
sensors

Article

Deep Reinforcement Learning for Computation Offloading and
Resource Allocation in Unmanned-Aerial-Vehicle Assisted
Edge Computing

Shuyang Li , Xiaohui Hu * and Yongwen Du

����������
�������

Citation: Li, S.; Hu, X.; Du, Y. Deep

Reinforcement Learning for

Computation Offloading and

Resource Allocation in

Unmanned-Aerial-Vehicle Assisted

Edge Computing. Sensors 2021, 21,

6499. https://doi.org/10.3390/

s21196499

Academic Editor: Andrey V. Savkin

Received: 27 August 2021

Accepted: 25 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
0619680@stu.lzjtu.edu.cn (S.L.); duyongwen@mail.lzjtu.cn (Y.D.)
* Correspondence: huxiaohui@mail.lzjtu.cn

Abstract: Computation offloading technology extends cloud computing to the edge of the access
network close to users, bringing many benefits to terminal devices with limited battery and computa-
tional resources. Nevertheless, the existing computation offloading approaches are challenging to
apply to specific scenarios, such as the dense distribution of end-users and the sparse distribution of
network infrastructure. The technological revolution in the unmanned aerial vehicle (UAV) and chip
industry has granted UAVs more computing resources and promoted the emergence of UAV-assisted
mobile edge computing (MEC) technology, which could be applied to those scenarios. However, in
the MEC system with multiple users and multiple servers, making reasonable offloading decisions
and allocating system resources is still a severe challenge. This paper studies the offloading decision
and resource allocation problem in the UAV-assisted MEC environment with multiple users and
servers. To ensure the quality of service for end-users, we set the weighted total cost of delay, energy
consumption, and the size of discarded tasks as our optimization objective. We further formulate
the joint optimization problem as a Markov decision process and apply the soft actor–critic (SAC)
deep reinforcement learning algorithm to optimize the offloading policy. Numerical simulation
results show that the offloading policy optimized by our proposed SAC-based dynamic computing
offloading (SACDCO) algorithm effectively reduces the delay, energy consumption, and size of
discarded tasks for the UAV-assisted MEC system. Compared with the fixed local-UAV scheme in the
specific simulation setting, our proposed approach reduces system delay and energy consumption
by approximately 50% and 200%, respectively.

Keywords: unmanned aerial vehicle; edge computing; computation offloading; resource allocation;
soft actor–critic

1. Introduction

In the past decade, the exponential growth and diversity of Internet of Things (IoT)
devices have changed the way we live [1]. Advances in 5G technology and the IoT have
made many emerging applications possible, such as autonomous driving, smart cities,
virtual reality (VR)/augmented reality (AR), real-time video analysis, and cloud gaming.
Nevertheless, the traditional cloud-based computing paradigm is not suitable for those
IoT terminal devices with limited computing and battery resources. The emergence of
mobile edge computing (MEC) technology is expected to improve this situation. The
MEC server deployed at the edge of the access network can provide terminal devices
with computing and communication resources, bringing many benefits, such as reducing
computing workload, delay, network congestion, and energy consumption. Traditional
MEC servers are usually deployed on cellular base stations (BS) or Wi-Fi access points (AP).
However, considering the construction cost and the gradual infrastructure update, not all
BSs and APs can deploy edge servers. Therefore, mobile platforms, such as vehicles and
UAVs are regarded as alternative candidates for MEC servers.

Sensors 2021, 21, 6499. https://doi.org/10.3390/s21196499 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5365-4137
https://orcid.org/0000-0002-6960-2988
https://orcid.org/0000-0003-1808-8904
https://doi.org/10.3390/s21196499
https://doi.org/10.3390/s21196499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196499
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196499?type=check_update&version=2

Sensors 2021, 21, 6499 2 of 18

1.1. Motivation and Related Work

The existing literature has shown the great potential and capability of edge computing,
which usually takes delay, energy consumption, system costs, etc., as the optimization
objective [2–10]. However, all those studies assume that the stable wired or wireless
communication link is established with sufficient bandwidth between the end-user and
the distributed edge resources deployed fixedly. The existing computation offloading
approaches are challenging to apply to specific scenarios, such as the dense distribution of
end-users and the sparse distribution of network infrastructure.

With the advantages of flexible deployment, high mobility, strong line-of-sight (LOS)
connection, and hover capability, UAVs are expected to play a critical role in wireless
networks. Specifically, since UAVs can be deployed freely and flexibly in three-dimensional
space, direct LOS communication with any terminal device can be easily established. This
advantage allows UAVs to be used as relay nodes in wireless networks to improve commu-
nication between end-users. In addition, with the evolution of the UAV and chip industry,
more computing and storage resources could be placed on UAVs, making it possible for
UAVs to provide value-added computing services. UAVs not only play an essential role
in the military domains but are also widely used in the civilian domains [11–14]. Due
to its compelling features, UAVs as a kind of auxiliary computing and communication
entity, which has been considered in the MEC technology. UAV-assisted edge computing
technology could effectively provide computing and communication support for end-users
in the special scenarios mentioned above. In UAV-assisted edge computing systems, the
UAV can adjust its position in time according to the dynamic communication environment,
ensuring that a reliable communication link can be established between the end-user and
the MEC server. So far, tons of studies have shown the feasibility of UAV-assisted edge
computing offloading technology.

However, in most previous studies [15,16], the computing capacity provided by UAVs
was ignored in UAV-assisted wireless networks, and the communication capacity was
mainly considered. Recent studies have begun to consider the computing resources of
UAVs. Ref. [17–20] have only considered the communication and computing interaction
between the two types of entities, which is the end-user offload part of the computing tasks
to the UAV through wireless communication. Compared with UAVs, MEC servers have
more computing and storage resources and are not limited by battery capacity. However,
existing studies have rarely considered letting UAVs and MEC servers cooperate in provid-
ing end-user services. As far as we know, UAV-assisted MEC systems involving end-users,
UAVs, and MEC servers have rarely been studied.

Reinforcement learning is a control-theoretic trial-and-error learning method [21]. The
agent interacts with the environment and makes decisions through feedback from the
environment. Existing studies have proved that reinforcement learning can handle offload-
ing decision-making in the MEC environment well. Huang et al. [22] have proposed a
DQN-based approach for computation offloading and resource allocation, which minimize
the overall offloading cost of the MEC environment. Yang et al. [23] have proposed a DQN-
based optimization approach for task scheduling in the UAV-assisted MEC environment,
which could improve the efficiency of the task execution in each UAV. As far as we know,
most DRL-based computation offloading approaches use the DQN algorithm. The selection
of DRL algorithms depends highly on the dimension of state space and action space. Com-
pared with the traditional Q-learning algorithm, the DQN algorithm applies the neural
network to approximate the Q-value, which could handle high-dimensional state problems
well. However, the DQN algorithm cannot handle high-dimensional action problems.

1.2. Main Contributions

To fill the previous studies, we envision a UAV-assisted MEC system consisting of
multiple edge servers, multiple end-users, and a UAV. The UAV and MEC servers in the
MEC system cooperatively work to provide computing services for end-users. With the
help of the UAVs, the end-user can offload the tasks to the MEC server outside of its

Sensors 2021, 21, 6499 3 of 18

communication range and execute tasks by the MEC servers. We also consider that the
computing task is partially offloaded, which is different from most existing studies’ binary
offloading model and is closer to the actual situation [20]. We take the minimization of the
weighted total cost of delay, energy consumption, and the size of discarded tasks as the
optimization objective and further formulate the offloading decision problem as a Markov
decision process. To this end, we propose a dynamic computation offloading approach
based on the soft actor–critic (SAC) DRL algorithm. The SAC algorithm introduces entropy
into the traditional actor–critic algorithm, improves the decision-making performance and
obtains the global optimal policy. Numerical simulation results have proved the effective-
ness of our proposed SAC-based dynamic computing offloading (SACDCO) algorithm
compared with other baseline schemes. The differences between our work and the existing
literature are summarized in Table 1.

The remainder of this paper is organized as follows. Section 2 describes the system
model and problem formulation. Section 3 introduces the UAV-assisted edge computation
offloading approach we proposed. The performance evaluation of our proposed approach
is achieved through a series of simulations, and numerical results are given in Section 4.
Section 5 summarizes the paper.

Sensors 2021, 21, 6499 4 of 18

Table 1. Comparison between our work and the existing literature. (X) indicates that the topic is covered.

Reference Communication-
Only

Communication
and Computation EU-UAV EU-UAV-MEC Partial Offloading RL Algorithm Optimization Objective

[15] X Throughput
[16] X Throughput
[17] X X X Delay
[18] X X Energy consumption
[19] X X Computation rate
[20] X X Energy consumption

[22] X X DQN The cost of energy, computation,
and delay

[23] X X DQN Load balance
[24] X X X DQN System utility
[25] X X X Actor–Critic Average response time
[26] X X DQN System reward

Our work X X X Soft Actor–Critic The cost of delay, energy, and
discarded tasks

Sensors 2021, 21, 6499 5 of 18

2. System Model and Problem Formulation
2.1. System Model

The UAV-assisted MEC system is composed of multiple edge servers, multiple end-
users, and a UAV, which is shown in Figure 1. We consider a set of end-users, and each
end-user periodically executes compute-intensive and delay-sensitive tasks during the
decision episode. Due to signal congestion and the limited communication distance of the
end-user, stable wireless communication cannot be established between the end-user and
the MEC server. The UAV is equipped with antennas to communicate with end-users and
MEC servers in the coverage area. In UAV-assisted MEC systems, end-users can offload
computing tasks to UAVs. Compared with end-users, UAV has stronger computing power,
but it still cannot compare with the computing power of MEC servers. Considering the
limited battery capacity and computing power of the UAV, if the UAV cannot complete the
computing task well, it will further consider offloading the computing task to the MEC
server in the distance. The follow-me cloud (FMC) [27] controller is used in our proposed
UAV-assisted MEC system, which could obtain the global information of end-users, MEC
servers, and the UAV. Therefore, the proposed dynamic computing offloading algorithm is
executed on the FMC controller.

Figure 1. The architecture of UAV-assisted mobile edge computing system.

Without loss of generality, a set of end-users is denoted by N = {1, 2, · · · , n, · · · , N},
a set of MEC servers is denoted by S = {1, 2, · · · , s, · · · , S}, and the UAV is denoted
by U = {u}. The entire decision episode is divided into multiple time slots, where
T = {1, 2, · · · , t, · · · , T} denotes their corresponding set. The UAV stays at a fixed altitude
hu(t) = H, ∀t ∈ T . We define the three dimensional Cartesian coordinates of the UAV as
Lu(t) = [xu(t), yu(t), hu(t)], and the coordinates of the end-user as Lnk =

[
xnk , ynk , 0

]
, and

the coordinates of the MEC servers are Lsk =
[
xsk , ysk , 0

]
, where K ∈ (1, 2, . . . , k, . . . , K)

denotes the corresponding serial number. Unless otherwise stated, the important notations
used in this paper are summarized in Table 2.

Sensors 2021, 21, 6499 6 of 18

Table 2. List of Notations.

Notations Definitions

N The set of end-user n
S The set of MEC server s
U The set of unmanned aerial vehicle u
T The set of time slot t
K The maximum number of end users or MEC servers

Lnk (t) The location of the end-user nk
Lsk (t) The location of the MEC server sk
Lu(t) The location of the UAV

gnk ,u(t) The channel gain between the end-user nk and the UAV u
rnk ,u(t) The transmission rate between the end-user nk and the UAV u
gu,sk (t) The channel gain between the UAV u and the MEC server sk
ru,sk (t) The transmission rate between the UAV u and the MEC server sk
t f ly(t) The flight delay of UAV u
tu,nk
tr (t) The transmission delay between the end-user nk and the UAV
tu
cal(t) The channel gain between the MEC server sk and the UAV u

tnk
cal(t) The calculation delay of the end-user nk

tu,s
tr (t) The transmission delay between the UAV and the MEC server sk

Dnk (t) The computing tasks that end-user nk needs to complete
Ruav(t) The offloading ratio of UAV
Rsk (t) Whether to further offload to the MEC server sk
S(t) The total size of the discarded tasks in time slot t

2.1.1. Communication Model

The UAV offers services to all end-users but only serves one end-user in each time
slot. We assume that all end-users are fixed at a certain coordinate Lnk =

[
xnk , ynk , 0

]
. At

the beginning of the whole decision episode, the UAV u is deployed at the initial position
Lu(0) = [xu(0), yu(0), hu(0)]. When a certain end-user needs to provide services, the UAV
flies directly above the end-user and establishes the communication link. Similar to [18],
the communication links are presumed to be dominated by the LOS channels. Thus, the
channel gain between end-user nk and the UAV u could be denoted as

gnk ,u(t) = α0d−2
nk ,u(t) =

α0∥∥Lnk − Lu(t)
∥∥2 (1)

where ∥∥Lnk − Lu(t)
∥∥ =

√[
xnk − xu(t)

]2
+
[
ynk − yu(t)

]2
+ [0− hu(t)]

2,

dnk ,u(t) denotes the Euclidean distance between the end-user nk and the UAV u, ‖ · ‖
denotes the Euclidean norm, and α0 denotes the received power at the reference distance
of 1 m for the transmission power of 1 W. Considering the blocking of the communication
signal by the building, the wireless transmission rate can be denoted as

rnk ,u(t) = B log2

(
1 +

Pdowngnk ,u(t)
σ2 + fnk ,u(t)PNLOS

)
(2)

where B denotes the assigned communication bandwidth, Pdown denotes the received
power of the UAV, σ2 denotes the noise power, PNLOS denotes the transmission loss, fnk ,u(t)
denotes whether there is a communication block between end-user nk and the UAV in time
slot t (that is, 0 means no blocking, and 1 means blocking). Similarly, when the UAV needs

Sensors 2021, 21, 6499 7 of 18

further to send the computing tasks to the remote MEC server, the channel gain between
the UAV u and the MEC server sk could be denoted as

gu,sk (t) = α0d−2
u,sk

(t) =
α0∥∥Lu(t)− Lsk

∥∥2 (3)

where ∥∥Lu(t)− Lsk

∥∥ =

√[
xu(t)− xsk

]2
+
[
yu(t)− ysk

]2
+ [hu(t)− 0]2,

Similarly, the wireless transmission rate between the UAV u and MEC server sk could
be denoted as

ru,sk (t) = B log2

(
1 +

Pupgu,sk (t)
σ2 + fu,sk (t)PNLOS

)
(4)

2.1.2. Computation Model

Due to the limited computing resource of the end-user, our proposed offloading
decision optimization algorithm is applied to each time slot. According to the offloading
policy, the end-user offloads part of the tasks to the UAV, and then the UAV determines to
process it locally or further offload to the MEC server. It should be noted that compared
with the entire communication and calculation delay, the time to divide the task is very
short, so this part of the delay is ignored in our model. In addition, in some computing-
intensive applications, such as video analysis, the output data size of the computing results
is often much smaller than the input data size. Therefore, the delay of the downlink is also
ignored. The key components of the total delay during the offloading process are described
as follows.

• The flight delay from the previous location to the end-user directly above;
• The transmission delay from the end-user to the UAV;
• The calculation delay of the UAV;
• The calculation delay of the end-user;
• The transmission delay from the UAV to the MEC server;
• The calculation delay of the MEC server.

The flight delay from the previous location of the UAV u to the end-user directly above
could be described as

t f ly(t) =

√[
xnk (t)− xu(t)

]2
+
[
ynk (t)− yu(t)

]2
vu

(5)

where vu is the average flight speed of the UAV u. The transmission delay from end-user
nk to UAV u could be described as

tu,nk
tr (t) =

Ruav(t)Dnk (t)
ru,nk (t)

(6)

where Ruav(t) ∈ [0, 1] is the offloading rate of the end-user nk to the UAV, and Dnk (t) is the
computing task size of the end-user nk in time slot t. The calculation delay of the UAV u
could be described as

tu
cal(t) =

Ruav(t)Dnk (t)s
fuav

(7)

where s denotes the CPU cycles required to process each byte, and fuav denotes the calcula-
tion frequency of the MEC servers’ CPU. Similar to (7), the local calculation delay of the
end-user nk in time slot t could be denoted as

tnk
cal(t) =

(1− Ruav(t))Dnk (t)s
fnk

(8)

Sensors 2021, 21, 6499 8 of 18

where fnk denotes the calculation frequency of the end-user nk. According to the offloading
policy, it is decided whether to offload the computing tasks to the MEC servers. Due to the
limited battery capacity, we consider offloading all the computing tasks received by the
UAV to the MEC servers. Therefore, the transmission delay from the UAV u to the MEC
server sk could be denoted as

tu,sk
tr (t) =

Ruav(t)Dnk (t)
ru,sk (t)

(9)

The calculate delay of the MEC server sk could be denoted as

tsk
cal(t) =

Ruav(t)Dnk (t)s
fsk

(10)

To define the service delay of each time slot, we assume that the UAVs and the MECs
server can only start executing the computing tasks after the transmission is completed to
ensure the reliability of the calculation result. We also assume that the end-users execute
locally and transmit computing tasks at the same time. Based on the above assumption,
the service delay of each time slot could be denoted as

T(t) =

tnk
cal(t), For end-user only.

t f ly(t) + tu,nk
tr (t) + tu

cal(t), For end-user and the UAV.
t f ly(t) + tu,nk

tr (t) + tu,sk
tr (t) + tsk

cal(t), For end-user, the UAV, and the MEC server.

(11)

2.1.3. Energy Model

Battery capacity has always been a bottleneck in UAV applications. The battery
capacity of the UAV is denoted as Ebattery . At the beginning of the decision episode, the
UAV is in a fully charged state. The UAV continues to serve the end-user until the battery
capacity is exhausted. Our study mainly focuses on the calculation and transmission energy
consumption of the UAV while ignoring other energy consumption, which has nothing to
do with our decision-making. The key components of the energy consumption during the
offloading process are described as follows.

• The flight energy consumption of the UAV;
• The transmission energy consumption when UAV receives tasks from end-users;
• The calculation energy consumption of the UAV;
• The transmission energy consumption from the UAV to the MEC server.

The flight energy consumption of the UAV could be denoted as

E f ly(t) = Pt f ly(t) = Fvut f ly(t) (12)

where F = muav ∗ g, which is related to the weight of the UAV. The transmission energy
consumption when UAV receives tasks from end-users could be denoted as

Enk ,u
tr (t) = Pdowntu,nk

tr (t) (13)

where Pdown denotes the received power of the UAV, and tu,nk
tr (t) denotes the transmission

delay. Similar to [28], we model that the calculation power is positively correlated with
computing capacity, i.e., κ(fuav)

3, where κ denotes the energy consumption factor. The
UAV calculation energy consumption is denoted as

Eu
cal(t) = κ(fuav)

3tu
cal(t) (14)

Sensors 2021, 21, 6499 9 of 18

The sending power of the UAV is denoted as Pup, and the transmission energy con-
sumption of the UAV could be denoted as

Eu,sk
tr (t) = Puptu,sk

tr (t) (15)

According to the above analysis, the total energy consumption of the UAV could be
denoted as

Eu(t) =

{
E f ly(t) + Enk ,u

tr (t) + Eu
cal(t), For UAV and end-user.

E f ly(t) + Enk ,u
tr (t) + Eu,nk

tr (t), For UAV, end-user, and MEC server.
(16)

2.2. Problem Formulation

Our study objective is to minimize the weighted total cost of the service delay, energy
consumption of the UAV, and the size of the discarded tasks through optimize the offloading
policy. The joint optimization problem could be denoted as

min
Lu(t),Ruav(t),Rmec(t)

∑
t∈T
{Eu(t) + ρ1T(t) + ρ2S(t)} (17)

s.t. Lu(t) ∈ {(x(t), y(t)|x(t) ∈ [0, L], y(t) ∈ [0, W]}, ∀ t ∈ T (18)

T
∑
t=1

Eu(t) ≤ Ebattery, ∀ t ∈ T (19)

0 < Ruav(t) < 1, ∀ t ∈ T (20)

Rmec(t) ∈ {0, 1}, ∀ t ∈ T (21)

T
∑
t=1

K

∑
k=1

Dnk (t) = D, ∀ t ∈ T , ∀ k ∈ K (22)

0 < S(t) < Dnk (t), ∀ t ∈ T (23)

where ρ1, ρ2 > 0 in (17) are the parameters that define the relative weight, and S(t) denotes
the total size of the discarded tasks in time slot t. Constraint (18) limits the UAV’s range
of movement. Constraint (19) means the total energy consumption during the decision
episode cannot exceed the maximum battery capacity of the UAV. Constraint (20) denotes
the value range of the offloading ratio. Constraint (21) denotes whether to further offload
to the MEC server. In (22), D denotes the total size of computing tasks that should be
executed during the decision episode. Constraint (23) denotes that the size of the discarded
tasks does not exceed the total size of computing tasks in each time slot.

3. Soft Actor–Critic Based Dynamic Computation Offloading Algorithm

Our study objective is to obtain the optimal offloading policy by minimizing the
weighted total cost of the service delay, energy consumption of the UAV, and the size of the
discarded task during the entire decision episode. We consider the standard reinforcement
learning framework [29] and formulate the UAV-assisted edge computing offloading
decision-making and resource-allocating problem as a Markov decision process (MDP).

3.1. Markov Decision Process

The MDP is usually described as a quintuple M = 〈S, A, P, R, γ〉, which denotes state,
action, state transition probability, reward, and discount factor, respectively. The FMC
controller used in our proposal can obtain all global information of the end-user, the UAV,
and the MEC server. Therefore, the DRL-based algorithm we proposed runs on the FMC
controller in each time slot. Furthermore, the state space, action space, and reward are
defined as follows.

Sensors 2021, 21, 6499 10 of 18

• State space: We consider the current location of the UAV Lu(t), the UAV battery capac-
ity Ebattery(t), and the size of computing tasks Dnk (t) as the current state. Therefore,
the state space can be denoted as

s(t) =
{

Lu(t), Ebattery(t), Dnk (t)
}

(24)

• Action space: We consider the offloading rate Ruav(t), whether to further offload to
the MEC servers Rsk (t) as the current action of the agent. Therefore, action space can
be denoted as

a(t) =
{

Ruav(t), Rsk (t)
}

(25)

• Reward: We define cumulative rewards to minimize the weighted sum of service
delay, energy consumption, and the size of discarded task. Thus, rewards can be
denoted as

r(t) = −(Eu(t) + ρ1 ∗ T(t) + ρ2 ∗ S(t)) (26)

where ρ1, ρ2 > 0 denote the relative weight.

3.2. Soft Actor–Critic DRL Algorithm

Previous studies have shown that DRL algorithms can solve the offloading decision
problems in the MEC environment [21,22,30]. However, those DRL algorithms suffer
from two main problems: high sample complexity (large amounts of data needed) and
other being their brittleness with respect to learning rates, exploration constants, and
other hyperparameters. Algorithms, such as DDPG and twin delayed DDPG (TD3), are
used to tackle the challenge of high sample complexity in actor–critic frameworks with
continuous action spaces. However, they still suffer from brittle stability with respect to
their hyperparameters.

Soft actor–critic (SAC) algorithm introduces an actor–critic framework for arrange-
ments with continuous action spaces where in the standard objective of reinforcement
learning, i.e., maximizing expected cumulative reward, is augmented with an additional ob-
jective of entropy maximization, which provides a substantial improvement in exploration
and robustness. Thus, the optimization objective of SAC algorithm is described as

π∗ = arg max
π

∑
t
E(st ,at)∼ρπ

[r(st, at) + αH(π(· | st))] (27)

where α > 0 is the temperature parameter, which determines the relative importance
of the entropy term against the reward. H represents the entropy function. The en-
tropy of a random variable x following a probability distribution P is defined asH(P) =
Ex∼P[− log P(x)]. Similar to the traditional actor–critic algorithm, value function Vπ(s)
and state-value function Qπ(s, a) could be defined in the SAC algorithm, which are given
as follows

Vπ(s) = E
τ∼π

[
∞

∑
t=0

γt(R(st, at, st+1) + αH(π(· | st))) | s0 = s

]
(28)

Qπ(s, a) = E
τ∼π

[
∞

∑
t=0

γtR(st, at, st+1) + α
∞

∑
t=1

γtH(π(· | st)) | s0 = s, a0 = a

]
(29)

According to above analysis, Vπ and Qπ are connected by:

Vπ(s) = E
a∼π

[Qπ(s, a)] + αH(π(· | s)) (30)

Sensors 2021, 21, 6499 11 of 18

and the Bellman equation for Qπ is

Qπ(s, a) = E
s′∼P
a′∼π

[
R
(
s, a, s′

)
+ γ

(
Qπ
(
s′, a′

)
+ αH

(
π
(
· | s′

)))]
= E

s′∼P

[
R
(
s, a, s′

)
+ γVπ

(
s′
)] (31)

SAC learns a policy πθ and two Q functions Qφ1 , Qφ2 and their target networks
concurrently. The two Q-functions are learned in a fashion similar to TD3, where a common
target is considered for both the Q functions, and clipped double Q-learning is used to
train the network. The action-value for one state-action pair can be approximated as

Qπ(s, a) ≈ r + γ
(
Qπ
(
s′, ã′

)
− α log π

(
ã′ | s′

))
, ã′ ∼ π

(
· | s′

)
(32)

where ã′ (action taken in next state) is sampled from the policy.
SAC also uses replay buffer like other off-policy algorithms. The quintuple (s, a, r, s′, d)

from each episode is stored into the replay buffer D. Batches of these transitions are
sampled while updating the network parameters.

Just like TD3, SAC uses clipped double Q-learning to calculate the target values for
the Q-value network. The target is given by

yt(r, s′, d
)
= r + γ

(
min
j=1,2

Qφtarg ,
(
s′, ã′

)
− α log πθ

(
ã′ | s′

))
(33)

where ã′ is sampled from the policy. The loss function can be defined as

L(φi,D) = E(s,a,r,s′ ,d)∼D

[(
Qφi (s, a)− yt(r, s′, d

))2
]

(34)

The main objective of policy optimization will be to maximize the value function,
which, in this case, can be defined as

Vπ(s) = Ea∼π [Qπ(s, a)− log π(a | s)] (35)

In SAC, a reparameterization trick is used to sample actions from the policy to
ensure that sampling from the policy is a differentiable process. The policy is now
parameterized as

ã′t = fθ(ξt; st) (36)

ã′θ(s, ξ) = tanh(µθ(s) + σθ(s)� ξ) (37)

ξ ∼ N (0, 1) (38)

The maximization objective is now defined as

max
θ

E(s∼D,ξ∼N)

[
min
j=1,2

Qφj(s, ãθ(s, ξ))− α log πθ(ãθ(s, ξ) | s)
]

(39)

The pseudocode of soft actor–critic algorithm is given in Algorithm 1 [31]. We optimize
the computation offloading policy via the soft actor–critic DRL algorithm in each time
slot, thereby minimize the optimization objective. The pseudocode of the SAC-based
UAV-assisted computation offloading algorithm is given in Algorithm 2.

Sensors 2021, 21, 6499 12 of 18

Algorithm 1 Soft actor–critic algorithm

Input: θ1, θ2, φ
1: θ̄1 ← θ1, θ̄2 ← θ2
2: D ← ∅
3: for each iteration do
4: for each environment step do
5: at ∼ πφ(at | st)
6: st+1 ∼ p(st+1 | st, at)
7: D ← D ∪ {(st, at, r(st, at), st+1)}
8: end for
9: for each gradient step do

10: θi ← θi − λQ∇̂θi JQ(θi) for i ∈ {1, 2}
11: φ← φ− λπ∇̂φ Jπ(φ)

12: α← α− λ∇̂α J(α)
13: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
14: end for
15: end for
Output: θ1, θ2, φ

Algorithm 2 SAC-based dynamic computation offloading algorithm (SACDCO)

Input: The initial location of the UAV Lu(t), the initial battery capacity of the UAV
Ebattery (t), and task size Dnk (t).

1: for each time slot t ∈ T do
2: Observe state s(t) =

{
Lu(t), Ebattery(t), Dnk (t)

}
and select action a(t) ={

Ruav(t), Rsk (t)
}

based on policy parameter θ;
3: Select an end-user nk and generate signal block randomly;
4: if Ruav(t)! = 0 then
5: The UAV flies directly above the end-user nk;
6: Calculate the flight distance of the UAV via (5);
7: if flight distance !=0 then
8: Calculate flight delay and flight energy consumption via (5) and (11);
9: end if

10: if Rsk (t) == 1 then
11: Calculate the channel gain gnk ,u(t) and gu,sk (t) via (1) and (3);
12: Calculate transmission rate rnk ,u(t) and ru,sk (t) via (2) and (4);
13: Calculate the transmission delay tu,nk

tr (t) via (6), the transmission delay tu,sk
tr (t)

(9), and the calculation delay tsk
cal(t) via (10), respectively;

14: Calculate actual delay via (16);
15: Calculate energy consumption via (15);
16: else
17: Calculate transmission delay, calculation delay of the UAV and via (6)–(8),

respectively;
18: Calculate actual delay via (16);
19: Calculate UAV’s energy consumption of transmission and calculation via (12)

and (13);
20: Calculate actual energy consumption via (15);
21: end if
22: else
23: Calculate local calculation delay via (8);
24: end if
25: Calculate episode reward via (26);
26: Update policy parameter θ via Algorithm 1.
27: end for

Sensors 2021, 21, 6499 13 of 18

4. Performance Evaluation

In this section, a detailed numerical evaluation is presented to study the performance
of our proposed SACDCO algorithm compared to other baseline schemes. In our proposal,
all algorithms and the corresponding simulations are implemented based on Python and
executed on a desktop computer with Intel Core i7-8700 6 cores CPU and 32 GB RAM.

4.1. Simulation Settings

As mentioned above, our proposed UAV-assisted MEC system consists of three entities:
end-users, UAVs, and edge servers, which is different from previous studies. The offloading
approaches in existing literature are not directly applicable to our settings. Thereby, we
consider the following intuitive schemes as the baseline schemes.

• (Local-Only Scheme) Only execute computing tasks by the end-user;
• (UAV-Only Scheme) Only execute computing tasks on the UAV without further of-

floading to any MEC servers;
• (Fixed Local-UAV Scheme) Half of the computing tasks is executed locally while the

other half is executed on the UAV.

In our proposal, we consider a two-dimensional square area, in which four end-users
are distributed in an area of L ×W = 500× 500 m2 and fixed positions. Furthermore,
four MEC servers are deployed at the edge of the area, and each MEC server is equipped
with 8 cores 3.0 GHz CPU. At the beginning of the decision episode, we assume that the
UAV is deployed at an initial position Lu = (250, 250) with a height of H = 100 m. For
UAV, we refer to the parameters of DJI Air 2S [32]. Unless otherwise stated, the simulation
parameters are summarized in Table 3.

Table 3. Simulation Parameters.

Parameters Values Parameters Values

α0 −50 dBm L 500 m
Bnk 10 MHz W 500 m
Buav 30 MHz H 100 m
Pup 0.1 w Ln1 (125, 125)

Pdown 1 w Ln2 (375, 125)
σ2 −100 dBm Ln3 (125, 375)

PNLOS −80 dBm Ln4 (375, 375)
vu 15 m/s Ls1 (0, 0)

Dnk 80 Mbit Ls2 (500, 0)
s 1000 Ls3 (0, 500)

muav 0.6 kg Ls4 (500, 500)
Ebattery 1.5× 105 J fn1 0.4 GHz

fuav 3.0 GHz × 2 fn2 0.6 GHz
fmec 3.0 GHz × 4 fn3 0.8 GHz
g 10 m/s fn4 1.0 GHz
K 1× 10−28

4.2. Simulation Result

In this section, we have verified the convergence of the SACDCO algorithm and the
simulation results of different hyperparameters on the SACDCO algorithm to select the
optimal hyperparameters. To prove the importance of offloading policy optimization, we
have compared our proposed SACDCO approach with other baseline schemes regarding
the delay, energy consumption, and the size of discarded tasks. Subsequently, we have
also studied the influence of different UAV parameters on offloading decision-making. The
specific simulation results and corresponding charts are given as follows.

Firstly, we study the impact of different learning rates on the cumulative reward of
the SACDCO algorithm. As shown in Figure 2, when the learning rate is set to 0.003 and

Sensors 2021, 21, 6499 14 of 18

0.0003, higher cumulative rewards can be obtained. Compared with the learning rate of
0.003, when the learning rate is 0.0003, the cumulative reward of the SACDCO algorithm
can converge faster. Therefore, the following experimental results will be based on the
learning rate set to 0.0003.

Secondly, we study the impact of different relative weight ρ1, ρ2 on the cumulative
reward of the SACDCO algorithm. Considering the value range of the delay, energy
consumption, and the size of discarded tasks, we design four schemes and conduct the
corresponding simulation. According to the simulation result shown in Figure 3, we find
that the SACDCO algorithm could get the highest cumulative reward when ρ1 set to 0.01,
and ρ2 set to 0.1. Similarly, the following experimental results will be based on ρ1 set to
0.01 and ρ2 set to 0.1.

Figure 2. Comparison of cumulative rewards of SACDCO algorithm under different learning rates.

Figure 3. Comparison of cumulative rewards of SACDCO algorithm under different relative weight.

To prove the importance of offloading policy optimization, we compared our proposal
with other baseline schemes in terms of delay, as shown in Figure 4. Since it is not affected
by the local calculation delay, the UAV-only scheme has the lowest delay, about 32 s. After
the SACDCO algorithm optimizes the offloading policy, the delay converges to about 40 s.
The delays of the other two schemes are relatively high, around 80 s and 90 s, respectively.

The comparison of different schemes in terms of energy consumption of UAV is shown
in Figure 5. Since the local-only scheme does not consume the energy of the UAV, the
corresponding result does not appear in the figure. We find that the energy consumption
generated by our proposed SACDCO approach is at a low level, which is about 2900 KJ
(accounted for 60% of the highest energy consumption scheme only).

Sensors 2021, 21, 6499 15 of 18

Figure 4. Comparison of delay under different schemes.

Figure 5. Comparison of energy consumption under different schemes.

As shown in Figure 6, we compare our proposal with UAV-only and fixed local-UAV
in terms of the size of discarded tasks. When UAV’s battery runs out, the remainder of
offloaded tasks on the UAV will be discarded. The simulation result shows that the size of
the discarded tasks generated by our proposed SACDCO algorithm is at a low level, which
is about 35 Mbit (accounted for 43% of the size of total tasks).

We then study the impact of UAV computing capability and bandwidth on the
weighted sum of delay, energy consumption, and the size of discarded tasks. We ad-
just the UAV’s computing power by changing the number of UAV’s CPU cores, and the
simulation result is shown in Figure 7. The corresponding result shows that the pro-
posed SACDCO algorithm could obtain the highest cumulative rewards when the UAV is
equipped with two cores. Then, we study how cumulative rewards behave as the UAV
bandwidth increase from 5GHz to 30GHz. We observe that as the bandwidth increases,
the cumulative reward of the SACDCO algorithm will also increase. Compared with other
baseline algorithms, the SACDCO algorithm can maintain good performance. It should
be noted that too high bandwidth is usually impractical. The simulation result is given in
Figure 8.

Sensors 2021, 21, 6499 16 of 18

Figure 6. Comparison of the size of discarded tasks under different schemes.

Figure 7. Comparison of cumulative rewards for different UAV computing capabilities under
different schemes.

Figure 8. Comparison of cumulative rewards for different UAV bandwidth under different schemes.

5. Conclusions

Considering stochastic computation tasks generated by end-users, the mobility of
the UAV, and the limited battery capacity of the UAV, we have studied the computation
offloading decision problem in the UAV-assisted MEC environment with multiple users

Sensors 2021, 21, 6499 17 of 18

and multiple MEC servers. To obtain the global optimal offloading policy, we minimize
the weighted total cost of system delay, energy consumption, and the size of discarded
tasks as the optimization objective. We propose the soft actor–critic dynamic computation
offloading approach to optimize computation offloading and resource allocation policy.
Unlike previous studies, we consider letting UAV and MEC servers work collaboratively to
provide computing services for end-users. To this end, we consider three intuitive schemes
as the baseline schemes in the simulation, i.e., local-only scheme, UAV-only scheme, and
fixed local-UAV scheme, respectively. Extensive simulations have demonstrated the superi-
ority of our proposal in terms of delay, energy consumption, and the size of discarded tasks.
In particular, compared with the fixed local-UAV scheme in the specific simulation setting,
our proposed approach reduces system delay and energy consumption by approximately
50% and 200%, respectively.

In the future, we will extend the research on offloading decision optimization to
a multi-UAV collaborative edge computing scenario. Existing literature has shown the
superiority of multi-UAV collaborative assisted edge computing. In [23], multiple UAVs
work collaboratively to service IoT devices, and a DQN-based optimization approach was
proposed to improve the efficiency of each UAV while maintaining the QoS of ground IoT
devices. Nevertheless, the DQN algorithm could not handle high-dimensional action prob-
lems well, as we mentioned before. Savkin et al. [33] proposed a multi-UAV collaborative
approach for improving the network performance between the UAV and the base stations.
Chen [34] proposed an approach for improving pairing rate through optimizing the power
allocations, UAVs’ locations, and nodes scheduling. However, their optimization objective
only focuses on system delay, which is different from ours. In the future, we will introduce
multi-agent reinforcement learning algorithms to our proposal, which could further im-
prove the algorithm’s performance. We hold the opinion that multi-agent reinforcement
learning algorithms will play an indispensable role in complex decision problems.

Author Contributions: Conceptualization, S.L.; methodology, S.L.; software, S.L.; validation, S.L.;
formal analysis, S.L.; investigation, S.L.; resources, S.L.; data curation, S.L.; writing—original draft
preparation, S.L.; writing—review and editing, S.L., X.H., and Y.D.; visualization, S.L.; supervision,
X.H. and Y.D.; project administration, X.H. and Y.D.; funding acquisition, X.H. and Y.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of
China (11461038) and the Innovation Foundation of Colleges and Universities in Gansu Province
(2020A-033).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw.

Comput. Appl. 2020, 169, 102781. [CrossRef]
2. Alghamdi, I.; Anagnostopoulos, C.; Pezaros, D.P. Delay-tolerant sequential decision making for task offloading in mobile edge

computing environments. Information 2019, 10, 312. [CrossRef]
3. Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y. Optimal delay constrained offloading for vehicular edge computing

networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017;
pp. 1–6.

4. Wu, Y.; Qian, L.P.; Ni, K.; Zhang, C.; Shen, X. Delay-minimization nonorthogonal multiple access enabled multi-user mobile edge
computation offloading. IEEE J. Sel. Top. Signal Process. 2019, 13, 392–407. [CrossRef]

5. You, C.; Zeng, Y.; Zhang, R.; Huang, K. Asynchronous mobile-edge computation offloading: Energy-efficient resource manage-
ment. IEEE Trans. Wirel. Commun. 2018, 17, 7590–7605. [CrossRef]

6. Pan, Y.; Chen, M.; Yang, Z.; Huang, N.; Shikh-Bahaei, M. Energy-efficient NOMA-based mobile edge computing offloading. IEEE
Commun. Lett. 2018, 23, 310–313. [CrossRef]

http://doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.3390/info10100312
http://dx.doi.org/10.1109/JSTSP.2019.2893057
http://dx.doi.org/10.1109/TWC.2018.2868710
http://dx.doi.org/10.1109/LCOMM.2018.2882846

Sensors 2021, 21, 6499 18 of 18

7. Xu, X.; Li, Y.; Huang, T.; Xue, Y.; Peng, K.; Qi, L.; Dou, W. An energy-aware computation offloading method for smart edge
computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 2019, 133, 75–85. [CrossRef]

8. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-delay tradeoff for dynamic offloading in mobile-edge computing system
with energy harvesting devices. IEEE Trans. Ind. Inform. 2018, 14, 4642–4655. [CrossRef]

9. Zhang, W.; Zhang, Z.; Zeadally, S.; Chao, H.C.; Leung, V.C. MASM: A multiple-algorithm service model for energy-delay
optimization in edge artificial intelligence. IEEE Trans. Ind. Inform. 2019, 15, 4216–4224. [CrossRef]

10. Vu, T.T.; Van Huynh, N.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E. Offloading energy efficiency with delay constraint
for cooperative mobile edge computing networks. In Proceedings of the 2018 IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

11. Neely, M.J. Intelligent packet dropping for optimal energy-delay tradeoffs in wireless downlinks. IEEE Trans. Autom. Control
2009, 54, 565–579. [CrossRef]

12. Yu, H.; Neely, M.J. A new backpressure algorithm for joint rate control and routing with vanishing utility optimality gaps and
finite queue lengths. IEEE/ACM Trans. Netw. 2018, 26, 1605–1618. [CrossRef]

13. Sharma, G.; Mazumdar, R.; Shroff, N. Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM
Trans. Netw. 2007, 15, 981–992. [CrossRef]

14. Mao, Z.; Koksal, C.E.; Shroff, N.B. Near optimal power and rate control of multi-hop sensor networks with energy replenishment:
Basic limitations with finite energy and data storage. IEEE Trans. Autom. Control 2011, 57, 815–829.

15. Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans. Commun. 2016,
64, 4983–4996. [CrossRef]

16. Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans.
Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]

17. Hu, Q.; Cai, Y.; Yu, G.; Qin, Z.; Zhao, M.; Li, G.Y. Joint offloading and trajectory design for UAV-enabled mobile edge computing
systems. IEEE Internet Things J. 2018, 6, 1879–1892. [CrossRef]

18. Jeong, S.; Simeone, O.; Kang, J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path
planning. IEEE Trans. Veh. Technol. 2017, 67, 2049–2063. [CrossRef]

19. Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing
systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

20. Xiong, J.; Guo, H.; Liu, J. Task offloading in UAV-aided edge computing: Bit allocation and trajectory optimization. IEEE Commun.
Lett. 2019, 23, 538–541. [CrossRef]

21. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A. A survey on the computation offloading approaches in mobile edge
computing: A machine learning-based perspective. Comput. Netw. 2020, 182, 107496. [CrossRef]

22. Huang, L.; Feng, X.; Zhang, C.; Qian, L.; Wu, Y. Deep reinforcement learning-based joint task offloading and bandwidth allocation
for multi-user mobile edge computing. Digit. Commun. Netw. 2019, 5, 10–17. [CrossRef]

23. Yang, L.; Yao, H.; Wang, J.; Jiang, C.; Benslimane, A.; Liu, Y. Multi-UAV-enabled load-balance mobile-edge computing for IoT
networks. IEEE Internet Things J. 2020, 7, 6898–6908. [CrossRef]

24. Liu, Y.; Xie, S.; Zhang, Y. Cooperative offloading and resource management for UAV-enabled mobile edge computing in power
IoT system. IEEE Trans. Veh. Technol. 2020, 69, 12229–12239. [CrossRef]

25. Zhu, S.; Gui, L.; Zhao, D.; Cheng, N.; Zhang, Q.; Lang, X. Learning-based computation offloading approaches in UAVs-assisted
edge computing. IEEE Trans. Veh. Technol. 2021, 70, 928–944. [CrossRef]

26. Asheralieva, A.; Niyato, D. Hierarchical game-theoretic and reinforcement learning framework for computational offloading
in UAV-enabled mobile edge computing networks with multiple service providers. IEEE Internet Things J. 2019, 6, 8753–8769.
[CrossRef]

27. Taleb, T.; Ksentini, A. Follow me cloud: Interworking federated clouds and distributed mobile networks. IEEE Netw. 2013,
27, 12–19. [CrossRef]

28. Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-edge computing: Partial computation offloading using dynamic voltage
scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [CrossRef]

29. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 135.
30. Mohammed, A.; Nahom, H.; Tewodros, A.; Habtamu, Y.; Hayelom, G. Deep reinforcement learning for computation offloading

and resource allocation in blockchain-based multi-UAV-enabled mobile edge computing. In Proceedings of the 2020 17th
International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu,
China, 18–20 December 2020; pp. 295–299.

31. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

32. Shenzhen DJI Innovation Technology Co., Ltd. Technical parameters of DJI Air 2S. Available online: https://www.dji.com/air-
2s/specs (accessed on 27 August 2021).

33. Savkin, A.V.; Huang, H. Deployment of unmanned aerial vehicle base stations for optimal quality of coverage. IEEE Wirel.
Commun. Lett. 2018, 8, 321–324. [CrossRef]

34. Chen, Q. Joint position and resource optimization for multi-UAV-aided relaying systems. IEEE Access 2020, 8, 10403–10415.
[CrossRef]

http://dx.doi.org/10.1016/j.jnca.2019.02.008
http://dx.doi.org/10.1109/TII.2018.2843365
http://dx.doi.org/10.1109/TII.2019.2897001
http://dx.doi.org/10.1109/TAC.2009.2013652
http://dx.doi.org/10.1109/TNET.2018.2844284
http://dx.doi.org/10.1109/TNET.2007.905154
http://dx.doi.org/10.1109/TCOMM.2016.2611512
http://dx.doi.org/10.1109/TWC.2017.2789293
http://dx.doi.org/10.1109/JIOT.2018.2878876
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/JSAC.2018.2864426
http://dx.doi.org/10.1109/LCOMM.2019.2891662
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.dcan.2018.10.003
http://dx.doi.org/10.1109/JIOT.2020.2971645
http://dx.doi.org/10.1109/TVT.2020.3016840
http://dx.doi.org/10.1109/TVT.2020.3048938
http://dx.doi.org/10.1109/JIOT.2019.2923702
http://dx.doi.org/10.1109/MNET.2013.6616110
http://dx.doi.org/10.1109/TCOMM.2016.2599530
https://www.dji.com/air-2s/specs
https://www.dji.com/air-2s/specs
http://dx.doi.org/10.1109/LWC.2018.2872547
http://dx.doi.org/10.1109/ACCESS.2020.2965162

	Introduction
	Motivation and Related Work
	Main Contributions

	System Model and Problem Formulation
	System Model
	Communication Model
	Computation Model
	Energy Model

	Problem Formulation

	Soft Actor–Critic Based Dynamic Computation Offloading Algorithm
	Markov Decision Process
	Soft Actor–Critic DRL Algorithm

	Performance Evaluation
	Simulation Settings
	Simulation Result

	Conclusions
	References

