Shao et al. to model pneumatic
bending joints with anisotropic rigidity [31]. To verify the models quantitatively, Shapiro et al. and
Hadi Sadati et al. performed comparative studies [25,32]. In our previous work, we adopted this model
to optimize a hump’s position [24]. Recently, Wang et al. utilized the line-segment model to predict
a pneumatic actuator’s dynamic deformation [34]. The latter two are more suitable for design and
analysis of the multi-segment engineered microtube actuator. However, their computational efficiency
has not been validated yet.

In this work, we establish a new and simple line-segment model that can effectively deal with
multi-segment shape-engineered microtube actuators. Furthermore, we extend our Euler–Bernoulli’s
beam theory-based model to enable the analysis of multi-segment microtube actuators. We validate the
two models experimentally through quantitative and qualitative comparison studies. The microtube
actuators are physically realized and their bending motions are compared under pneumatic actuation
against the predictions of the two models. Such a comprehensive, multi-faceted approach for the
modeling of soft material-based pneumatic microtube actuators has not been reported yet, to the best
of our knowledge. Both the models and the approach adopted here will enrich the field of soft robotics
and provide additional tools for the design of soft robots.

This paper is organized as follows. First, we recapitulate our soft microtube fabrication process.
Then, we describe the experimental methods for characterizing their pneumatic actuation and response
time. We demonstrate the multi-segment Euler–Bernoulli’s beam model and the line-segment model
and verify their predictions against the experimental results quantitatively. A conclusion on the
important factors and implications of the work follows.



Micromachines 2019, 10, 780 3 of 12

2. Materials and Methods

2.1. Microtube Actuator Fabrication

For the experimental validation of the two models, we fabricated highly non-uniform microtube
pneumatic actuators using the procedures shown in Figure 2a–e. As the soft material, we utilized
poly(dimethylsiloxane) (PDMS, Dow Corning Sylgard 184 Silicon Elastomer, Dow Corning, Midland,
MI, USA) with its Young’s modulus (E) ~1.4 MPa [11]. The technique exploits the voluntary formation
of a PDMS tube around a cylindrical template, followed by gravity-assisted asymmetrization of the
tube’s wall thickness distribution and optical fiber jacket remover-enabled “peeling” of the cured
PDMS tube. To vary the level of wall thickness asymmetry along the axial direction, we also induced
a “beads-on-string” instability, which is frequently observed in liquid-phase (LP)-PDMS [35]. The
instability is not suitable for repeatable fabrication of identical microtubes, but is very effective
for realizing a wide variety of thickness distributions. More details can be found in our previous
reports [36,37].
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2.2. Pneumatic Actuation and Characterization 

To characterize the microtube actuator’s pneumatic deformation, we used the setup shown in 

Figure 3. We connected the microtube actuator directly to a pneumatic pump (Pico-Pump, WPI-
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Figure 2. (a) In situ pre-curing of liquid-phase poly(dimethylsiloxane) (LP-PDMS) on a glass plate.
(b) Preparation of a cylindrical template and its immersion into the pre-cured LP-PDMS. (c) Lift-up of
the PDMS-coated template. Waiting time is needed for gravity-assisted asymmetrization. (d) Rolling
and tilting of the template to induce the fluidic instability and further asymmetrize the microtube.
(e) Peel-off of the completed microtube (drawn not to scale). (f) One end of the microtube is sealed
to make the microtube inflatable. Application of pneumatic pressure deforms it to induce bending
motions in various patterns.

We first prepared a thin layer of LP-PDMS (~3,500 cP in viscosity) and pre-cured it to increase the
viscosity (Figure 2a) [38]. Then, we immersed a cylindrical template in the LP-PDMS (Figure 2b) and
lifted it to form a tubular PDMS coating around it (Figure 2c). For this step, commercially available
polymer wires with diameters of 250 and 470 µm were utilized as the templates. To induce the wall
thickness asymmetry, we intentionally tilted and rolled the LP-PDMS coating under in situ thermal
curing at 120 ◦C, inducing the fluidic instability to the LP-PDMS (Figure 2d). Upon completing the
curing process, we obtained a multi-segment, shape-varied microtube, which we peeled off from the
template with an optical fiber jacket remover.

For this work, we made eight samples in total. Their total lengths Ltot and the top and bottom
wall thicknesses tt and tb, respectively, are given in Table 1. In general, the microtubes were modeled
as cascades of one to four segments, each with its own top and bottom wall thicknesses tti and
tbi, respectively, where i is the segment index. Each microtube was attached to a micropipette for
pneumatic actuation. As shown in Figure 2f, we could observe a variety of bending patterns by
applying pneumatic pressure to the microtube actuator.
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Table 1. Microtube actuator specification.
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2.2. Pneumatic Actuation and Characterization

To characterize the microtube actuator’s pneumatic deformation, we used the setup shown in
Figure 3. We connected the microtube actuator directly to a pneumatic pump (Pico-Pump, WPI-PV830,
World Precision Instruments, Sarasota, FL, USA) to accurately control the inflation. We recorded the
resulting bending motion using a camera (Leica DFC-420, Leica Microsystems, Wetzlar, Germany)
integrated with an optical microscope (Leica Z16-APO). The structural characteristics of the deformation
were extracted through image analysis. The applied pneumatic pressure ranged from 0 to 0.21 MPa,
which was sufficient to induce noticeable deformations in the pneumatic microtube actuators. In
addition, its motions were recorded through the optical microscope (Supplementary Video S1). Their
response time was observed to be in the range of 0.18–0.45 s. Microtube actuators with helical tube-wall
thickness variations exhibited torsional motions. Since our current work targets modeling of the
microtube actuator’s 2D, planar bending motion, we excluded such samples through visual inspection.
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2.3. Multi-Segment Euler–Bernoulli’s Beam Model

The analytical model based on the Euler–Bernoulli’s beam theory can capture the deformation
of the microtube actuator, which contains asymmetries in its wall thickness distribution [28–30].
Previously, we applied it to the shape engineering of the microtube actuator to amplify its simple
bending motion into a complex spiraling motion [24]. Here, we extend the model further to analyze
the bending pattern of the multi-segment shape-engineered microtube actuator in which the wall
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thickness profile changes multiple times along the length. To that end, the following assumptions were
made. First, the bending moment and second moment of area are constant along each section. This
can be justified by the short length of each section and the subtleness of the changes in the thickness
profile. Second, the Young’s modulus of material is constant along the structure [31–33].

In the original theory, the deformed coordinates x and y of the asymmetric cross-section microtube
actuator and deviation angle (ϕ) (Figure 4) are given as

ϕi(s) =
∫ s

0

Mi
E · Ii

ds′ =
Mi·s
E·Ii

(1)

x(s) =
∫ s

0
cos(ϕi(s′))ds′ (2)

y(s) =
∫ s

0
sin(ϕi(s′))ds′ (3)

where s is the original length of the pneumatic actuator from 0 to Ltot, Mi (i = 0, 1, 2, . . .) is the bending
moment of each section, E is the Young’s modulus of the material, and Ii (i = 0, 1, 2, . . .) is the second
moment of area. The bending moment can be calculated with

Mi = π·r2
in·dei·p (4)

where rin is the template radius, p is the pneumatic pressure, and dei is the distance between the neutral
axis and the void center (Figure 1b). The neutral axis is the particular longitudinal axis that is neither
compressed nor extended, and the pneumatic pressure (p) is applied to the void center. The difference
between the operating point of pneumatic pressure and the neutral axis yields the bending moment.
Therefore, the increment of thickness difference between the top and bottom tube walls leads to an
increase in the distance between the neutral axis and void center (dei), which is in direct proportion
to Mi. Consequently, this triggers the increase of the bending moment that, in turn, enhances the
microtube actuator’s deformation.
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= ∫ 𝑓 (
𝑀2𝑠′

𝐸 ∙ 𝐼2
+
𝑏𝐿𝑡𝑜𝑡
𝐸

(
𝑀1

𝐼1
−
𝑀2

𝐼2
) +

𝑎𝐿𝑡𝑜𝑡
𝐸

(
𝑀0

𝐼0
−
𝑀2

𝐼2
))𝑑𝑠′

𝑠

0
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+
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(
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𝑀3
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) +

𝑏𝐿𝑡𝑜𝑡
𝐸

(
𝑀1

𝐼1
−
𝑀3
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) +

𝑎𝐿𝑡𝑜𝑡
𝐸

(
𝑀0

𝐼0
−
𝑀3

𝐼3
))𝑑𝑠′

𝑠

0

 (8) 

Figure 4. A schematic diagram of the deformed x− y coordinates and the deviation angle ϕ(s).

For this work, we fabricated a variety of axially varying actuators with up to four segments
(Table 1). In such situations, the microtube’s thickness distribution parameters Mi and Ii also become
discretized in each segment, as depicted in Figure 5. Accordingly, the integrations for the deformed
coordinates become

u(0 < s < a·Ltot) =

∫ s

0
f
(

M0s′

E·I0

)
ds′ (5)

u(a·Ltot < s < (a + b)·Ltot) =

∫ s

0
f
(

M1s′

E·I1
+

aLtot

E

(
M0

I0
−

M1

I1

))
ds′ (6)

u((a + b)·Ltot < s < (a + b + c)·Ltot) =

∫ s

0
f
(

M2s′

E·I2
+

bLtot

E

(
M1

I1
−

M2

I2

)
+

aLtot

E

(
M0

I0
−

M2

I2

))
ds′ (7)
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u((a + b + c)·Ltot < s < Ltot) =
∫ s

0 f
(M3s′

E·I3
+ cLtot

E

(M2
I2
−

M3
I3

)
+ bLtot

E

(M1
I1
−

M3
I3

)
+ aLtot

E

(M0
I0
−

M3
I3

))
ds′ (8)

where Ii (i = 0, 1, 2, . . .) is the second moment of area and a, b, c ∈ R (0, 1) is the fractional section
length constrained by a + b + c < 1. The function f is a cosine when u = x, and a sine when u = y.
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Figure 5. Step-wise distributions of the non-uniform microtube actuator’s bending moment (Mi) and
second moment of area (Ii ).

In this model, we further extend the existing Euler–Bernoulli model to analyze the multi-segment
microtube and discretize the bending moment and second moment of area in each segment [24].
The deviation angle of the microtube actuator is related to the ratios between the bending moment
(Mi), Young’s moduli (E), and the second moment of area (Ii) based on the Euler–Bernoulli’s beam
theory [30]. We first calculated the deviation angle of the microtube actuator by performing the
integration in Equation (1) along its length, assuming the bending moment and second moment of area
to be constant across each segment. Then, we calculated the deformed x−y coordinate of each segment
using Equations (5)–(8) in accordance with the step-wise distributions of Mi and Ii (Figure 5). We
utilized the trapezoidal rules to carry out the integrations over a full cycle for each section’s deformed
coordinate while varying the pneumatic pressure.

2.4. Line-Segment Model

For line-segment modeling of the microtube actuator, we first divided it into N segments as shown
in Figure 6a. Applying pneumatic pressure elongates each segment, and the asymmetry in the top and
bottom wall thicknesses induce tilting of each segment from the previous one (Figure 6b). Therefore,
the bending motion of the microtube actuator can be modeled as successive applications of elongation
and tilting. For the former, we simply multiply the elongation factor.
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To implement the latter, we need to find the tilt angle θi of each segment which can be utilized in
the 2D rotation matrix: {

xi+1

yi+1

}
=

[
cosθi − sinθi
sinθi cosθi

]{
xi
yi

}
(9)

To find the elongation factor, we took the material property of PDMS into consideration. A
PDMS layer exhibits different elongation rates depending on its thickness. Liu et al. analyzed the
thickness-dependent Young’s modulus and stress-strain in PDMS [11]. Young’s modulus can be derived
from Hooke’s law (E = σ/ε). The engineering stress σ = F/A, where F is the tensile force and A is the
cross-sectional area of the specimen. The engineering strain is defined as ε = (L− Lo)/Lo, where Lo

is the original length of the specimen and L is the elongated length. Gorrison et al. reported that a
constant Young’s modulus led to a good agreement with the microtube actuator’s experimental results
for low pressure levels (<0.2 MPa) which overlaps with our operation range without consideration of
PDMS’s hyperelasticity [28]. Based on the experimental data by Liu et al. [11], we set the range for our
ε between 0.5 and 1.2. Our microtube actuators exhibited gravity-induced asymmetries in the top and
bottom wall thicknesses. Thus, we utilized different ε’s to find the top and bottom walls’ elongated
lengths. The difference between the top and bottom walls’ strain ranges affected the final lengths of the
top and bottom walls, which, in turn, induced the actuator’s bending motion. The elongation length
equations at the top and bottom are

Ltop,i = Lo,i·εtop,i·
tti
tbi

(10)

Lbot,i = Lo,i·εbot,i·
tti
tbi

(11)

where Lo,i is the initial section length (i = 0, 1, 2, . . . ), εtop,i and εbot,i are the top and bottom strain
(depending on the wall thickness), and tti and tbi are the top and bottom wall thicknesses, respectively,
as defined in Figure 1b schematically.

We formulated the tilt angle θi as a function of all these characteristics. Note that the eccentricity
of the void center dei, defined schematically in Figure 1b, played an important role in the formulation.
The final tilt angle equation is

θi = tan−1
(Lbot,i − Ltop,i

rin,i

)
·

po

pmax
·(1 + dei) (12)

where po and pmax are the initial and maximum pressures that we applied to the pneumatic actuator.
Obviously, the tilt angle decreases as the pneumatic pressure applied to the structure becomes lower.
By combining these, we established a simple line-segment model capable of making quick predictions
on the shape-dependent bending pattern.

3. Results and Discussion

To validate the Euler–Bernoulli’s beam model and line-segment model for the multi-segment
shaped-engineered microtube actuator, we carried out comparison studies. To that end, we selected
three microtube actuators (numbers 1, 2, and 3) as our representative samples. They were all
multi-segmented with different numbers of segments, as specified in Table 1. They also differed in their
thickness distributions and overall lengths. Their maximum bending motions were achieved at 0.14,
0.14, and 0.17 MPa, respectively. Additionally, the three samples’ minimum response time constants
required for maximum bending motion were measured to be 0.18, 0.45, and 0.38 s, respectively.

Using such a variety of microtube actuators, we aimed to show that the modeling results agreed
well with those from the experiments regardless of the segment counts or thickness distributions.
The results for the Samples 1, 2, and 3 are shown in Figures 7–9, respectively. The 1st, 2nd, and 3rd
rows demonstrate the results from the experiment, the multi-segment Euler–Bernoulli model, and the
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line-segment model, respectively. Overall, the results from the two models exhibited good qualitative
agreements with the experimental results.
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For a more quantitative comparison, we utilized the maximum bending angle, defined as the
angle between the horizontal line and the tangent of the beam at the end point at the final stage of
inflation, as the criterion. This is an important figure-of-merit that determines the maximal bending
level of the microtube bending actuator. The results are displayed in Table 2. The experiment results
showed that the maximum bending angles of Samples 1, 2, and 3 were 306.4◦, 175.7◦, and 273.2◦,
respectively. The maximum bending angles of Samples 1, 2, and 3 that were extracted from the results
of the multi-segment Euler–Bernoulli’s beam model were 332.7◦, 180.8◦, and 243.8◦, respectively. For
the maximum bending angles of Samples 1, 2, and 3 from the line-segment model results, we obtained
292.7◦, 198.2◦, and 283.1◦, respectively. For Samples 1 and 2, the deviations from the experimental
results were within ±10%. For Sample #3, it was still within ±11%, confirming that the modeling
results agreed well with the experimental results.

Table 2. The maximum bending angles from the experimental and modeling results.

Sample #1 #2 #3

Experiment 306.4◦ 175.7◦ 273.2◦

Multi-segment Euler–Bernoulli’s
beam model 332.7◦ 180.8◦ 243.8◦

Line-segment model 292.7◦ 198.2◦ 283.1◦

These semi-analytical and numerical models, based on multi-segment Euler–Bernoulli beam
theory and line-segments, respectively, can be used as rapid methods for the design and analysis of
multi-segment, highly shape-engineered microtube actuators. In terms of computational efficiency,
the two methods can significantly shorten the simulation time, possibly down to a few seconds, in
comparison with the FEM-based methods typically take hours to calculate, even for uniform microtube
actuators [26,27]. The multi-segment Euler–Bernoulli and line-segment models also share a potential
to enhance their accuracies through an increase in the number of segments. In that respect, the
multi-segment model exhibits a relative superiority over the Euler–Bernoulli model, since the latter
requires a re-formulation for each addition of a new section. The line-segment model will also be more
suitable for analyzing torsional, 3D bending motions in the future.
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4. Conclusions

In conclusion, we have developed a simple line-segment model as well as a multi-segment version
of Euler–Bernoulli’s beam theory-based model to design and optimize the complex bending motion
of non-uniform, highly shape-engineered microtube pneumatic actuators. For the former, the key
enabling factor was the proper setup of the “tilt function”. We established our own, which was
based on experimental observations and basic soft matter mechanics. For the latter, we attempted a
multi-segment formulation of the existing Euler–Bernoulli model. For its validation, we fabricated
multiple non-uniform microtube actuators and recorded their bending patterns. The predictions from
the line-segment and multi-segment Euler–Bernoulli models and the experimental results agreed well
on the final bending pattern. In terms of the maximum bending angle, which is a quantitative figure of
merit, the error was within 11%. Given the minute dimensions of the microtube actuators (8–12 cm in
length and 0.25–0.5 mm in diameter) and subtle changes in the thickness distribution, such a high level
of agreement is very meaningful. Further, the two models exhibited a high potential to significantly
shorten computational time down to a few seconds in contrast with the more computation-intensive
FEM-based methods. These two new models are capable of expediting the design and optimization of
axially non-uniform microtube actuators with complex bending patterns, widening the scope of their
future applications as S3 actuators.

Supplementary Materials: The following video is available online at http://www.mdpi.com/2072-666X/10/11/780/
s1, Video S1: Bending motion and its response time.
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Abbreviations

List of Symbols
Symbol Explanation
A Cross-sectional area of pneumatic actuator
a, b, c Fractional section lengths (a, b, c ∈ R (0, 1) and a + b + c < 1)
dei Distance between the neutral axis and the void center
E Young’s modulus
F Tensile force
Ii Second moment of area
Li Length of each section
Ltop,i, Lbot,i Length of top & bottom side
Ltot Total length of PDMS microtube
Mi Bending moment of each section
p Pneumatic pressure
po Current applied pneumatic pressure
pmax Maximum applied pneumatic pressure
rin Cylindrical template radius
s The original axial coordinate of the undeformed pneumatic actuator
tti Top wall thickness of each segment
tbi Bottom wall thickness of each segment
ϕ Deviation angle
x(s), y(s) x, y-axis deformed coordinate
xi, yi x, y coordinate (in line-segment model)
ε Engineering strain
εtop,i, εbot,i Top and bottom wall strain
σ Engineering stress
θi Final tilt angle (in line-segment model)
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