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ABSTRACT

Intra-tumor heterogeneity is a phenomenon in which
mutation profiles differ from cell to cell within the
same tumor and is observed in almost all tumors.
Understanding intra-tumor heterogeneity is essen-
tial from the clinical perspective. Numerous methods
have been developed to predict this phenomenon
based on variant allele frequency. Among the meth-
ods, CloneSig models the variant allele frequency
and mutation signatures simultaneously and pro-
vides an accurate clone decomposition. However,
this method has limitations in terms of clone num-
ber selection and modeling. We propose SigTracer,
a novel hierarchical Bayesian approach for analyz-
ing intra-tumor heterogeneity based on mutation sig-
natures to tackle these issues. We show that Sig-
Tracer predicts more reasonable clone decompo-
sitions than the existing methods against artificial
data that mimic cancer genomes. We applied Sig-
Tracer to whole-genome sequences of blood can-
cer samples. The results were consistent with past
findings that single base substitutions caused by
a specific signature (previously reported as SBS9)
related to the activation-induced cytidine deami-
nase intensively lie within immunoglobulin-coding
regions for chronic lymphocytic leukemia samples.
Furthermore, we showed that this signature mutates
regions responsible for cell–cell adhesion. Accurate
assignments of mutations to signatures by SigTracer
can provide novel insights into signature origins and
mutational processes.

INTRODUCTION

Intra-tumor heterogeneity (ITH) is a phenomenon in which
the mutation profiles differ from cell to cell within the same

tumor and is observed in almost all tumors. In clinical prac-
tice (especially for treatment strategies), understanding het-
erogeneity is an important task because cell populations
with heterogeneous genetic profiles make it challenging to
determine which drugs are effective for a particular tumor
(1). In addition, heterogeneity represents how tumors have
evolved. Hence, the accurate estimation of heterogeneity is
essential to elucidate cancer dynamics. Multi-region sam-
pling and single-cell DNA sequencing are effective in esti-
mating the heterogeneity of a single tumor because they di-
rectly provide region-by-region and cell-by-cell mutational
profiles. However, because of the high cost, low sequencing
depth and small amount of data acquired, bulk sequencing
data are used in numerous cases for comprehensive analysis
instead of single-cell sequencing.

ITH is mainly estimated via bulk sequencing by decom-
posing all mutations into temporally similar populations
(called clones) based on the cancer cell fraction representing
a hypothetical time axis. Numerous methods to predict ITH
have been developed (2–7), and most depend on cluster-
ing mutations (i.e. decomposing into clones) by probabilis-
tically modeling the variant allele frequency (VAF) for each
sequenced mutation and calculating the cancer cell fraction
(CCF) for each mutation by correcting the VAF using copy
number aberrations (CNA) according to structural variants.
However, the VAF of a single mutation is a noisy observa-
tion due to some technical limitations such as low sequenc-
ing depth, and it is difficult to accurately reconstruct the
tumor evolution using only VAF.

When modeling mutations probabilistically, it is natu-
ral to focus on the cause of mutations, in other words, the
mutational processes. In general, each mutational process
leaves a specific fingerprint. This mutation spectrum can be
formulated as a probabilistic distribution called the muta-
tion signature (8,9). For instance, the deamination of 5’-
methylcytosine results in the characteristic single base sub-
stitution, N[C>T]G; hence, its mutation signature tends to
have a higher proportion of these substitutions than oth-
ers. The probabilistic distribution representing such a fea-
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ture is registered in the COSMIC database as a signature
(namely, SBS1), and >50 other signatures for single base
substitutions have been reported. Several studies have sug-
gested that each clone in the tumor has different active sig-
natures (10–12), and incorporating signatures to the model
for estimating ITH was found to be useful. Abécassis et al.
proposed CloneSig (13) that models mutation signatures
and VAF simultaneously. CloneSig was found to outper-
form conventional methods of clone estimation with sim-
ulated mutation profiles that mimic whole-exome sequenc-
ing samples. While jointly modeling VAF and signatures,
CloneSig considers that all mutations that accumulate in
one tumor occur due to multiple signatures and each clone
differs in the signature composition. For example, the clones
with a strong SBS1 signature are expected to carry more
N[C>T]G point mutations than other clones, as mentioned
above. Therefore, mutation-clone matching can be achieved
by following multiple clues including VAF and the substi-
tution type and observing the surrounding bases, which im-
proves the accuracy of clone estimation.

CloneSig has enabled many prospects for clone decom-
position, but there are still some limitations. One of the
drawbacks of CloneSig is the inaccurate model selection in
terms of the number of clones using the Bayesian informa-
tion criterion (BIC). BIC does not support rigorous valid-
ity of singular models (14) or mixture models, which have
hidden variables. Another limitation of CloneSig is the in-
stability of the estimation due to parameters with no prior
distributions. In this study, we developed SigTracer, a hi-
erarchical Bayesian extension of CloneSig that provides a
method of valid clone number selection and more robust
clone decomposition, which selects the clone number using
the evidence lower bound (ELBO), the lower bound of the
Kullback–Leibler (KL) divergence between the true distri-
bution and the approximate posterior distribution. Besides,
SigTracer prepares Dirichlet distributions as conjugate pri-
ors for the signature activity of each clone. This extension
can be regarded as a generalization of the CloneSig model,
and other studies on similar tasks such as signature extrac-
tion have already highlighted the effectiveness of Dirichlet
priors (15–17). Here, we aimed to show if SigTracer pro-
vides more reasonable clone estimations than CloneSig for
artificial tumors.

Clone decomposition based on mutation signatures also
has significant potential in terms of signature analysis. Al-
though methods to estimate which signatures are active in
a given tumor have been proposed (18,19), they usually do
not consider VAF. In other words, they infer which signa-
ture leads to a certain mutation from only its trinucleotide
type and the mutational distribution of the signature. This
can lead to incorrect assignment of mutations to signatures.
In fact, in the original paper reporting CloneSig, an exam-
ple of a sarcoma patient was provided who had clones with
differently dominant signatures within a single tumor, and
other studies have also suggested the transition of signature
activities in coordination with clones (10–12). All these re-
sults indicate the effectiveness of considering VAF for the
signature analysis. We applied SigTracer to single-cell se-
quences of the ovarian cancer sample and whole-genome
sequences of blood cancer samples, and then reported the
findings through accurate signature assignment.

Figure 1. Graphical model of SigTracer for one tumor sample. This repre-
sentation follows the plate notation, in which the variables shaded in black
represent constants that can be observed in advance. Notations for all vari-
ables are explained in the main text and Supplementary Table S1.

MATERIALS AND METHODS

Overview of the SigTracer model and the generative process

Figure 1 shows the graphical model of SigTracer for a sin-
gle tumor, and we have summarized all notations in Supple-
mentary Table S1. The tumor contained a total of N point
mutations, and for every mutation, we simultaneously mod-
eled the mutation type xn (1 ≤ n ≤ N) and the number of
reads overlapping xn. Bn and Dn indicate the number of
reads with mutated and total alleles, respectively. We con-
sidered six types of single base substitutions and 16 differ-
ent neighboring bases around the mutated base using the
known SBS signature set; thus, xn was a categorical vari-
able, and it took V = 96 different values. Relatedly, assum-
ing that the subset consisting of K active signatures in the
tumor was known and each mutational distribution of the
k-th signature was denoted by φk ∈ R

V for 1 ≤ k ≤ K, we
easily estimated the subset by applying various fitting meth-
ods (18,19) to the mutation set in advance. For the genomic
locus in which each mutation existed, we assumed that the
copy number in a cancer cell C(tumor)

n , the copy number of
a major allele in a cancer cell C(major)

n , the copy number in
a normal cell C(normal)

n (these are collectively denoted as Cn
in Figure 1), and the sample purity P were also known, and
we must set these values in some way to predict CNA con-
sidering structural variants (20,21).

For each mutation, the SigTracer model had three la-
tent variables––zn, Un, and Mn––indicating the signature via
which the mutation occurred (a categorical variable with
K types), the clone carrying that mutation (a categorical
variable with J types where J is the number of clones),
and the copy number of the mutation (Mn ∈ N satisfying
Mn ≤ C(major)

n ), respectively. The clone Un and signature zn
were generated using categorical distributions with parame-
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ters π ∈ R
J and θ j=Un ∈ R

K , which followed prior Dirichlet
distributions with α(π) and α

(θ)
j=Un

. Note that each clone j had
a different signature activity θ j . Mn was also modeled to fol-
low a categorical distribution so that any possible natural
number less than or equal to C(major)

n was equally sampled.
Then, the number of reads, Bn and Dn, was probabilistically
modeled as follows:

Bn ∼ BetaBinomial(Dn, μn, νn) (1)

where

μn = ρUn × λUn × ηn,Mn , νn = ρUn (1 − λUn × ηn,Mn ),

ηn,Mn = P × Mn

P × C(tumor)
n + (1 − P) × C(normal)

n

.

Here, �j and � j are the CCF and overdispersion parame-
ters for the j-th clone, respectively. BetaBinomial(N, �, �) is
the probabilistic distribution of the number of successes in
N trials, where success probability is sampled from a prior
beta distribution with shape parameters � and �. �n, m is the
normalization term for the copy number of the mutation
n in a sampled cell when Mn = m and the expected value
of Beta(�, �) becomes λUn × ηn,Mn . CCF, which is the VAF
corrected for copy number, is defined as the proportion of
sequenced cancer cells that contain mutations. �j, which is
the CCF for the j-th clone, shows when the clone was estab-
lished (the larger the �, the older the clone) under certain
assumptions, including the infinite-site model.

In summary, the entire generative process is given as fol-
lows:

π ∼ Dirichlet(α(π))
for each clone j = 1, ···, J do

θ j ∼ Dirichlet(α(θ)
j )

for each mutation n = 1, ···, N do
Un ∼ Categorical(π)
zn ∼ Categorical(θUn )
ζ = {1/C(major)

n , · · · }, | ζ |= C(major)
n

Mn ∼ Categorical(ζ )
xn ∼ Categorical(φzn )

draw Bn according to Equation (1)

Inference algorithm

Estimation of hidden variables and parameters. We pre-
dicted the responsibilities of the latent variables using the
collapsed variational Bayesian (CVB) inference, and for
marginalized parameters (i.e., π and θ ), we computed the
estimates using the expected values obtained from the ap-
proximate posterior distributions and hyper-parameters.
q(z, U, M), q(π ) and q(θ ) were the approximated poste-
rior distributions of the latent variables and the corre-
sponding parameters. Regarding latent variables, when we
used the mean-field approximation, such as q(z, U, M) ≈
q(z)q(U)q(M), preliminary experiments showed that the
prediction accuracy was significantly worse. Therefore,
while preserving the structure among the latent vari-
ables (i.e. joint posterior q(z, U, M,π , θ ) is factorized
into q(π )q(θ )

∏N
n=1 q(zn, Un, Mn)), we derived the objective

function, ELBO, as follows:

F [q(z, U, M)] =
N∑

n=1

∑
zn

∑
Un

∑
Mn

q(zn, Un, Mn)

× log
p(xn, Bn, zn, Un, Mn | Dn, Cn, P, λ, ρ, α(π ), α(θ), φ)

q(zn, Un, Mn)
. (2)

According to this objective function, we can obtain the
updated formula for q(zn, Un, Mn) which takes a station-
ary point to give the extreme value of F [q(z, U, M)] as
follows:

q(zn = k, Un = j, Mn = m)

∝ exp
[

log φk,xn + log
	(Bn + μn, j,m)	(Dn − Bn + νn, j,m)	(ρ j )

	(Dn + ρ j )	(νn, j,m)	(μn, j,m)

+ log
α

(θ)
j,k + ∑

n′ 	=n
∑

Mn′ q(zn′ = k, Un′ = j, Mn′ )
∑

k′
{
α

(θ)
j,k′ + ∑

n′ 	=n
∑

Mn′ q(zn′ = k′, Un′ = j, Mn′ )
}

+ log
α

(π )
j + ∑

n′ 	=n
∑

zn′
∑

Mn′ q(zn′ , Un′ = j, Mn′ )
∑

j ′
{
α

(π )
j ′ + ∑

n′ 	=n
∑

zn′
∑

Mn′ q(zn′ , Un′ = j ′, Mn′ )
}

⎤
⎦ (3)

where 	( · ) denotes the gamma function and

μn, j,m = ρ j × λ j × ηn,m and νn, j,m = ρ j (1 − λ j × ηn,m). (4)

The detailed derivation is provided in Section S1. For
π and θ , by taking the expected values with respect to
q(zn, Un, Mn) and hyper-parameters, we can estimate the
following:

π j ∝
N∑

n=1

K∑
k=1

C(major)
n∑
m=1

q(zn = k, Un = j, Mn = m) + α
(π)
j (5)

θ j,k ∝
N∑

n=1

C(major)
n∑
m=1

q(zn = k, Un = j, Mn = m) + α
(θ)
j,k. (6)

After estimating the responsibility and parameters, we
calculated the expected CCF for each mutation as follows:

E[CCFn ] = Bn

Dn
× P × C(tumor)

n + (1 − P) × C(normal)
n

P × E[Mn ]
(7)

where

E[Mn ] =
C(major)

n∑
m=1

m ×
⎧⎨
⎩

K∑
k=1

J∑
j=1

q(zn = k, Un = j, Mn = m)

⎫⎬
⎭ .

Estimation of hyper-parameters. We predicted the hyper-
parameters, including α(π), α(θ), �j and � j, using fixed-point
iterations to maximize ELBO. In fixed-point iterations, we
first derived the lower bound of ELBO using the gamma
function and used the stationary points to maximize it for
each parameter. For the � j update to control overdisper-
sion, we employed the exponential distributions p(� |� ) =
�exp (�� ) as priors to achieve a stable estimation and con-
firmed that this modification prevented divergence of pa-
rameter learning. We have provided details of the updated
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formulas for all hyper-parameters in the Supplementary
Data (see Equations (S5)-(S12)).

Model selection using the variational Bayesian (VB) in-
ference. To select a plausible number of clones, J, we
used ELBO as the criterion for model selection in this
framework. In CVB, although parameter estimation is
possible using Equations (3)–(6), we could not explic-
itly calculate the ELBO value (as shown in Equation
(2)) because the approximate posteriors of π and θ were
marginalized. Therefore, we used the VB method to de-
rive the ELBO and performed tentative parameter esti-
mation for model selection, which yielded the predicted
number of clones for each tumor in advance of CVB.
In the VB method, ELBO was formulated as shown in
Equation (S4), and we computed this value using the pre-
dicted parameters according to the update rules: Equations
(S5)–(S7).

Different properties of SigTracer from CloneSig. In terms
of modeling, one difference was that we prepared Dirichlet
distributions as priors of signature activities for each clone
(θ j ) and the clone proportion (π). These categorical dis-
tribution parameters yielded zn and Un, and CloneSig pre-
dicted these via an EM algorithm. Therefore, the update for-
mula of the EM algorithm was equivalent to that of the VB
method when the priors were Dirichlet distributions with
all parameters set to 1.0. Another improvement in model-
ing was in terms of the setting for CCF overdispersion (� ).
CloneSig set the same value for all clones, whereas SigTracer
controlled the overdispersion by each clone for the beta dis-
tribution, which is the prior of binomial distributions that
determined Bn against Dn.

Regarding an inference algorithm, SigTracer adopted
ELBO as a criterion to select the number of clones instead
of BIC used in CloneSig. In addition, we used fixed-point
iteration to estimate hyper-parameters instead of the pro-
jected Newton method used by CloneSig.

Summary of the algorithm to infer parameters. The bot-
tleneck of inference for both CVB and VB was calcu-
lated using q(z, U, M), and the following time complexity
O(NK J × max(C(major))). To terminate CVB learning, we
used the approximated ELBO. As described above, ELBO
derived using CVB could not be calculated because the pos-
teriors of π and θ were marginalized; hence, we approxi-
mated ELBO by substituting the expected value of π and
θ into Equation (S4). This value could not be used for
model selection because it was not the objective of CVB,
but it was used to confirm if training was saturated. This
inference could not possibly converge to the global opti-
mal solution because it is a non-convex optimization. To
address this potential problem, we initialized the param-
eters five times in the following experiments and subse-
quently selected the solution with the highest approximated

ELBO. Finally, we created Algorithm 1 to summarize the
inference.

Statistical test for measuring the relationship between muta-
tions and signatures

We assumed that a particular somatic mutation drove tu-
mor evolution and induced mutational processes of an indi-
vidual signature, or conversely, a certain mutational process
caused particular mutations. In that case, such mutations
were likely to be concentrated in clones in which the relevant
signature was highly active. Based on this idea, we imple-
mented the following pipeline of statistical tests to measure
the relevance between mutations and signatures at a genetic
level.

First, for all mutations, we determined the clone ĵ to
which the mutation n belonged, as follows:

ĵ = arg max
j

⎧⎨
⎩

K∑
k=1

C(major)
n∑
m=1

q(zn = k, Un = j, Mn = m)

⎫⎬
⎭ .

The next step was to determine the active signature k for
each clone j based on whether or not the following threshold
was satisfied:

N∑
n=1

C(major)
n∑
m=1

q(zn = k, Un = j, Mn = m) ≥ 100.

We divided all clones into active or inactive groups in
terms of the signature k to be tested according to the above
threshold, and we calculated the ratio of active group sizes
for the signature k against all groups (denoted as rk) by
adding the number of mutations in the clones belonging to
each group.

If we knew where the mutations occurred at the genetic
level, we estimated whether the clones carrying mutations
on a certain gene were active or inactive for a particular sig-
nature k according to the above procedures. If there was no
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Table 1. Artificial datasets and the setting of essential parameters

ID Parameter setting and remarks

WGS-1 Baseline that mimics whole-genome sequenced tumors,
N = 2000, J = 2, K ∼ 2 + Poisson(3),

Dn ∼ �Uniform(5, 50)�, � j ∼ Uniform(5, 100)
WGS-2 J = 1, following WGS-1 for other parameters
WGS-3 J = 3
WGS-4 J = 4
WGS-5 � j is equal between clones
WGS-6 K ∼ 2 + Poisson(5)
WGS-7 K ∼ 2 + Poisson(1)

WES-1 Baseline that mimics whole-exome sequenced tumors,
N = 1000, J = 2, K ∼ 2 + Poisson(3),

Dn ∼ �Uniform(50, 500)�, � j ∼ Uniform(5, 100)
WES-2 N = 500, following WES-1 for other parameters
WES-3 N = 200
WES-4 N = 100
WES-5 � j is equal between clones

Ideal-1 N = 2000, J = 3, K ∼ 2 + Poisson(3),
Dn ∼ �Uniform(50, 500)�, � j ∼ Uniform(5, 100),

CCF between clones is separated by >0.2
Ideal-2 J = 4, following Ideal-1 for other parameters

All datasets contained 100 samples, and the mutation profiles followed the
generative process of SigTracer. N, K and J are the number of mutations,
the number of active signatures and the number of clones, respectively. The
datasets can be divided into three categories: WGS-mimicking (low cover-
age and a large number of mutations), WES-mimicking (high coverage and
few mutations) and ideal (high coverage and a large number of mutations).
The parameters of the datasets from WGS-2 to WGS-7 follow WGS-1, ex-
cept the ones explicitly described in the table. Similarly, the parameters of
the datasets from WES-2 to WES-5 follow WES-1.

relationship between the gene of interest and the signature
k, the mutations would be distributed into active and in-
active groups according to the ratio rk. To test this null hy-
pothesis, we performed a binomial test for all gene-signature
combinations against a binomial distribution with a suc-
cess probability of rk. In the actual implementation, we used
scipy.stats.binom test with a significance level of α < 0.05 in
Python.

Datasets

Simulation data. To evaluate the performance of Sig-
Tracer, we artificially produced 14 datasets following the
generative process in SigTracer. All datasets contained 100
samples, and we used 67 signatures registered in COS-
MIC ver3.1 as the reference mutational distributions. The
datasets were divided into three categories: whole-genome
sequencing (WGS) mimicking (low coverage and a large
number of mutations), whole-exome sequencing (WES)
mimicking (high coverage and a small number of muta-
tions) and ideal (high coverage and a large number of mu-
tations). Detailed information regarding how the datasets
were produced is provided in Section S2, and Table 1 sum-
marizes the differences in essential parameters for each
dataset.

The single-cell sequenced ovarian cancer sample. As a
proof of concept, we analyzed a single-cell sequenced ovar-
ian cancer sample collected from ascites (22). This dataset
includes three samples, OV2295 sequenced at diagnosis, and
OV2295(R2) and TOV2295(R) sequenced at relapse. Since

the removal of cancer cells targeted by chemotherapy result
in severe noise for the observed VAF of a relapsed tumor,
we have chose the primary tumor, OV2295, as the represen-
tative to be used for our analyses. Then, we considered all
the sequenced cells in OV2295 as a pseudo-bulk sample for
SigTracer analysis. The raw data used in this experiment can
be downloaded from https://zenodo.org/record/3445364.

Application using blood cancer samples. We applied Sig-
Tracer to blood cancer samples of the Pan-Cancer Anal-
ysis of Whole Genomes (PCAWG) cohort. Tumors used
in this study were subjected to whole-genome sequenc-
ing, and the tumor types were roughly divided into two
categories: chronic lymphocytic leukemia (CLL) and B-
cell non-Hodgkin lymphoma (BNHL), including Burkitt
lymphoma, diffuse large B-cell lymphoma, follicular lym-
phoma, and marginal lymphoma. All sources are avail-
able for download from the ICGC Data Portal: https://
dcc.icgc.org/releases/PCAWG. We obtained 95 CLL sam-
ples and 100 BNHL samples. Similar to the simulation,
we used COSMIC ver3.1 as the reference SBS signa-
ture set: https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
index.tt. For each tumor, previous studies using SigPro-
filer reported the types of active signatures (23); four sig-
natures, SBS1, SBS5, SBS9 and SBS40, were active in CLL,
and 14 signatures, SBS1, SBS2, SBS3, SBS5, SBS6, SBS9,
SBS13, SBS17a, SBS17b, SBS34, SBS36, SBS37, SBS40
and SBS56, were active in BNHL. This result is available
in synapse.org ID syn11801889: https://www.synapse.org#!
Synapse:syn11804040, and we utilized them as the model
input. Furthermore, the CNA and purity were estimated
using several methods and are provided in the PCAWG
database (24); we also used these as the model input. In ad-
dition, when we applied the statistical test described above,
we utilized the locus of all somatic mutations from mapping
results uploaded on the PCAWG database, which were al-
ready annotated using Hugo symbols.

RESULTS AND DISCUSSION

Simulation experiments

Evaluation of model selection. To evaluate the model se-
lection performance and compare SigTracer with CloneSig,
we applied each method to the datasets presented in Table
1. We could easily identify active signatures in each sam-
ple using different fitting methods. Hence, we assumed that
the type and number of signatures were known in this sim-
ulation. In addition, we elected Jmin = 1 and Jmax = 5 as the
range of the clone number. Table 2 summarizes the results of
model selection. Out of the 100 samples in each dataset, the
bold characters indicate the number of samples for which
the correct number of clones could be estimated using each
method. We have presented the results of WES-2 to WES-5
in Supplementary Table S2.

Table 2 shows that SigTracer consistently estimated the
correct number of clones compared to CloneSig for J ≤
2. When a tumor included multiple clones, such as WGS-
3 and WGS-4, the CloneSig estimation was more accurate
than the SigTracer estimation. However, with the Ideal-1/2
datasets (high coverage and a high number of mutations),

https://zenodo.org/record/3445364
https://dcc.icgc.org/releases/PCAWG
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/index.tt
https://www.synapse.org#!Synapse:syn11804040
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Table 2. The number of clones predicted with artificial mutation profiles

ID Method J = 1 J = 2 J = 3 J = 4 J = 5

WGS-1 SigTracer 16 81 3 0 0
CloneSig 1 25 42 23 8

WGS-2 SigTracer 87 13 0 0 0
CloneSig 23 44 22 10 1

WGS-3 SigTracer 6 72 21 1 0
CloneSig 0 12 39 35 14

WGS-4 SigTracer 0 63 32 5 0
CloneSig 1 7 36 38 18

WGS-5 SigTracer 23 77 0 0 0
CloneSig 0 30 49 20 1

WGS-6 SigTracer 19 80 1 0 0
CloneSig 1 31 43 19 6

WGS-7 SigTracer 7 91 2 0 0
CloneSig 0 25 49 21 5

WES-1 SigTracer 12 82 6 0 0
CloneSig 1 21 27 17 34

Ideal-1 SigTracer 0 20 78 2 0
CloneSig 0 0 21 30 49

Ideal-2 SigTracer 0 8 50 39 3
CloneSig 0 0 7 29 64

All IDs indicate the name of simulation datasets which are provided in
Table 1. Columns with J = 1 ∼ 5 indicate the number of samples whose
estimated numbers are J. Out of the 100 samples in each dataset, the bold
characters indicate the number of samples for which the correct number of
clones could be estimated by each method.

SigTracer estimated the correct number of clones in nu-
merous samples. Even with an ideal dataset like Ideal-1/2,
CloneSig predicted a larger number of clones than was true,
indicating that BIC did not work correctly with the singular
model. In addition, the CloneSig implementation adopted
heuristics to compensate for the degrees of freedom in BIC,
which might not be suitable for these cases. Notably, Sig-
Tracer exhibited better performance of model selection than
CloneSig using the ideal datasets.

To investigate whether the tendency of SigTracer to es-
timate a small number of clones for the datasets with low
coverage and many clones could be improved, we calculated
the log-likelihood for each sample. Using artificial data, we
could derive the ‘true’ likelihood because we knew the cor-
rect latent variables (z, U and M) and true parameters (λ
and ρ). Figure 2 shows the comparison between the log-
likelihood based on the estimated parameters and the true
log-likelihood for WGS-3, WGS-4, Ideal-1 and Ideal-2. Fig-
ure 2A and C show that the log-likelihood of SigTracer
with fewer clones than the true number in WGS exceeded
the log-likelihood with the true clone composition. In con-
trast, in the ideal datasets, the number of clones required
by SigTracer was more than or equal to the true number
to exceed the true log-likelihood in many samples. This re-
sult indicated that accurate clone number estimation in low-
coverage data was challenging using the criteria based on
the likelihood including BIC and ELBO.

Through these experiments, we highlighted the quanti-
tative limitations of the current model for low-coverage
data. However, its usefulness was still high, as evidenced

Figure 2. Log-likelihood with the estimated and ground-truth parameters
in SigTracer. Each scatter plot shows the log-likelihood of each sample
with the estimated and ground-truth parameters for q(z, U, M), λ and ρ.
For the estimated parameters, box plots are drawn separately for the clone
number. (A–D) differ in terms of the dataset, and they show the results of
WGS-3, Ideal-1, WGS-4 and Ideal-2, respectively. The correct number of
clones in (A) and (B) is J = 3, and that in (C) and (D) is J = 4.

by the fact that SigTracer could accurately estimate the
clone number for numerous samples under an ideal setting.
This method could become more critical as the number of
high-coverage data will increase with the development of se-
quencing technologies in the future.

Evaluation of clone estimation. Next, we examined the ac-
curacy of parameter estimations by SigTracer and CloneSig
using the artificial datasets shown in Table 1. As measures of
the estimation accuracy, we focused on whether they could
correctly estimate CCF (λ) and the signature activity (θ) for
each clone j. In this simulation, we provided the true num-
ber of clones and only evaluated the parameter estimation
performance.

We denoted λ̂ = {λ̂ j }J
j=1 as the true CCF. For a single tu-

mor, we defined the minimum value obtained by summing
the CCF distance | λ j − λ̂ j ′ | considering all possible com-
binations of the true and predicted clones as the evaluation
criterion. For the signature activity by each clone, we de-
noted θ̂ j ∈ R

K as the true activity for the j-th clone. We cal-
culated the sum of the cosine distanced between θ j and θ̂ j ′

for all combinations, similar to the case of CCF, and used
the minimum value among them as the evaluation criterion.
Both criteria were desired to be small.

Figure 3 shows the results for a part of WGS dataset.
We evaluated the results on an average for 100 samples in-
cluded in each dataset. We have presented the results for
other datasets in Supplementary Figure S1. For CCF, ex-
cept for WGS-4 with many clones and low coverage, Sig-
Tracer achieved comparable or better accuracy than Clone-
Sig. In addition, the accuracy in terms of signature activity
for each clone of SigTracer was comparable or better than
that of CloneSig for all datasets. Finally, we have summa-
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Figure 3. Accuracy of estimation for CCF and signature activity for each
clone with the WGS-1/3 datasets. For the names of datasets, refer to Table
1. Panels (A and B) show the residual error of the estimated CCF and the
cosine distance of the estimated activity against the ground-truth values,
respectively (the lower values are better). In each panel, the left box plots
are the results of SigTracer, and the right box plots are those of CloneSig.
Each scatter plot shows the results of each sample included in each dataset.
The results of other datasets are shown in Supplementary Figure S1.

rized the numerical statistics, including the mean and me-
dian values in Supplementary Tables S3 and S4 for all sim-
ulation results.

These improvements in accuracy were due to the dif-
ferences in modeling as explained in Materials and Meth-
ods section. A clear example is the comparison between
WES-1 and WES-5 shown in Supplementary Figure S1.
The only difference between these two datasets was whether
the variance was set for each clone or not. SigTracer outper-
formed CloneSig in numerous samples in WES-1 in terms
of CCF estimation, whereas there was almost no difference
for WES-5. These differences were caused by the fact that
SigTracer prepared the overdispersion parameters for each
clone. Besides, in WGS with low coverage, SigTracer outper-
formed both CCF and the signature activity estimation for
WGS-5 with the same variance between clones, suggesting
that other modifications also contributed to the improve-
ment.

Evaluation of signature assignment. In terms of signatures,
it is vital to analyze their accuracy of generating the cor-
responding mutations. Therefore, we applied six pipelines
including SigTracer, CloneSig, SigLASSO, deconstructSigs,
Ccube + SigLASSO and Ccube + deconstructSigs to some
of the datasets shown in Table 1 (WGS-1/2, WES-1/2,
Ideal-1/2) to compare the accuracy of signature assign-
ment. SigLASSO (19) and deconstructSigs (18) are fre-
quently used signature fitting methods. Ccube (7) is a re-
cently developed method of clonal decomposition based
on CCF. Ccube + SigLASSO and Ccube + deconstruct-
Sigs consider the clones estimated by Ccube as new samples
and subsequently apply SigLASSO and deconstructSigs, re-
spectively. The posterior probability of a signature produc-
ing the corresponding mutation is calculated in all pipelines
for all mutations. We compared their accuracy as shown
in Supplementary Table S5. Consequently, SigTracer exhib-
ited the best accuracy for all datasets. Interestingly, Ccube
+ SigLASSO and Ccube + deconstructSigs exhibited poor
accuracy compared to that of SigLASSO and deconstruct-

Figure 4. SigTracer output example with the single-cell sequenced ovarian
cancer sample. The number of clones included in this tumor was estimated
to be J = 4. The horizontal axis in all panels shows the expected cancer
cell fraction. The top panel shows a histogram of all mutations with re-
gard to the expected CCF, and it is color-coded to indicate the clone that
the mutations belong to. Subsequent panels show histograms of mutations
included in each clone, and they are color-coded to indicate which signa-
ture exposure is responsible.

Sigs. This could be primarily attributed to the classification
of mutations by Ccube that reduces the number of muta-
tions contained per clone and does not provide a sufficient
number of mutations for analysis by SigLASSO and decon-
structSigs. These results suggest that a joint modeling-based
approach like SigTracer and CloneSig is necessary to effec-
tively utilize VAF in signature fitting.

Analysis of the single-cell sequenced ovarian cancer sample

We applied SigTracer to the single-cell sequenced ovarian
cancer sample as described above. For a preliminary analy-
sis, we applied SigLASSO (19) to determine the active sig-
nature set and used them as the input signatures for the ap-
plication of SigTracer. Figure 4 shows an example of the
output from SigTracer, in which the expected value of CCF
for mutation n was computed using Equation (7) and was vi-
sualized using a histogram of latent variables. SigTracer has
succeeded in decomposing mutations to clones with differ-
ent CCF.

When using single-cell data, preliminary mutation clus-
tering using predicted copy number may enhance the in-
terpretability. A previous study has clustered all the se-
quenced cells into four populations based on predicted copy
numbers (25). Then, we considered the clustered cell pop-
ulations as pseudo-bulk samples and applied SigTracer to
these. Supplementary Figure S2A–D shows the results of
SigTracer against the four cell populations. SigTracer-based
analysis revealed two clones from all four cell populations,
which could be classified into primary clones that arise in
the early stages of carcinogenesis (i.e. with higher CCF) and
subclones that arise in the later stages (i.e., with lower CCF).
Although these experiments were performed independently
between cell populations, similar signature activities of the
primary clones were observed. In fact, when we performed
hierarchical clustering of these clones based on the cosine
distance of the predicted activity, the primary clones accu-
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mulated in single cluster as shown in Supplementary Figure
S2E. This result suggests that each cell population acquired
a common primary clone and subsequently branched off
to acquire a subclone that characterizes each cell popula-
tion. It is a reasonable result that captures branching evolu-
tionary process. Supplementary Figure S2E also shows that
if we consider all the cells as one pseudo-bulk sample like
Figure 4, signature activities of every clone including three
subclones (denoted as Figure 4-Sub1, 2 and 3 in Supple-
mentary Figure S2E) are similar to the primary one of each
cell population. This indicates that the information of clus-
tered cell populations increased the resolution of subclones
in SigTracer’s analysis, and such preprocessing is important
in the analysis with real data.

Real data analysis with blood cancer samples

We applied SigTracer to CLL and BNHL samples described
in the Materials and Methods section. For model selection,
the predicted numbers of clones are summarized in Sup-
plementary Figure S3. As observed in the simulation ex-
periments, we must be aware that the predicted number of
clones for WGS data might be lower than the actual num-
ber.

Before we focus on the specifics, we provide some ev-
idence to ensure the reliability of our results. First, we
showed the validity of the SigTracer extension for preparing
overdispersion parameters by each clone using the results
obtained for CLL. Figure 5 summarizes the visualization of
the reconstructed VAF distribution based on the estimated
parameters when SigTracer was applied to a certain CLL
sample with the number of clones, J = 3. Figure 5 A shows
the observed VAF (i.e. a histogram for Bn/Dn). Intuitively,
when the VAF distribution was observed for a given num-
ber of clones, J = 3, it was desirable to decomposed the dis-
tribution into three elements with the expected VAF values
of 0.1, 0.25 and 0.55. Figure 5B shows the result obtained
when the variance of VAF was controlled by each clone
(i.e. the model includes the extension of interest), which
yielded an intuitively correct decomposition. In contrast,
Figure 5C shows the result of SigTracer with the same value
of overdispersions between clones; SigTracer predicted two
clones with an expected VAF of almost 0.0. This tendency
was not due to a simple difference in the initial values be-
cause the same results were obtained even after changing
the initial values 10 times. The model with the same overdis-
persion parameters between clones could not capture the
difference in the accumulation of mutations around the ex-
pected VAF. For instance, the red clone mutations in Figure
5B intensively occurred when the VAF was approximately
0.1, and the variance was smaller than those of the other
two clones. However, in Figure 5C, this clone is shown to be
split into two clones to adjust the variance between clones.
Similar to this sample, we observed the effectiveness of the
SigTracer extension in a number of CLL/BNHL samples.

Next, we provide quantitative evidence that the clone
decomposition by SigTracer for actual data was reliable.
Because all signature-based methods include unsupervised
learning and we cannot find true parameters, rigorously ver-
ifying the correctness of the estimated results for real data is
not easy. However, based on the estimated parameters, we

Figure 5. Comparison of the observed VAF in a certain CLL sample and
the expected VAF based on the estimators of SigTracer. The horizontal
axis shows the VAF, and all panels show histograms for all mutations with
respect to VAF. Panel (A) is based on the observed VAF (i.e. a histogram
with regard to Bn/Dn). Panels (B and C) are histograms based on the es-
timated parameters under the observation of (A). In panel (B), SigTracer
prepared overdispersion parameters for each clone (J = 3), and the figure
is based on the estimators under those settings. In contrast, panel (C) is
drawn based on the estimators obtained when SigTracer shares the same
overdispersion across clones.

could quantify how accurately the model represents origi-
nal data. We defined a measure called the ‘reconstruction
rate: RR’ to evaluate how many observed variables could
be reconstructed. This measure was calculated by each sam-
ple. Two types of RR: RRmutation were used to indicate how
well the model reconstructed the mutation type (the V-
dimensional categorical distribution) and RRVAF to show
how well the model reconstructed the VAF distribution (the
beta mixture distribution); detailed definitions are provided
in Section S5. For instance, the RRVAF calculation included
quantifying the overlapping histograms in Figure 5A and
B. By comparing the RR values calculated from the estima-
tors using artificial and real data, we can see whether Sig-
Tracer was suitable for real data. In other words, if the RR
value for the simulated data was close to that for real data,
we could indirectly state that the real data could be repre-
sented by SigTracer. Supplementary Table S6 summarizes
the RR values calculated from all experiments. Although the
RR values of real data (CLL and BNHL) tended to be lower
than those of the simulated data that followed the generative
process of SigTracer completely, we found the results of this
study to be reliable to some extent. In summary, SigTracer is
effective for not only artificial data but also for actual data.

SBS9 is initially active in CLL. SBS9 is the signature re-
lated with activation-induced cytidine deaminase (AID) or
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Figure 6. Types of clones that are likely to carry the mutations con-
tributed by each signature. Panels (A and B) show the results of CLL and
BNHL, respectively. The clones were divided into two groups primary and
subclones––according to the procedure described in the text. This figure
summarizes which signature-derived mutations they have. In CLL, the mu-
tations in subclones contain a few SBS9-derived ones (cf. the third bar in
panel A).

polymerase eta working in association with AID (9,26). The
estimated CCF of the clones with high SBS9 activity tended
to be close to 1.0 for most cases among the CLL samples.
To quantify this trend, we divided the predicted clones into
two categories: primary clones and subclones. We defined
primary clone as clones with the largest size (�j) among
clones with a CCF >0.95 in one tumor. If no clone with
a CCF >0.95 existed, we defined the clone with the highest
CCF in that tumor as the primary clone. Subclones were all
clones except the primary clone. When we calculated which
of the two types of clones was more likely to carry the mu-
tations attributed to each signature from the estimated re-
sponsibility, we found that SBS9 was particularly active in
the primary clone in CLL compared with other signatures
(Figure 6A). This result was consistent with that of a previ-
ous report (24). In contrast, this tendency was not observed
in BNHL samples, and SBS9 was active in both primary
and subclones (Figure 6B); hence, it remains to be eluci-
dated what caused such a difference between the two types
of blood cancer samples.

Somatic mutations strongly associated with each signature.
Using the statistical test pipeline described in the Materi-
als and Methods section, we attempted to comprehensively
identify mutations associated with each signature in CLL
and BNHL samples at the genetic level. First, as a proof of

Table 3. Frequently mutated regions in clones with high SBS9 activity for
CLL samples

Hugo symbol Variant classification P-value < FWER

IGHJ6 RNA 1.22E-33
IGLL5 5’Flank 8.13E-18
IGLL5 Intron 5.82E-17
BCL6 Intron 4.25E-15
AC018717.1 lincRNA 3.98E-14
AC096579.7 RNA 3.60E-11
IGLV3-25 RNA 3.82E-11
IGLV3-1 RNA 1.08E-10
IGKJ2 RNA 5.53E-10
KIAA0125 5’Flank 8.89E-10
Unknown IGR 1.05E-09
IGKV4-1 RNA 1.76E-09
DMD Intron 1.24E-08
TCL1A Intron 1.60E-08
IMMP2L Intron 6.96E-08
FSTL5 Intron 1.12E-07
IGKC RNA 2.72E-07
IGKV1-5 RNA 2.81E-07
IGKJ3 RNA 4.28E-07
BCL2 5’UTR 1.42E-06
IGHD3-10 RNA 1.58E-06
FHIT Intron 1.73E-06

This table lists the mutated regions significantly correlated with SBS9 in
CLL samples detected according to the test pipeline. The left column indi-
cates the gene name, and the middle column the region of the gene. They
are listed in order of decreasing P-value, and only those that were deter-
mined to be significant by Bonferroni correction are shown.

concept, we have summarized the list of genes that were sig-
nificantly associated with SBS9 in CLL samples in Table 3.
We adopted the multiple test correction with familywise er-
ror rate (FWER) to avoid false positives. At the first glance,
we observed that mutations were concentrated in the IG re-
gion coding immunoglobulin. AID, the mutational process
of SBS9, is required for class-switching of immunoglobu-
lin (27); thus, it is reasonable that mutations from SBS9
are concentrated in this region. Furthermore, Supplemen-
tary Table S7 summarizes the mutated regions associated
with other signatures active in CLL. SBS1, SBS5 and SBS40
were all considered clock-like signatures (28); therefore, it
was unlikely that these signatures would act on specific re-
gions of the genome. As shown in Supplementary Table S7,
the number of mutated regions associated with these sig-
natures was reasonably small compared to that for SBS9,
the mutational process for which a specific target region
existed.

We also applied the same test to BNHL results to inves-
tigate the relationship between signatures and mutations in
blood cancer. Supplementary Table S8 shows the mutated
regions that were significantly enriched with clones with
high SBS9 activity. Combined with Table 3, the FWER-
based test yielded only one region associated with SBS9 in
common with CLL, which was an intronic region of FHIT.
In addition, the mutations in the immunoglobulin-coding
region were not enriched in the clone with high SBS9 activ-
ity for BNHL samples, which significantly differed from the
result obtained for CLL samples.

Then, we focused on the mutated regions in both CLL
and BNHL samples among those detected using a simple
significance level 	 = 0.05 rather than FWER. This ap-
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Table 4. Significant GO terms related with SBS9 in both CLL and BNHL samples

GO biological process Corresponding genes FDR

Cell–cell junction organization CDH12, CDH18, CDH19, CADM2 4.32E-02
↪→ cell junction organization + CNTN5, GRID2, GRM5, PCLO 1.90E-03

cell–cell adhesion via plasma-membrane adhesion molecules CDH12, CDH18, CDH19, GRID2, 2.18E-04
PCDH9, PCDH15, ROBO2

↪→ cell–cell adhesion + CTNNA2,LPP, NEGR1 3.77E-05
↪→ cell adhesion + CADM2, CNTN5, CNTNAP5 7.55E-05

Regulation of neuron projection development CSMB3, CTNNA2, EPHA7, GRID2, 5.26E-03
NEGR1, ROBO2, SEMA3A, SEMA3C

The table shows results of GO analysis of the mutated regions of the clones with high activity of SBS9 in both CLL and BNHL samples. Among the 74
mutated regions, 32 were not mapped due to the lack of annotation (e.g. unannotated lncRNAs), and the remaining gene set was used for analysis.

proach did not include multiple testing corrections, which
might have led to false positives. However, this ensured a
certain degree of reliability because two results that were
obtained independently were compared. All four signatures
(SBS1, SBS5, SBS9 and SBS40) active in the CLL sam-
ples were also active in some of the BNHL samples, and
we focused on these signatures. We have summarized the
number of significantly mutated regions and their Hugo
symbols in Supplementary Table S9 and S10. The number
of mutated regions associated with SBS9 was high com-
pared to other signatures, and interestingly, a missense mu-
tation for KLHL6 was identified in the gene set correspond-
ing to SBS9; thus, we could hypothesize that the etiology
of SBS9, probably AID or polymerase eta, might be asso-
ciated with KLHL6. Recent studies suggest that KLHL6
may be an essential tumor suppressor gene in B-cell lym-
phoma (29,30). Therefore, KLHL6 aberration may lead to
high activity of the mutational process of SBS9, resulting
in a large number of somatic mutations. However, further
validations are required to reveal if this hypothesis is true
because we only considered somatic mutations not includ-
ing germline mutations lying on the actual genome in this
study.

We performed gene ontology (GO) analysis on the result-
ing gene set to determine if there were any common fea-
tures of each signature (GO Enrichment Analysis powered
by PANTHER: http://geneontology.org/). Thus, significant
terms were detected only for the gene set corresponding to
SBS9, and the most interesting ones are shown in Table 4.
For example, ‘cell junction organization’ and ‘cell adhesion’
annotations were detected, and they included cadherin-
coding regions. These functions are closely related to the
immune system, and cell adhesion is related to whether
or not a tumor can acquire metastatic potential (31,32);
hence, SBS9 activity might also be closely associated with
a poor prognosis of blood cancer. Notably, these muta-
tions also occurred in BNHL samples, compared to the
coding region of immunoglobulin, where mutations were
concentrated only in CLL samples. Because mutations on
these genes were concentrated in the intronic region, we sus-
pected that they were the consequence of SBS9 rather than
the cause. Additionally, Supplementary Figure S4 shows
a Venn diagram of the overlaps between signatures, indi-
cating that the mutated regions for SBS9 were particularly
unique.

Future work

SigTracer, which performs clone decomposition based on
mutation signatures, showed significant potential of provid-
ing novel insights into mutational processes because of its
improved accuracy of assigning mutations to signatures by
considering VAF. However, the method suffers from some
limitations. An issue in the modeling is that there is no es-
tablished method that can predict the correct number of
clones for arbitrary data. In our simulation experiments,
we showed that the model achieved a sufficiently high like-
lihood with fewer clones than the true number for low-
coverage data, which highlighted the limitation in terms of
the amount of information in the input. To solve this prob-
lem, it is necessary to incorporate other data sources that
are effective for inference in addition to mutation types and
VAF. One possible solution is the extension of SigTracer to
support multi-region sampling data. Clone decomposition
against sequences obtained from multi-region sampling is
less likely to neglect clones and provides higher resolution
than that procured against bulk sequencing (33,34). By hier-
archizing the parameter π representing the clone composi-
tion into the total number of regions, it is feasible to support
multi-region sampling in SigTracer, and this is likely to gain
importance with an increase in the number of multi-region
sampling data.

Moreover, there is room for reconsideration of the type
of signature used in the analysis of real datasets. SBS84 and
SBS85, the existence of which has been demonstrated in
the latest studies (23), are signatures known to be active in
blood cancer. The inclusion of these signatures may lead to
novel findings. When more signatures are included as ac-
tive signature candidates, a phenomenon called ‘signature
bleeding’ occurs, in which signatures that are not actually
active are erroneously presumed to be active (35). To avoid
such a situation, we must introduce a regularization to the
model to reduce the number of active signatures used in the
fitting method, such as sigLASSO (19).

Regarding the current test pipeline, we need to conduct
further validation such as consideration of the evolution-
ary background of a tumor sample. For example, if tumors
follow a branching evolutionary process (36), each tumor
cell may have mutations that originate from multiple clones.
In such cases, it is difficult to capture the causality of sig-
natures due to mutations because there is a possibility that
the active signature in a certain clone is activated by muta-

http://geneontology.org/
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tions belonging to other clones. Thus, the causality of sig-
natures due to mutations can be detected using the method
described here only if the tumor evolution follows a specific
process, such as the Big Bang dynamics which state that can-
cer cells evolve independently (37), where each clone directly
represents a mutational population carried by each cell. Re-
cent reports concerning colorectal cancer support the neu-
tral evolution and the Big Bang model (38,39), and future
accumulation of knowledge on cancer evolution will resolve
this issue.

CONCLUSION

We developed SigTracer, a signature-based method for esti-
mating clonal evolution based on mutation types and VAF
observed via bulk sequencing. In computational simula-
tions, SigTracer outperformed the existing method in terms
of model selection and accuracy for ideal artificial data. In
addition, we applied SigTracer to CLL samples; the results
were consistent with previous findings that SBS9, which is
associated with AID or polymerase eta, intensively causes
mutations in the immunoglobulin-coding regions. Further-
more, we performed the same analysis on BNHL samples
using SigTracer and found that SBS9 also includes inten-
sive mutation of the regions coding for cadherins and other
genes regulating cell adhesion. Our results indicate that
AID or polymerase eta activity may be induced in more re-
gions related to the immune system than previously known.
These new observations were obtained because of the im-
proved accuracy of assigning mutations to signatures by
considering not only mutation types but also VAF. We be-
lieve applying the proposed method to other cancer types
may lead to the annotation of signatures for which muta-
tional processes and target regions are unknown. Our re-
sults provide an excellent prospect for understanding the
mechanism of carcinogenesis.
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