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Abstract

Accurate risk assessment of an individuals’ propensity to develop cardiovascular diseases

(CVDs) is crucial for the prevention of these conditions. Numerous published risk prediction

models used for CVD risk assessment are based on conventional risk factors and include

only a limited number of biomarkers. The addition of novel biomarkers can boost the dis-

criminative ability of risk prediction models for CVDs with different pathogenesis. The pres-

ent study reports the development of risk prediction models for a range of heterogeneous

CVDs, including coronary artery disease (CAD), stroke, deep vein thrombosis (DVT), and

abdominal aortic aneurysm (AAA), as well as for Type 2 diabetes mellitus (DM2), a major

CVD risk factor. In addition to conventional risk factors, the models incorporate various

blood biomarkers and comorbidities to improve both individual and population stratification.

An automatic variable selection approach was developed to generate the best set of explan-

atory variables for each model from the initial panel of risk factors. In total, up to 254,220 UK

Biobank participants (ranging from 215,269 to 254,220 for different CVDs and DM2) were

included in the analyses. The derived prediction models utilizing Cox proportional hazards

regression achieved consistent discrimination performance (C-index) for all diseases: CAD,

0.794 (95% CI, 0.787–0.801); DM2, 0.909 (95% CI, 0.903–0.916); stroke, 0.778 (95% CI,

0.756–0.801); DVT, 0.743 (95% CI, 0.737–0.749); and AAA, 0.893 (95% CI, 0.874–0.912).

When validated on various subpopulations, they demonstrated higher discrimination in

healthier and middle-age individuals. In general, calibration of a five-year risk of developing

the CVDs and DM2 demonstrated incremental overestimation of disease-related conditions

amongst the highest decile of risk probabilities. In summary, the risk prediction models

described were validated with high discrimination and good calibration for several CVDs and

DM2. These models incorporate multiple shared predictor variables and may be integrated

into a single platform to enhance clinical stratification to impact health outcomes.
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Introduction

Cardiovascular diseases (CVDs) include a range of chronic diseases that impair cardiac and

vascular function, which continues to be the leading cause of death in the United States (US).

It is projected that over 45% of the US population will suffer from one or more CVDs by 2035

[1]. The healthcare cost associated with CVDs represents one of the greatest global economic

burdens [2].

As with any chronic condition, appropriate prevention and selective treatment of CVDs are

the most effective approaches to reduce their clinical and financial impact. Accurate risk

assessment of an individual’s propensity to develop CVDs is essential for personalized health

care and primary prevention of these conditions. An increasing number of novel biomarkers

have been linked to CVD risk [3–14], implying their critical role in precise risk assessment for

heterogeneous CVDs. Current established functions for CVD risk stratification are either

based only on conventional risk factors or include a limited number of biomarkers [15–18].

Furthermore, the contribution of various biomarkers to the risk of CVDs with different patho-

genesis is poorly understood.

In this study, we sought to improve CVD risk stratification through the addition of multiple

blood biomarkers in CVD risk prediction modeling. We report the development and valida-

tion of risk prediction models for a range of heterogeneous CVDs with different pathogenesis,

including coronary artery disease (CAD), stroke, deep venous thrombosis (DVT), and abdom-

inal aortic aneurysm (AAA), as well as for Type 2 diabetes mellitus (DM2), a prime CVD risk

factor [19]. The aforementioned diseases together are broadly defined in the present study as

cardiometabolic diseases (CMDs). The prediction models were derived using a large popula-

tion (UK Biobank [20]) analysis with a median longitudinal follow-up of 6.1 years and incor-

porated a distinct combination of conventional risk factors, blood biomarkers, and

comorbidities produced by uncurated variable selection.

Materials and methods

Inclusion/exclusion criteria and outcome definition

Baseline data for 502,616 UK Biobank (UKBB) participants collected at assessment centers

were used to derive the prediction models. Overall, 95% of the UKBB participants were self-

described as white, with women comprising 54.4% of the participant population. The UKBB

data was subsequently linked to hospital episode statistics (HES) data from hospitals in

England, Scotland, and Wales (Fig 1). Outcomes for coronary artery disease (CAD), Type 2

diabetes mellitus (DM2), stroke, deep venous thrombosis (DVT), and abdominal aortic aneu-

rysm (AAA) were determined according to documentation using the following International

Classification of Diseases (ICDs) for each of the diseases:

1. International Classification of Diseases edition 10 (ICD-10) codes for all CMD outcomes in

the HES data. The following ICDs were used: I20–I25 and T82 codes were used for CAD;

E11-E14 codes for DM2; G46.3, G46.4, I63, I66, I67, and I693 codes for stroke; I82, O22.3,

R09.89, and Z86.7 codes for DVT; and I71 and I79.0 codes for AAA.

2. Self-reporting for CAD, DM2, and DVT.

3. Self-reported medications for CAD (Nitrolingual, Tildiem) and DM2 (Rosiglitazone, Pio-

glitazone, Metformin, Isosorbide mononitrate, Insulin products, Glucophage, Glimepiride,

Gliclazide).
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The age and date of a CMD event were determined based on primary or secondary ICD-10

codes in the HES data corresponding to the earliest hospitalization records. Individuals with

more than one CMD diagnosis during a given admission were included in the study samples

for corresponding CMD. The date of inclusion in the UKBB was defined as the participant’s

baseline and was used as the starting point for time-to-event calculations. Participants with a

target CMD event before baseline (identified by ICD-10 codes, self-reports, or medication)

were excluded from the study sample for the corresponding CMD modeling (Fig 1). However,

participants with prior non-target CMD event(s) (potential comorbidity) were not excluded.

The above exclusions resulted in five CMD-specific datasets with samples sizes ranging from

approximately 466,000 to 481,000. Incident cases were defined as CMD-positive cases per

ICD-10 codes and had the date of the event recorded on the HES data after the baseline. Self-

reported diagnoses and medications were only used to identify prevalent cases since this

Fig 1. Flow chart demonstrating the exclusion criteria, and the development process of the CAD model, and subsequent validation. The

process was the same for the other CMDs.

https://doi.org/10.1371/journal.pone.0235758.g001
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information is only available at baseline. Further exclusion of cases due to missing data pro-

duced a final five study populations used to develop the prediction models; these had sample

sizes of 215,269 (CAD), 233,875 (DM2), 237,411 (stroke), 249,338 (DVT), and 254,220 (AAA)

(Fig 1). The exit date was determined as the occurrence of either date of death, end of follow-

up (February 29, 2016), or a CMD event.

Risk factors for predictive modeling

Conventional CMD risk factors in the prediction models were selected according to frequency

of documentation. Accordingly, the variables selected were missing from less than 80,000 indi-

viduals. The list of these risk factors included: age, gender, body mass index (BMI), systolic

and diastolic blood pressure (SBP and DBP), physical activity, current and past smoking his-

tory, and family history. Physical activity was assessed as the metabolic equivalent of task

(MET) and calculated in hours/week according to the "Guidelines for Data Processing and

Analysis of the International Physical Activity Questionnaire (IPAQ)” [21]. Family history

included mother or father for DM2 and stroke, and mother, father, or siblings for CAD. Binary

variables describing these combinations for family history were used in predictive modeling.

Additionally, 22 blood biomarkers, including three blood count tests and 19 biochemical

markers, were considered as risk factors. We further considered novel risk factors: self-

reported sleep apnea, congestive heart failure, arrhythmia, heart valve problem, irritable bowel

syndrome, and hyperthyroidism. The arrhythmia category included atrial fibrillation, atrial

flutter, Wolff-Parkinson-White (WPW) syndrome, irregular heartbeat, sick sinus syndrome,

and supraventricular tachycardia. The heart valve deficiency category included mitral valve

prolapse, mitral stenosis, mitral regurgitation/incompetence, aortic valve disease, aortic steno-

sis, and aortic regurgitation/incompetence.

Data preparation and variable selection for predictive modeling

Python 3.6.6 for Windows x64 was used for the preparation of datasets for each CMD accord-

ing to the approaches described above. The datasets were further split into 80% training and

20% testing sets using the pseudorandom number generator algorithm with a constant initial

seed value of 42 (Fig 1). Training sets were used for model fitting and assessment and variable

selection. Testing sets were solely used for assessing models’ discrimination performance and

calibration as well as for sensitivity analysis.

The Recursive Feature Elimination (RFE) method (scikit-learn 0.20.0 Python library) was

used to automatically construct the best set of predictor variables for each CMD model from

the initially available panel of candidate risk factors. Multiple random forest binary classifica-

tion models predicting the occurrence of a CMD event by the end of the follow-up period

were constructed based on subsets of variables of decreasing size, and the models’ performance

was compared [22]. Considering low CMD incidence rate, we used the Balanced Random For-

est algorithm (imbalanced-learn 0.4.2 Python library) downsampling majority class to balance

it with minority class in a bootstrap sample in each decision tree [23]. The accuracy of classifi-

cation determined as the fraction of correct predictions was used for the models’ performance

evaluation.

The RFE method was combined with a stratified two-fold cross-validation using the follow-

ing procedure: 1) 40,000 samples were randomly selected from a training set and split into two

equal sized subsets with preserved ratio of positive to negative CMD cases; 2) variables were

recursively removed one-by-one, and a model using the remaining variables was fitted to one

subset, and its accuracy was evaluated on another subset; 3) this process was run once on each

subset, and average accuracy was calculated and used for ranking and removing the weakest
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variables and selecting the best subset of variables. The RFE variable selection was applied to

each CMD separately. The gender variable was forced into all CMD-specific sets of explana-

tory variables.

Additional variable selection based on a variance inflation factor (VIF) detecting correlation

between variables was conducted for the DM2 model prior to RFECV to achieve better calibra-

tion. VIFi for each variable was calculated using the following formula:

VIFi ¼
1

1 � Ri
2
;

where Ri
2 is the coefficient of determination for each variable. Ri

2 was calculated by regressing

the variable against every other variable using ordinary least squares regression (statsmodels

0.9.0 Python library). Variables with the lowest VIF among all variables with VIF higher than 2

were removed one-by-one until all variables had VIF lower than 2. The VIF variable selection

did not improve the calibration when applied to the rest of the CMD models.

Prediction models and performance metrics

Linear Cox Proportional Hazard (PH) models were developed using lifelines 0.13.0 Python

library. Continuous variables were scaled to a range between 0 and 1 to allow for a comparison

of the magnitudes of regression coefficients. The discriminative ability of the risk prediction

models was assessed by Harrell’s concordance index (C-index) [24–26], which was calculated

during the validation and datasets testing as the proportion of all comparable pairs where the

predictions and outcomes were concordant. Case pairs were comparable if at least one of them

was CMD positive. If the prognostic index was larger for the case with a lower survival time,

the prediction of that pair was counted as concordant. If predictions were identical for a pair,

0.5 was added to the count of concordance. A pair was not comparable if an event occurred for

both at the same time or an event occurred for one, but the time of censoring was smaller than

the time of event of the first one.

k-fold cross-validation was used to assess for overfitting leading to model optimism and to

adjust estimates of discriminative ability for this optimism [27]. A training set was randomly

partitioned into five complementary equal sized subsets. Of the five subsamples, a single sub-

sample was retained as the validation set for testing the discriminative ability of a model, and

the remaining four subsets were used as the training set. This process was repeated five times,

with each of the five subsets used exactly once as the validation set. The resulting C-indexes

were averaged to produce a single, overall optimism-corrected estimate of the C-index with a

95% confidence interval (CI) and standard deviation (SD).

Calibration of Cox PH models was evaluated by the Hosmer-Lemeshow goodness-of-fit test

[28]. The Hosmer-Lemeshow test statistic was calculated using the following formula:

H ¼
XG

g¼1

ðO1g � E1gÞ
2

Ngpgð1 � pgÞ
;

where O1g is observed CMD events, E1g is expected CMD events, Ng is total observations, and

πg is predicted probability for the gth risk decile group, and G is the number of groups. The

testing set was divided into decile groups based on the predicted probability of CMD events

for a time horizon of five years. Then, the number of observed CMD events and the sum of the

predicted probabilities of CMD events (interpreted as the number of expected CMD events)

were calculated in each decile group. The computed Hosmer-Lemeshow statistic was com-

pared to a chi-squared distribution with eight (G-2) degrees of freedom to calculate the P-
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value. Calibration was visualized using a calibration plot using the predicted risk probabilities

plotted against the observed risks for each decile group.

Subpopulation sensitivity analysis

The performance and sensitivity of prediction models were assessed in four subgroups of indi-

viduals with different age and CMD status. Multiple testing sets were created by applying age

and disease filters to the general testing datasets. These subpopulations included (1) “healthy”

participants without any of four non-target CMD at the baseline; (2) “unhealthy” participants

with one or more pre-existing non-target CMD at the baseline; (3) participants with only one

non-target CMD (CAD, DM2, or DVT); and (4) participants in the age categories <45, 45–55,

55–65, and 65–75 years.

Results

The mean (SD) age at baseline was 56 (8.0) years across all CMD study samples, with women

accounting for 54.0% to 55.6% of the participants in these samples. Gender-specific demo-

graphics, physiological and lifestyle characteristics, the number of CMD incident events

(Table 1), as well as biochemical and clinical characteristics (S1 Table), showed no significant

variation across different CMD study samples. Assessment of the participant’s follow-up

(median 6.1 years) reports, the incidence rates for CAD (3.32%), DM2 (2.65%), stroke

(0.66%), DVT (2.44%), and AAA (0.17%) were observed in the corresponding study sample.

The discriminative ability of all Cox PH CMD models estimated by five-fold cross-valida-

tion varied between the diseases with the highest and lowest C-indexes for DM2 and DVT,

respectively. The optimism-corrected estimate of discrimination C-statistic was 0.794 (CI,

0.787–0.801, SD = 0.0050) for CAD, 0.909 (CI, 0.903–0.916, SD = 0.0046) for DM2, 0.778 (CI,

0.756–0.801, SD = 0.0162) for stroke, 0.743 (CI, 0.737–0.749, SD = 0.0044) for DVT, 0.893 (CI,

0.874–0.912, SD = 0.0137) for AAA. A low standard deviation of C-statistic values for the

CAD, DM2, and DVT models implied their high reproducibility and good generalization to

unknown data from the same population and a low degree of overoptimism (Table 2). The

models for stroke and AAA, the diseases with lower numbers of incident events, demonstrated

a lower reproducibility compared to the other models. Performance assessment in testing sets

of the general population (Table 2) demonstrated that C-indexes for the CAD and stroke mod-

els were within the above 95% CIs. C-indexes for the DM2, DVT, and AAA models were out-

side of the CIs by 0.003, 0.001, and 0.005, respectively, consistent with the low degree of

overoptimism estimated by the cross-validation method.

The number of predictors in the best sets generated for different models varied from nine

predictors for AAA to 40 for CAD (S2 Table). Among multiple biomarker predictors shared

across different models, cystatin C and red blood cell distribution width were common risk

factors for all four CVDs, but not for DM2. Comparison of the values of normalized regression

coefficients (S2 Table) demonstrated that cystatin C was the most crucial risk factor for stroke,

DVT, and AAA, and was superseded by glycated hemoglobin only in the CAD model. Gly-

cated hemoglobin also was the most important risk factor for DM2 and was shared among

stroke, DVT, and DM2; however, it was not a statistically significant variable for AAA. Overall,

the CAD and stroke models shared the largest number of predictors among all diseases.

Broad range applicability and performance consistency for the developed risk prediction

models for each disease was further determined by assessing the discriminative ability across

subpopulations using sensitivity analysis (Table 2). This analysis demonstrated lower predic-

tion in the “unhealthy” compared to the “healthy population,” as defined in the material and
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methods. The performance of the models was highest in middle age (45–65 years), but it signif-

icantly dropped in the subpopulations with pre-existing CMD.

To evaluate the calibration properties of the prediction models amongst the general popula-

tion, the five-year absolute risk for each CMD event was calculated. Hosmer-Lemeshow test

statistic produced chi-squares values (P-value) of 33.8 (<0.0001), 77.8 (<0.0001), 12.8 (0.12),

45.3 (<0.0001), and 12.3 (0.14) for the CAD, DM2, stroke, DVT, and AAA models, respec-

tively. Calibration plots (Fig 2) demonstrated consistent overall calibration, but overestimation

of CMD risk in the highest decile of risk probabilities for all except the DM2 model. DM2 risk

was slightly overestimated in the lowest deciles and minimally underestimated in the highest

risk decile. As expected, with a low number of events, the prediction model for AAA was

poorly calibrated.

Table 1. Baseline characteristics of the study samples for each dataset used to derive CMD-specific prediction models.

CAD DM2 Stroke DVT AAA

Women Men Women Men Women Men Women Men Women Men

n = 119,756 n = 95,513 n = 127,929 n = 105,946 n = 129,255 n = 108,156 n = 135,640 n = 115,075 n = 137,352 n = 116,868

Age, mean (SD), y 55 (8) 56 (8) 55 (8) 56 (8) 56 (8) 56 (8) 56 (8) 56 (8) 56 (8) 56 (8)

Body mass index, mean

(SD)

26.4 (4.8) 27.3 (4.0) 26.4 (4.8) 27.3 (3.9) 26.5 (4.8) 27.4 (4.0) 26.5 (4.8) 27.4 (4.0) 26.5 (4.8) 27.5 (4.0)

Systolic blood pressure,

mean (SD), mm Hg

133 (18) 139 (17) 133 (18.4) 139 (17) 133 (18) 139 (17) 133 (18) 140 (17) 133 (18) 140 (17)

Diastolic blood pressure,

mean (SD), mm Hg

80 (10) 84 (10) 80 (10) 84 (10) 80(10) 83 (10) 80 (10) 83 (10) 80 (10) 83 (10)

Forced expiratory

volume, mean (SD), %

94.1 (17.7) 93.1 (18.2) 94.1 (17.7) 93.1 (18.3) 94.0 (17.7) 92.8 (18.4) 93.9 (17.8) 92.6 (18.4) 93.9 (17.8) 92.5 (18.5)

Physical activity, mean

(SD), MET x hours/week

48.8 (56.8) 59.6 (77.6) 48.7 (56.7) 59.3 (76.9) 48.7 (56.7) 59.0 (76.7) 48.9 (56.3) 59.6 (77.7) 48.9 (57.3) 59.4 (77.6)

Current smoking, No.

(%)

9599 (8.02) 10733

(11.2)

10177

(7.96)

11836

(11.2)

10259

(7.94)

12030

(11.1)

11100

(8.18)

13237

(11.5)

11285

(8.22)

13484

(11.5)

Past smoking, No. (%) 65186

(54.4)

60297

(63.1)

69565

(54.4)

67026

(63.3)

70287

(54.4)

68581

(63.4)

74058

(54.6)

73217

(63.6)

75046

(54.6)

74517

(63.8)

Family history, No. (%) 58743

(49.1)

42320

(44.3)

10910

(8.53)

8304 (7.84) 33770

(26.1)

26599

(24.6)

N/A N/A N/A N/A

CMD incident events,

No. (%)

2476 (2.07) 4677 (4.90) 2387 (1.87) 3789 (3.58) 617 (0.48) 956 (0.88) 3350 (2.47) 4045 (3.52) 54 (0.039) 378 (0.32)

https://doi.org/10.1371/journal.pone.0235758.t001

Table 2. Discriminative ability of CMD risk prediction models among different subpopulations.

Test subpopulation CAD DM2 Stroke DVT AAA

General 0.789 (3.32) 0.9 (2.65) 0.776 (0.66) 0.750 (2.95) 0.869 (0.17)

Healthy + target CMD 0.788 (3.16) 0.903 (2.5) 0.76 (0.57) 0.738 (2.60) 0.874 (0.14)

Unhealthy + target CMD 0.643 (10.8) 0.752 (6.78) 0.65 (2.70) 0.575 (12.4) 0.710 (0.76)

CAD N/A 0.727 (8.01) 0.663 (2.80) 0.582 (12.3) 0.745 (1.13)

DM2 0.655 (10.9) N/A 0.646 (3.27) 0.594 (11.3) N/A

DVT 0.644 (10.9) 0.763 (5.42) 0.633 (3.24) N/A N/A

Age < 45 0.741 (0.83) 0.898 (0.8) 0.524 (0.14) 0.645 (0.91) N/A

Age 45–55 0.742 (1.57) 0.889 (1.51) 0.694 (0.25) 0.677 (1.42) 0.854 (0.03)

Age 55–65 0.734 (3.96) 0.897 (3.03) 0.696 (0.70) 0.705 (3.37) 0.778 (0.17)

Age 65–75 0.724 (7.29) 0.853 (5.19) 0.670 (1.71) 0.656 (6.15) 0.808 (0.51)

Mean C-indexes for CMD models and percent of participants (in parenthesis) that encountered target CMD incident events during the follow-up period.

https://doi.org/10.1371/journal.pone.0235758.t002
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The mean risk probability versus mean survival time for each decile was plotted (Fig 3) to

evaluate the discriminative ability of individual risk models. The mean risk probabilities for all

CMDs exponentially decreased with increased survival time. A steeper exponential decay was

observed for the DM2 and AAA models, which demonstrated the highest discriminative ability

for these two diseases.

Discussion

In the present study, the development and validation of risk prediction models for a range of

heterogeneous diseases with different pathogenesis, including four CVDs and DM2, were pre-

sented. Extensive population data from UK Biobank was applied to produce model-specific

training, validation and testing sets. The discriminative ability of individual models for each of

the chronic diseases was first examined in the general population. Subsequently, the impact of

comorbidities amongst various age groups was determined. The discrimination performances

were high in the overall UK Biobank population and remained moderate to high in the sub-

population analysis. Calibration of the five-years survival outcome demonstrated incremental

overestimation of disease-related conditions amongst the highest decile of risk probabilities.

Internal validation of the developed models demonstrated good reproducibility and a low

degree of overoptimism.

Fig 2. Calibration plots for CMD risk prediction models. Five-year absolute risks for CAD (A), DM2 (B), stroke (C),

DVT (D), and AAA (E) were split into deciles, and mean risk probability for each decile was plotted versus the portion

of positive CMD cases in the decile for a time horizon of five years.

https://doi.org/10.1371/journal.pone.0235758.g002
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In addition to conventional risk factors, the models described in this study incorporated

multiple blood biomarkers and comorbidities. Contemporary risk factors such as biomarkers,

polygenic risk scores [13, 29–31], and certain metabolomic patterns [32, 33] have been pro-

posed to augment the total risk assessment. As demonstrated previously, depending on the

population, up to 50% of patients with CVDs may lack conventional risk factors. However,

these conventional risk factors can also fail to identify between 15–50% of those at risk of

developing cardiovascular disease [34–38]. Understanding and differentiating between clinical

statuses due to acquired risk factors versus genetic predispositions can significantly impact the

approaches to risk factors modification, which can change the course of disease progression.

Future work will focus on exploring the value of polygenic risk scores to improve the perfor-

mances of the models described in this report.

The predictive modeling presented also demonstrated that many of the risk factors are

shared across various CVDs and DM2, implying complex pathophysiological links. Positive

associations reported previously between CAD, stroke, AAA, and DVT, with both cystatin C

and red blood cell distribution width [3–8, 10–12, 14], as well as similar, atherosclerosis-based

pathogenesis of CAD and stroke also support our observations.

An automatic approach for variable selection developed in this study allowed us to produce

disease-specific sets of explanatory variables and to include novel biomarkers that were not

previously used in risk stratification for CVDs or DM2. Prediction models for heterogeneous

Fig 3. CMD risk prediction models demonstrate the relation between risk level and survival. Risk probabilities for

five diseases, CAD (A), DM2 (B), stroke (C), DVT (D), and AAA (E), were split into deciles, and mean risk probability

for each decile was plotted versus mean survival time in the decile.

https://doi.org/10.1371/journal.pone.0235758.g003

PLOS ONE Prediction models for multiple cardiometabolic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235758 July 29, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0235758.g003
https://doi.org/10.1371/journal.pone.0235758


diseases constructed using the same general panel of candidate predictors had a good predic-

tive performance and reproducibility. This is the novelty of our work as compared to previ-

ously published risk prediction models for composite CVD (myocardial infarction, angina,

coronary heart disease, stroke, and transient ischemic attack) [39], DVT [40], AAA [41] and

DM2 [42] that incorporated conventional risk factors selected by a labor-intensive curated

process. When applied to large-scale disease-agnostic datasets with a large number of potential

predictors derived from electronic health records (EHR), domain knowledge-based variable

selection can discard important information. Increasing use of comprehensive EHR for more

accurate risk stratification and prediction of patient outcomes [43] further underlines the

importance of application of automatic approaches to variable selection.

Limitations of this study

Given the predominantly white UK Biobank population and the fact that both training and

testing datasets were produced from the same population, the developed prediction models

are unlikely to be generalizable to other populations, and their transportability requires further

assessment in external validation studies. Low transportability is a common limitation of pre-

diction models, including established CVD risk algorithms. It was reported that neither the

Framingham (derived from a US cohort [15]) nor ASSIGN (derived from the Scottish Heart

Health Extended Cohort [44]) algorithms were well calibrated for the UK population, with

both scores tending to over-predict risk [45]. These algorithms also had a decreased discrimi-

nation performance in comparison to the QRISK algorithm derived from a large primary care

database in England and Wales [45].

Comparison of risk factor associations in UK Biobank against representative, general popu-

lation a recent study by Batty et al. [46] demonstrated that associations between the risk factors

and health outcomes are generalizable. Accordingly, recalibration of risk scores can be per-

formed using these associations and an updated baseline risk for a specific population. It

should also be emphasized that even a well-calibrated risk algorithm does not automatically

translate to improved patient outcomes. Substantial work is required to make CVD risk strati-

fication a practical and effective clinical tool.

Future directions

Considering computational limitations of non-linear survival models [47], binary classification

models utilizing deep learning algorithms can be adapted in the future to determine the proba-

bility of CMD events at certain time horizons. The availability of relatively large healthcare

datasets with thousands of potential predictors further supports the application of deep learn-

ing in CVD risk assessment. In addition, incorporation of genomic and other omics data may

further improve the predictive functionality provided by the developed models.

Supporting information
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are presented.

(XLSX)

PLOS ONE Prediction models for multiple cardiometabolic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235758 July 29, 2020 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235758.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235758.s002
https://doi.org/10.1371/journal.pone.0235758


Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number

24626 to Mynomx, Inc.

Author Contributions

Conceptualization: Mehrdad Rezaee, Andrea Ganna.

Data curation: Igor Putrenko, Arsia Takeh.

Formal analysis: Igor Putrenko, Arsia Takeh, Andrea Ganna, Erik Ingelsson.

Funding acquisition: Mehrdad Rezaee.

Investigation: Arsia Takeh, Erik Ingelsson.

Methodology: Igor Putrenko, Arsia Takeh, Andrea Ganna, Erik Ingelsson.

Project administration: Mehrdad Rezaee.

Software: Igor Putrenko, Arsia Takeh.

Supervision: Mehrdad Rezaee, Erik Ingelsson.

Validation: Igor Putrenko, Arsia Takeh, Andrea Ganna.

Writing – original draft: Mehrdad Rezaee, Igor Putrenko, Arsia Takeh.

Writing – review & editing: Mehrdad Rezaee, Igor Putrenko, Arsia Takeh, Andrea Ganna,

Erik Ingelsson.

References
1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. American Heart

Association Council on epidemiology and prevention statistics committee and stroke statistics subcom-

mittee. Heart disease and stroke statistics-2018 update: a report from the American Heart Association

Circulation. 2018; 137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558 PMID:

29386200

2. Muka T, Imo D, Jaspers L, Colpani V, Chaker L, van der Lee SJ, et al. The global impact of non-commu-

nicable diseases on healthcare spending and national income: a systematic review. Eur J Epidemiol.

2015; 30(4):251–77. https://doi.org/10.1007/s10654-014-9984-2 PMID: 25595318

3. Balistreri CR, Pisano C, Bertoldo F, Massoud R, Dolci S, Ruvolo G. Red Blood Cell Distribution Width,

Vascular Aging Biomarkers, and Endothelial Progenitor Cells for Predicting Vascular Aging and Diag-

nosing/Prognosing Age-Related Degenerative Arterial Diseases. Rejuvenation Res. 2019; 22(5):399–

408. https://doi.org/10.1089/rej.2018.2144 PMID: 30572793

4. Bell EJ, Selvin E, Lutsey PL, Nambi V, Cushman M, Folsom AR. Glycemia (hemoglobin A1c) and inci-

dent venous thromboembolism in the Atherosclerosis Risk in Communities cohort study. Vasc Med.

2013; 18(5):245–50. https://doi.org/10.1177/1358863X13506764 PMID: 24165467

5. Brodin EE, Braekkan SK, Vik A, Brox J, Hansen JB. Cystatin C is associated with risk of venous throm-

boembolism in subjects with normal kidney function—the Tromso study. Haematologica. 2012; 97

(7):1008–13. https://doi.org/10.3324/haematol.2011.057653 PMID: 22315498

6. Cay N, Unal O, Kartal MG, Ozdemir M, Tola M. Increased level of red blood cell distribution width is

associated with deep venous thrombosis. Blood coagulation & fibrinolysis. 2013; 24(7):727–31.

7. Gregson J, Kaptoge S, Bolton T, Pennells L, Willeit P, Burgess S, et al. Cardiovascular Risk Factors

Associated With Venous Thromboembolism. JAMA Cardiol. 2019; 4(2):163–73. https://doi.org/10.

1001/jamacardio.2018.4537 PMID: 30649175

8. Khaw K-T, Wareham N. Glycated hemoglobin as a marker of cardiovascular risk. Current opinion in lipi-

dology. 2006; 17(6):637–43. https://doi.org/10.1097/MOL.0b013e3280106b95 PMID: 17095908

9. Kristensen KL, Dahl M, Rasmussen LM, Lindholt JS. Glycated Hemoglobin Is Associated With the

Growth Rate of Abdominal Aortic Aneurysms: A Substudy From the VIVA (Viborg Vascular) Random-

ized Screening Trial. Arterioscler Thromb Vasc Biol. 2017; 37(4):730–6. https://doi.org/10.1161/

ATVBAHA.116.308874 PMID: 28183702

PLOS ONE Prediction models for multiple cardiometabolic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235758 July 29, 2020 11 / 13

https://doi.org/10.1161/CIR.0000000000000558
http://www.ncbi.nlm.nih.gov/pubmed/29386200
https://doi.org/10.1007/s10654-014-9984-2
http://www.ncbi.nlm.nih.gov/pubmed/25595318
https://doi.org/10.1089/rej.2018.2144
http://www.ncbi.nlm.nih.gov/pubmed/30572793
https://doi.org/10.1177/1358863X13506764
http://www.ncbi.nlm.nih.gov/pubmed/24165467
https://doi.org/10.3324/haematol.2011.057653
http://www.ncbi.nlm.nih.gov/pubmed/22315498
https://doi.org/10.1001/jamacardio.2018.4537
https://doi.org/10.1001/jamacardio.2018.4537
http://www.ncbi.nlm.nih.gov/pubmed/30649175
https://doi.org/10.1097/MOL.0b013e3280106b95
http://www.ncbi.nlm.nih.gov/pubmed/17095908
https://doi.org/10.1161/ATVBAHA.116.308874
https://doi.org/10.1161/ATVBAHA.116.308874
http://www.ncbi.nlm.nih.gov/pubmed/28183702
https://doi.org/10.1371/journal.pone.0235758


10. Li N, Zhou H, Tang Q. Red Blood Cell Distribution Width: A Novel Predictive Indicator for Cardiovascular

and Cerebrovascular Diseases. Dis Markers. 2017; 2017:7089493. https://doi.org/10.1155/2017/

7089493 PMID: 29038615

11. Lv BJ, Lindholt JS, Cheng X, Wang J, Shi GP. Plasma cathepsin S and cystatin C levels and risk of

abdominal aortic aneurysm: a randomized population-based study. PLoS One. 2012; 7(7):e41813.

https://doi.org/10.1371/journal.pone.0041813 PMID: 22844527

12. Mitsios JP, Ekinci EI, Mitsios GP, Churilov L, Thijs V. Relationship Between Glycated Hemoglobin and

Stroke Risk: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2018; 7(11).

13. Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HB. Novel biomarkers for cardiovascular risk prediction. J

Geriatr Cardiol. 2017; 14(2):135–50. https://doi.org/10.11909/j.issn.1671-5411.2017.02.008 PMID:

28491088

14. Wattanakit K, Lutsey PL, Bell EJ, Gornik H, Cushman M, Heckbert SR, et al. Association between car-

diovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analy-

sis. Thromb Haemost. 2012; 108(3):508–15. https://doi.org/10.1160/TH11-10-0726 PMID: 22782466

15. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J.

1991; 121(1 Pt 2):293–8.

16. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk

of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003; 24(11):987–1003.

https://doi.org/10.1016/s0195-668x(03)00114-3 PMID: 12788299

17. D’Agostino RB Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovas-

cular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008; 117(6):743–

53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579 PMID: 18212285

18. Hippisley-Cox J, Coupland C, Robson J, Brindle P. Derivation, validation, and evaluation of a new

QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch data-

base. BMJ. 2010; 341:c6624. https://doi.org/10.1136/bmj.c6624 PMID: 21148212

19. Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and

lipids. Diabetes Spectrum. 2008; 21(3):160–5.

20. Palmer LJ. UK Biobank: bank on it. Lancet. 2007; 369(9578):1980–2. https://doi.org/10.1016/S0140-

6736(07)60924-6 PMID: 17574079

21. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical

activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003; 35(8):1381–95.

https://doi.org/10.1249/01.MSS.0000078924.61453.FB PMID: 12900694

22. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector

machines. Machine learning. 2002; 46(1–3):389–422.

23. Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data. University of California,

Berkeley. 2004; 110(1–12):24.

24. Harrell FE Jr., Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA.

1982; 247(18):2543–6. PMID: 7069920

25. Harrell FE Jr., Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved

prognostic prediction. Stat Med. 1984; 3(2):143–52. https://doi.org/10.1002/sim.4780030207 PMID:

6463451

26. Harrell FE Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluat-

ing assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 15(4):361–87.

https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 PMID:

8668867

27. Smith GC, Seaman SR, Wood AM, Royston P, White IR. Correcting for optimistic prediction in small

data sets. Am J Epidemiol. 2014; 180(3):318–24. https://doi.org/10.1093/aje/kwu140 PMID: 24966219

28. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logis-

tic regression model. Stat Med. 1997; 16(9):965–80. https://doi.org/10.1002/(sici)1097-0258

(19970515)16:9<965::aid-sim509>3.0.co;2-o PMID: 9160492

29. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, et al. Polymorphisms associated

with cholesterol and risk of cardiovascular events. N Engl J Med. 2008; 358(12):1240–9. https://doi.org/

10.1056/NEJMoa0706728 PMID: 18354102

30. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores

for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;

50(9):1219–24. https://doi.org/10.1038/s41588-018-0183-z PMID: 30104762

31. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic Risk, Adherence to a

Healthy Lifestyle, and Coronary Disease. N Engl J Med. 2016; 375(24):2349–58. https://doi.org/10.

1056/NEJMoa1605086 PMID: 27959714

PLOS ONE Prediction models for multiple cardiometabolic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235758 July 29, 2020 12 / 13

https://doi.org/10.1155/2017/7089493
https://doi.org/10.1155/2017/7089493
http://www.ncbi.nlm.nih.gov/pubmed/29038615
https://doi.org/10.1371/journal.pone.0041813
http://www.ncbi.nlm.nih.gov/pubmed/22844527
https://doi.org/10.11909/j.issn.1671-5411.2017.02.008
http://www.ncbi.nlm.nih.gov/pubmed/28491088
https://doi.org/10.1160/TH11-10-0726
http://www.ncbi.nlm.nih.gov/pubmed/22782466
https://doi.org/10.1016/s0195-668x(03)00114-3
http://www.ncbi.nlm.nih.gov/pubmed/12788299
https://doi.org/10.1161/CIRCULATIONAHA.107.699579
http://www.ncbi.nlm.nih.gov/pubmed/18212285
https://doi.org/10.1136/bmj.c6624
http://www.ncbi.nlm.nih.gov/pubmed/21148212
https://doi.org/10.1016/S0140-6736(07)60924-6
https://doi.org/10.1016/S0140-6736(07)60924-6
http://www.ncbi.nlm.nih.gov/pubmed/17574079
https://doi.org/10.1249/01.MSS.0000078924.61453.FB
http://www.ncbi.nlm.nih.gov/pubmed/12900694
http://www.ncbi.nlm.nih.gov/pubmed/7069920
https://doi.org/10.1002/sim.4780030207
http://www.ncbi.nlm.nih.gov/pubmed/6463451
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
http://www.ncbi.nlm.nih.gov/pubmed/8668867
https://doi.org/10.1093/aje/kwu140
http://www.ncbi.nlm.nih.gov/pubmed/24966219
https://doi.org/10.1002/(sici)1097-0258(19970515)16:9<965::aid-sim509>3.0.co;2-o
https://doi.org/10.1002/(sici)1097-0258(19970515)16:9<965::aid-sim509>3.0.co;2-o
http://www.ncbi.nlm.nih.gov/pubmed/9160492
https://doi.org/10.1056/NEJMoa0706728
https://doi.org/10.1056/NEJMoa0706728
http://www.ncbi.nlm.nih.gov/pubmed/18354102
https://doi.org/10.1038/s41588-018-0183-z
http://www.ncbi.nlm.nih.gov/pubmed/30104762
https://doi.org/10.1056/NEJMoa1605086
https://doi.org/10.1056/NEJMoa1605086
http://www.ncbi.nlm.nih.gov/pubmed/27959714
https://doi.org/10.1371/journal.pone.0235758


32. Ganna A, Salihovic S, Sundstrom J, Broeckling CD, Hedman AK, Magnusson PK, et al. Large-scale

metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet.

2014; 10(12):e1004801. https://doi.org/10.1371/journal.pgen.1004801 PMID: 25502724

33. Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martinez-Gonzalez MA, Hu FB. Comprehensive Metabolo-

mic Profiling and Incident Cardiovascular Disease: A Systematic Review. J Am Heart Assoc. 2017; 6

(10).

34. Futterman LG, Lemberg L. Fifty percent of patients with coronary artery disease do not have any of the

conventional risk factors. Am J Crit Care. 1998; 7(3):240–4. PMID: 9579251

35. Hennekens CH. Increasing burden of cardiovascular disease: current knowledge and future directions

for research on risk factors. Circulation. 1998; 97(11):1095–102. https://doi.org/10.1161/01.cir.97.11.

1095 PMID: 9531257

36. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, et al. Prevalence of conventional risk

factors in patients with coronary heart disease. JAMA. 2003; 290(7):898–904. https://doi.org/10.1001/

jama.290.7.898 PMID: 12928466

37. Lefkowitz RJ, Willerson JT. Prospects for cardiovascular research. JAMA. 2001; 285(5):581–7. https://

doi.org/10.1001/jama.285.5.581 PMID: 11176863

38. McKechnie RS, Rubenfire M. The role of inflammation and infection in coronary artery disease: a clinical

perspective. ACC Current Journal Review. 2002; 1(11):32–4.

39. van Staa TP, Gulliford M, Ng ES, Goldacre B, Smeeth L. Prediction of cardiovascular risk using Fra-

mingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk? PLoS

One. 2014; 9(10):e106455. https://doi.org/10.1371/journal.pone.0106455 PMID: 25271417

40. Timp JF, Braekkan SK, Lijfering WM, van Hylckama Vlieg A, Hansen JB, Rosendaal FR, et al. Predic-

tion of recurrent venous thrombosis in all patients with a first venous thrombotic event: The Leiden

Thrombosis Recurrence Risk Prediction model (L-TRRiP). PLoS Med. 2019; 16(10):e1002883. https://

doi.org/10.1371/journal.pmed.1002883 PMID: 31603898

41. Grant SW, Hickey GL, Grayson AD, Mitchell DC, McCollum CN. National risk prediction model for elec-

tive abdominal aortic aneurysm repair. Br J Surg. 2013; 100(5):645–53. https://doi.org/10.1002/bjs.

9047 PMID: 23338659

42. Wu H, Yang S, Huang Z, He J, Wang X. Type 2 diabetes mellitus prediction model based on data min-

ing. Informatics in Medicine Unlocked. 2018; 10:100–7.

43. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with

electronic health records. NPJ Digit Med. 2018; 1:18. https://doi.org/10.1038/s41746-018-0029-1

PMID: 31304302

44. Woodward M, Brindle P, Tunstall-Pedoe H, estimation Sgor. Adding social deprivation and family his-

tory to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended

Cohort (SHHEC). Heart. 2007; 93(2):172–6. https://doi.org/10.1136/hrt.2006.108167 PMID: 17090561

45. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of

QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort

study. BMJ. 2007; 335(7611):136. https://doi.org/10.1136/bmj.39261.471806.55 PMID: 17615182

46. Batty GD, Gale CR, Kivimaki M, Deary IJ, Bell S. Comparison of risk factor associations in UK Biobank

against representative, general population based studies with conventional response rates: prospective

cohort study and individual participant meta-analysis. BMJ. 2020; 368:m131. https://doi.org/10.1136/

bmj.m131 PMID: 32051121

47. Gensheimer MF, Narasimhan B. A scalable discrete-time survival model for neural networks. PeerJ.

2019; 7:e6257. https://doi.org/10.7717/peerj.6257 PMID: 30701130

PLOS ONE Prediction models for multiple cardiometabolic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235758 July 29, 2020 13 / 13

https://doi.org/10.1371/journal.pgen.1004801
http://www.ncbi.nlm.nih.gov/pubmed/25502724
http://www.ncbi.nlm.nih.gov/pubmed/9579251
https://doi.org/10.1161/01.cir.97.11.1095
https://doi.org/10.1161/01.cir.97.11.1095
http://www.ncbi.nlm.nih.gov/pubmed/9531257
https://doi.org/10.1001/jama.290.7.898
https://doi.org/10.1001/jama.290.7.898
http://www.ncbi.nlm.nih.gov/pubmed/12928466
https://doi.org/10.1001/jama.285.5.581
https://doi.org/10.1001/jama.285.5.581
http://www.ncbi.nlm.nih.gov/pubmed/11176863
https://doi.org/10.1371/journal.pone.0106455
http://www.ncbi.nlm.nih.gov/pubmed/25271417
https://doi.org/10.1371/journal.pmed.1002883
https://doi.org/10.1371/journal.pmed.1002883
http://www.ncbi.nlm.nih.gov/pubmed/31603898
https://doi.org/10.1002/bjs.9047
https://doi.org/10.1002/bjs.9047
http://www.ncbi.nlm.nih.gov/pubmed/23338659
https://doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/pubmed/31304302
https://doi.org/10.1136/hrt.2006.108167
http://www.ncbi.nlm.nih.gov/pubmed/17090561
https://doi.org/10.1136/bmj.39261.471806.55
http://www.ncbi.nlm.nih.gov/pubmed/17615182
https://doi.org/10.1136/bmj.m131
https://doi.org/10.1136/bmj.m131
http://www.ncbi.nlm.nih.gov/pubmed/32051121
https://doi.org/10.7717/peerj.6257
http://www.ncbi.nlm.nih.gov/pubmed/30701130
https://doi.org/10.1371/journal.pone.0235758

