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Abstract: In this review, a selection of works on the sensing of biomarkers related to diabetes melli-
tus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging
researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and
cost-effective early detection of these devastating diseases. First, we highlight the social relevance
of developing systematic screening programs for such diseases and how sensor-arrays and ML ap-
proaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric
and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g.,
urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing
sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for
the fast and reliable early diagnosis of DM and DR.

Keywords: diabetes mellitus; diabetic retinopathy; screening; early detection and diagnosis; point-of-
care; glucose sensing; sensor arrays; machine learning

1. Introduction

Diabetes mellitus (DM) is a group of metabolic diseases involving severe insulin
deficiency with usually acute onset of hyperglycemia due to autoimmune destruction
of pancreatic beta cells, or gradual onset of hyperglycemia due to insulin resistance [1].
Diabetic retinopathy (DR) is a complication of DM, and the main cause of blindness in
working-age adults, which can be retarded, palliated, or even avoided if detected early.
Unfortunately, most patients who develop this condition are asymptomatic until late stages,
when treatment is less effective or DR is irreversible. Classically, screening procedures
for DR are usually based on imaging techniques of the fundus of the eye. The analysis of
such images has been optimized during the last years by machine learning (ML) methods,
capable of detecting even microaneurysms—the earliest visible sign of retinal damage [2,3].
The relatively recent application of user-friendly and reasonably affordable smartphones
for the implementation of computer-assisted approaches has permitted the exportation of
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such screening imaging-based methods to developing countries, where lack of funds and
personnel have often been the limiting factors to their healthcare systems [4–7]. Many recent
reviews have already extensively explored the possibilities of computer-assisted methods
for screening DM and DR [4,7–15], which still present few actual applications in the form of
commercially available products [4]. Less (but commendable) attention is paid to alternative
and early DR detection techniques, such as electrochemical [16] or colorimetric [17–19].
These methods usually rely upon the detection of a biomarker (or multiple biomarkers
simultaneously) which might indicate the presence of the target disease (potentially earlier
than the image-based methods, which usually rely upon observation of already-damaged
tissues) [20]. The higher reliability of these multi-targeted sensing approaches can even
be improved by the use of technologies with multiple and diversely integrated sensors,
for which the great amount of data can be efficiently filtered and processed by ML. In this
review, we present a series of colorimetric (with special emphasis on naked-eye approaches)
and electrochemical techniques for the non-invasive detection and/or quantification of
DM biomarkers, including sensor arrays powered or not by ML models [21]. The scope
is to encourage the reader towards development of ML-powered sensor arrays for early
diagnosis of DM and DR.

2. Previous Considerations
2.1. The Relevance of Early Detection of Type 2 DM

It has been observed that a subset of patients with type 2 DM (T2D) have signs of DR at
the time of diagnosis; moreover, glucose intolerance or pre-diabetes is also associated with
diabetic eye disease [22,23]. Therefore, improvement and accessibility of the screening for
DM is directly related to the screening and identification of DR. Although DR prevalence
seems to be higher and develops faster in type 1 DM (T1D) patients, it is more difficult
to prevent DR in T2D patients, as its progression strongly depends on the duration of
DM. T2D often remains undiagnosed for a longer time (even several years) compared to
T1D [24]. Moreover, T2D is much more common than T1D (i.e., approximately 90% of the
total DM cases) [25]. Consequently, a special emphasis has to be placed on the screening of
T2D, provided the higher impact of the early detection of this type of DM and, therefore,
prevention and mitigation of DR.

2.2. Non-Invasive Sampling

Even if blood testing is one of the most used methods in diagnosis of DM [26–29],
great efforts have been made during the last century in the study of non-invasive testing
alternatives [30]. Blood tests present risk of infection and require skilled personnel during
both sampling and analysis. Moreover, multiple extractions are painful and generate fear
and anxiety to some patients, which can lead to avoidance behaviors, with the subsequent
public health and social consequences [31]. Thus, the use of other physiological fluids,
which do not imply invasive techniques per se, are indeed desirable. Hence, the fluids con-
sidered in this review are urine, saliva, tears, sweat, and breath, which contain biomarkers
relevant for the diagnosis of DM and DR (some examples in Table 1) and have already been
studied in terms of sensing [30,32,33]; these have turned out to be promising alternatives
for the development of less painful and more economic methods as compared to blood
testing.

2.3. The Great Potential of Sensor Arrays

All physiological fluids are complex matrices with many potential interfering factors,
which are concomitant part of the heterogeneous nature of DM (depending on, for instance,
the patient) [25]. Consequently, the study of a single biomarker in a fluid can easily
lead to many technical issues, with the results obtained being false positive or negative.
In order to overcome this problem, we propose the design of sensor arrays, based on
diverse principles (e.g., chemical, enzymatic, pH or immunoassay-based), as well as the
inclusion of diverse biomarkers. This approach can provide a much more meaningful set of
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qualitative/quantitative information, which would significantly improve the accuracy of
the screening, leading to a more robust and reliable interpretation of the results. The multi-
marker approach is not new in the diagnostics area [25,34], but simpler, faster, and cheaper
methods are needed for effective screening of DM and the consequent minimization of the
related retinal damage in these patients. The designed sensor array should present the
so-called ASSURED characteristics (affordable, sensitive, specific, user- friendly, rapid and
robust, equipment free, and deliverable to end-users) as described by the World Health
Organization, and they should permit their application as point-of-care (POC) screening
devices [35].

2.4. The Important Role of ML

Sensor arrays can generate a great amount of data that, when correctly interpreted,
provide filtered and relevant information. Such a great amount of data cannot always be
understood intuitively by applying simple mathematical models—e.g., linear or polyno-
mial regressions [36]. However, usually a hidden pattern explains the observed data, even
if we ignore the exact analytes and/or mechanisms that generate the output. By using ML
approaches, it is possible to bypass the need for deep understanding of the hidden rules
underlying the studied system, but still getting relevant information for the prediction of
trends, groups, and characteristics [37,38]. ML models have proved to be robust for the
diagnosis of several diseases [39–43], including ophthalmology-related ones [4,14]. In the
literature, we can find numerous examples of ML-sensor-array technologies for diagnostics,
from techniques to detect lung cancer [44] to multi-sensors capable of diagnosing respira-
tory diseases and breast cancer from breath air [45,46], which proves the great potential of
these approaches for pre-clinical diagnosis, screening purposes, and to assist practitioners
in making fast decisions [46]. The miniaturization of such devices and the optimization
of the related production process could lead in the near future to the fabrication of POC
sensor-array systems, with coupled software trained to diagnose a disease or condition
(or even more than one) by simple non-invasive analysis of the breath, urine, saliva, tears,
and/or sweat of the patient.

Table 1. Biomarkers related to DM and DR found in urine, saliva, sweat and tears, along with some
commercial kits exploiting them.

Biomarkers DM DR Commercial Kits References
URINE

Glucose X X

URINSTIX 10
(Test Helsen SA)
Glucose assay kit

(Merck)

Corrie et al. [47]
Makaram et al. [48]

1,5-anhydro-D-glucitol
(1,5-AG) X X - Yamanouchi et al. [49]

Microalbuminuria X Microalbustix (Bayer) Mogensen et al. [50]

β-hydroxybutyric acid
(βHBA) X

β-Hydroxybutyrate
(Ketone Body)

Colorimetric Assay Kits
(Cayman Chemical)

Sacks et al. [51]

Acetoacetate (AcAc) X URINSTIX 10
(Test Helsen SA) Sacks et al. [51]

SALIVA

Glucose X X Glucose assay kit
(Merck)

Gupta et al. [52]
Baliga et al. [53]

Jenkins et al. [20]

Lactate X Lactate assay kit
(Merck)

Deng et al. [54]
Calabria et al. [55]
Jenkins et al. [20]

1,5-AG X Glycomark® assay kit
(FDA approved) *

Halama et al. [56]
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Table 1. Cont.

Biomarkers DM DR Commercial Kits References
SWEAT

Glucose X X Glucose assay kit
(Merck)

Lee et al. [57]
Heikenfeld et al. [58]

TEARS

Glucose X X Glucose assay kit
(Merck)

Badugu et al. [59,60]
Corrie et al. [47]

Lipocalin 1 (LCN-1) X - Csősz et al. [61]
Kim et al. [62]

Lactotransferrin, X - Csősz et al. [61]

Lacritin X - Csősz et al. [61]

Lipophilin A X - Csősz et al. [61]

Lysozyme C X - Csősz et al. [61]

Immunoglobulin
lambda chain X - Csősz et al. [61]

Heat Shock protein-27
(HSP 27) X - Kim et al. [62]

Beta-2 microglobulin
(B2M) X (Patent) [63] Kim et al. [62]

Maity et al. [64]

Vascular endothelial
growth factor (VEGF) X - Ang et al. [65]

* Glycomark® assay kit is also useful to detect 1,5-AG in saliva. Halama et al. [56].

3. Sample Fluid
3.1. Urine

Urine is one of the best candidates as a diagnostic fluid for sensor arrays. Apart
from permitting an easy, abundant, and non-invasive sampling, it is an aqueous solution
(95% water) of inorganic salts containing, among others, urea. If obtained from a healthy
individual, urine contains low concentration of lipids, proteins, and other high-molecular-
weight compounds, which eases the detection of abnormally-high quantities of these big
molecules [33,66]. The detection of glucose in urine is used for the diagnosis of DM,
with the test being considered positive with glucose concentrations above ~100 mg/dL
(5.6 mM) [67–69], especially if used together with parallel methods or as a part of a multi-
sensing system. Most colorimetric glucose sensors rely upon enzyme-based reactions due to
their high specificity and catalytic efficiency [70–85]. These enzymatic approaches usually
involve glucose-oxidase (GOx), due to its specificity towards glucose and its tolerance for
extreme pH, temperature, and ionic strength changes in comparison to other enzymes
(Figure 1) [32,33,68,86]. Even if these tests might not be the most sensitive, they are a good
alternative to invasive and more expensive/time-consuming methods for a fast and cost-
effective screening [67,68].

Some research groups propose substituting enzymes with nanomaterials which can
“mimic” enzymatic activity, and can help design more stable sensors and a more economic
production of them [68]. For instance, in Yang et al. [67], the classic horseradish peroxidase
(HRP) (Figure 1) is substituted by a bimetallic Fe-Pd nanoparticle (NP) coupled on the
surface of reduced graphene. This achieved a limit of detection (LOD) of 1.76 µM, which is
more than 3 orders of magnitude lower than the borderline concentration of glucose in the
urine (Table 2). In Su et al. [69], HRP is again substituted, this time by Zn-Fe magnetic NPs.
The latter approach shows an even better LOD of 0.3 µM. In both cases, the color change of
the used indicator (3,3′,5,5′-tetramethylbenzidine, TMB) could be visible to the naked eye.



Sensors 2022, 22, 718 5 of 18Sensors 2022, 22, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Schematic representation of classic enzymatic colorimetric methods for the detection of 
glucose. Indicators: potassium iodide (KI) [70–77], 2,4,6-tribromo-3-hydroxy benzoic acid (TBHBA) 
+ 4-aminoantipyrine (4-AAP) [78,79], N-ethyl-N(3-sulfopropyl)-3-methyl-aniline sodium salt 
(TOPS) + 4-AAP [80], 3,5-dichloro-2-hydroxybenzenesulfonic acid (DHBS) + 4-AAP [81], 
3-aminopropyltriethoxysilane (APTMS) + 4-AAP [82], pH indicator [83], 3,3′-diaminobenzidine 
(DAB) [84], 3,3′,5,5′-tetramethyl-benzidine (TMB) [81,85]. 

Some research groups propose substituting enzymes with nanomaterials which can 
“mimic” enzymatic activity, and can help design more stable sensors and a more eco-
nomic production of them [68]. For instance, in Yang et al. [67], the classic horseradish 
peroxidase (HRP) (Figure 1) is substituted by a bimetallic Fe-Pd nanoparticle (NP) cou-
pled on the surface of reduced graphene. This achieved a limit of detection (LOD) of 1.76 
µM, which is more than 3 orders of magnitude lower than the borderline concentration of 
glucose in the urine (Table 2). In Su et al. [69], HRP is again substituted, this time by 
Zn-Fe magnetic NPs. The latter approach shows an even better LOD of 0.3 µM. In both 
cases, the color change of the used indicator (3,3′,5,5′-tetramethylbenzidine, TMB) could 
be visible to the naked eye. 

Another possible approach for the development of screening devices for relevant 
biomarkers in urine is the use of immunoassay-based sensors. In this kind of biosensor 
(generic scheme displayed in Figure 2), the sample is dropped in the sample pad. By 
capillarity, the fluid reaches the conjugate pad, which contains gold NPs (AuNPs) func-
tionalized with the primary antibodies (Ab1) of the assay. The analyte in the sample 
binds to some of these Ab1. Some Ab1 remain free. All AuNPs follow the flow sense by 
capillarity until they get to the test line. Free Ab1 in the AuNPs bind to its antigen con-
jugates (Ag1) adhered in the test line, which brings up the characteristic red color of 
AuNPs. The rest of the AuNPs flow towards the control line, where the secondary Ab 
(Ab2) bind with the Ab1 bound to the analyte and the AuNPs, also resulting in a red 
color. The greater the amount of analyte, the lower the intensity of the red color at the test 
line. The absorbent pad eases the flow of the sample along the strip. This kind of sensor is 
very specific for the target analyte and could be implemented in a multi-sensing pa-
per-based approach. In the recent work of Hainsworth et al., a lateral flow immunoassay 
paper sensor is presented for the potential screening of DR [19]. However, in this case, 
their target was 8-hydroxy-29-deoxyguanosine, which has been assessed to be a sensitive 
marker for DR [87,88]. For more insight into NP-based colorimetric immunoassay sens-
ing, we refer the reader to the review of Ma et al. [89]. 

 

Figure 1. Schematic representation of classic enzymatic colorimetric methods for the detection of
glucose. Indicators: potassium iodide (KI) [70–77], 2,4,6-tribromo-3-hydroxy benzoic acid (TB-
HBA) + 4-aminoantipyrine (4-AAP) [78,79], N-ethyl-N(3-sulfopropyl)-3-methyl-aniline sodium
salt (TOPS) + 4-AAP [80], 3,5-dichloro-2-hydroxybenzenesulfonic acid (DHBS) + 4-AAP [81], 3-
aminopropyltriethoxysilane (APTMS) + 4-AAP [82], pH indicator [83], 3,3′-diaminobenzidine
(DAB) [84], 3,3′,5,5′-tetramethyl-benzidine (TMB) [81,85].

Table 2. Acetone [32] and glucose concentrations (mg/dL [33] and mM [32] units) in diverse relevant
physiological fluids from patients with or without diabetes. The pH of the fluid [32] and the time
required to diffuse blood from the capillaries to the tissues (time lag) [33] are also shown.

Fluid Non-Diabetic Diabetic pH Time Lag
Glucose

Blood 70–130 mg/dL
4.9–6.9 mM

36–720 mg/dL
2–40 mM 7.35–7.45 -

Urine 10.8–27.1 mg/dL
2.78–5.55 mM

50.1–100 mg/dL
>5.55 mM 4.50–8.00 20 min

Sweat 1.1–1.98 mg/dL
0.06–0.11 mM

0.18–18.0 mg/dL
0.01–1 mM 4.60–6.80 20 min

Saliva 4.14–10.3 mg/dL
0.23–0.38 mM

9.91–31.9 mg/dL
0.55–1.77 mM 6.20–7.60 15 min

Ocular fluids 1.8–9.0 mg/dL
0.05–0.5 mM

9.01–90.1 mg/dL
0.5–5 mM 6.50–7.50 10 min

Acetone
Breath 0.1–2 ppm 0.1–103.7 ppm 7.4–8.1 -

Another possible approach for the development of screening devices for relevant
biomarkers in urine is the use of immunoassay-based sensors. In this kind of biosensor
(generic scheme displayed in Figure 2), the sample is dropped in the sample pad. By capil-
larity, the fluid reaches the conjugate pad, which contains gold NPs (AuNPs) functionalized
with the primary antibodies (Ab1) of the assay. The analyte in the sample binds to some of
these Ab1. Some Ab1 remain free. All AuNPs follow the flow sense by capillarity until they
get to the test line. Free Ab1 in the AuNPs bind to its antigen conjugates (Ag1) adhered in
the test line, which brings up the characteristic red color of AuNPs. The rest of the AuNPs
flow towards the control line, where the secondary Ab (Ab2) bind with the Ab1 bound to
the analyte and the AuNPs, also resulting in a red color. The greater the amount of analyte,
the lower the intensity of the red color at the test line. The absorbent pad eases the flow of
the sample along the strip. This kind of sensor is very specific for the target analyte and
could be implemented in a multi-sensing paper-based approach. In the recent work of
Hainsworth et al., a lateral flow immunoassay paper sensor is presented for the potential
screening of DR [19]. However, in this case, their target was 8-hydroxy-29-deoxyguanosine,
which has been assessed to be a sensitive marker for DR [87,88]. For more insight into
NP-based colorimetric immunoassay sensing, we refer the reader to the review of Ma
et al. [89].
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Figure 2. Scheme of a generic lateral-flow immunoassay paper-based sensor. Redrawn from
Hainsworth et al. [19].

As stated by Sinha et al., the detection of albumin in the urine has been traditionally
used as a screening method for diabetic nephropathy [90] and DR [23]. They forewarn
about some drawbacks that may arise from using this method, such as late-detection or
false negatives in some patients, but its great potential for its use in sensor-array screening
devices should not be underestimated. For instance, Chaiyo et al. [91] describe a paper-
based analytical device (PAD) for the colorimetric determination of the albumin (Alb) to
creatinine (Cre) ratio (albuminuria index) in urine samples. The obtained LOD for Alb +
Cre and Cre detection were 7.1 mg/dL and 5.4 mg/dL, respectively. Another particular
approach has been recently presented by Hiraoka et al. [92], that introduce the concept
of “drawing-PADs”. The PAD consists of two microchannels that change their color in
the presence of the target analyte (either Alb or Cre), with the length of the color change
being proportional to the concentration of analyte. These paper-based colorimetric sensors
permit the semi-quantitative determination of the albuminuria index by hand-drawing
a straight line crossing the color interfaces of the two microfluidic channels, as shown in
Figure 3. The intercept of the resulting line (green line in the figure) with the color reference
line (blue and red line on the right side of the schemes in the figure) provides the semi-
quantitative detection of the albuminuria index (normo-albuminuria, micro-albuminuria,
macro-albuminuria).
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Figure 3. On the left, schematic representation of the paper-based sensor described in Hiraoka
et al. [92] for the clinical assessment of albumin index (redrawn). On the right, three possible results
for the test are shown. The green line represents a hand-drawn straight line that passes through
the top of the two color-changed zones. Results (albuminuria index) are interpreted depending on
which zone of the results chart (signaled as 1 or 2 in the scheme on the left) the drawn straight line
crosses. For a better interpretation of the color references in this figure, the reader is referred to the
web version of the article.

Measurement of ketones in the urine and blood is widely used for the diagnosis
and monitoring of diabetic ketoacidosis (DKA). The acetoacetate (AcAc), acetone, and
β-hydroxybutyrate (β-HB) ketonic bodies are catabolic products of free fatty acids. Ketone
detection in urine has traditionally been performed via the qualitative or semi-quantitative
analysis by means of dipsticks, impregnated with diverse reagents (e.g., nitroprusside
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reagents reacting with AcAc and acetone, but not with β-HB) [51]. During DKA, the ratio
of β-HB:AcAc can be as high as 10:1, as β-HB is formed from the reduction of AcAc [93].
The assessment of this ratio is strongly relevant, as measuring only AcAc in urine would
underestimate the extent of ketonemia [51]. Urine ketone determination is also limited
by the paradoxical increase of urinary AcAc during resolution of ketoacidosis, which
can be attributed to the conversion of excess β-HB back to AcAc [94]. Therefore, the
measurement of urinary ketones, even if highly sensitive and non-invasive, is considered to
be less accurate and specific than capillary β-HB [95]. Capillary β-HB testing is an accurate
and precise method of early identification of DKA in the Emergency Department, which
reduces unnecessary delays in the diagnosis of this condition. This test is more accurate
than the assessment of urine ketones, and highly correlated with the clinical diagnosis of
DKA [95]. Although the blood–retina barrier is less sensitive to presence and changes in
DKA compared to the blood–brain barrier, it is still to be shown how DKA and its treatment
affect DR development.

Myoinositol (MI) is structurally similar to D-glucose, and is widely distributed in
multiple organs. The reabsorption of MI in renal tubules competes with urinary glucose in
cases of hyperglycemia, resulting in high concentrations of MI being excreted into the urine.
It has been reported that urinary myoinositol (UMI) levels are increased in subjects with
DM compared with controls. In healthy subjects, ~16–30 mg/day of MI is excreted in the
urine, whereas, in subjects with DM, this level is increased to about 150~220 mg/day [96,97].
Takakado et al. [98] have conducted studies to establish a simple screening method for
undiagnosed diabetes based on MI levels in urine samples collected at home.

Electronic noses (gas electrochemical sensor arrays) are also a promising technological
platform for the diagnosis of T2D. Esfahani et al. [99] present electronic nose-based tech-
nologies that present a differentiated electrochemical response to urinary volatile organic
compounds. After analyzing 140 urine samples from healthy and T2D patients and classi-
fying the data using diverse ML approaches, they demonstrated that the developed tools
discriminated between the two patient groups with an area under curve between 85–96%.
A more recent publication [100] reaches 96–100% accuracy for T2D diagnosis exploiting
the same electronic nose principle with urine samples, using both principal components
analysis and an ML algorithm.

3.2. Saliva

Saliva is an aqueous solution (~99.5% water), containing mainly electrolytes, sugars,
vitamins, proteins, and polypeptides [31,33,101]. It is a good candidate as a diagnostic fluid,
since its sampling is easy (no need for trained personnel) and not invasive, can be collected
in substantial volumes (0.1–7 mL/min) and is a less complex matrix in comparison to other
body fluids (e.g., blood) [33,101]. However, the simplicity of saliva stems from its concen-
tration, not from its composition; it has been shown to present more than 1000 diverse
proteins in it, and biomarkers that have great potential for rapid test purposes [31,66,101].
There are pathological conditions that can modify the composition of the saliva [66]. In fact,
several studies point at its potential for screening purposes and its successful use for testing
several diseases (e.g., renal disease monitoring, human immunodeficiency virus, dental
studies, or Cushing’s disease) [31,33,101,102]. Actually, a correlation between salivary and
blood glucose levels in patients with and without DM has been shown [103], and saliva has
already been declared as an excellent candidate for the monitoring of T2D [31,33].

Saliva glucose analysis has already been studied indeed, and some studies present
interesting colorimetric approaches that might contribute to the design of multi-sensor DR
screening approaches [33]. For instance, in Santana-Jiménez et al. [104], a colorimetric bi-
enzymatic paper-based sensor for the detection of glucose in saliva is presented. It permits
the detection of glucose by naked eye with a LOD of 0.84 mg/dL (46.6 µM) for real samples,
which is approximately 2 orders of magnitude lower than the borderline concentration of
glucose in saliva (~30 mg/dL, ~1.5 mM, Table 2) to be considered positive in a diabetes
test. Moreover, they state good selectivity among other similar compounds (fructose and
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sucrose) and electrolytes (KCl and NaCl), also present in the saliva. Soni et al. [83] describe
another paper-based colorimetric sensor, but instead of the classic GOx-HRP enzymatic
method, a GOx-pH indicator approach is used. Its LOD is 22.2 mg/dL (1.2 mM), which is
in the borderline for DM diagnosis (Table 2). This is not necessarily a drawback, as it could
be applied in a qualitative binary-response sensor which, among parallel colorimetric data
in the whole of a multi-sensing device, would be a valuable add on. Jahagirdar et al. [105]
present a ML-based spectrophotometric device for the prediction of glucose level in blood
from saliva samples that is low-cost, thus easing its widespread use.

Takiyama et al. have shown that chronic hypoxia results from glycation of HbA1c and
increased oxidative stress which captures oxygen, which is the cause of lactate increase
in the blood [106]. The latter has also been recognized as a useful biomarker in saliva.
This ion has already been used for the monitoring of DM due to the correlation between
hyperlactatemia and this disease [107], and its concentration in saliva and blood are corre-
lated (~1:4 ratio), as this ion passively diffuses from blood to the salivary glands [66,108].
Almost all lactate sensors tested with saliva samples found in literature are electrochem-
ical [107,109,110] and, to our knowledge, Calabria et al. are the only ones presenting a
colorimetric sensor for the detection of this ion in the saliva. They describe a reflectometric
enzyme-based multi-layer PAD (Figure 4) containing all the reagents needed for the de-
tection of lactate (lactate oxidase, HRP, and TMB as an indicator) with a LOD of 0.1 mM
(900 mg/dL). They quantitatively determine the presence of lactate in the saliva by means of
a smartphone, but a qualitative naked-eye interpretation could also be possible by using the
adequate concentration of reagents. Other studies further describe the colorimetric sensing
methods for lactose, but without using saliva as a working sample. For instance, Deng
et al. [54] present another enzyme-based method, using GO@SiO2@CeO2 (GO: graphene
oxide) nanosheets with intrinsic peroxidase activity, which permits avoiding the use of
HRP. They successfully detected glucose, lactate, uric acid, and cholesterol simultaneously
in serum and urine.

The degree of cortisol secretion is known to be related to the presence and number
of DM complications [111]. Cortisol has also been one of the most widely studied sali-
vary biomarkers of stress. Elevated cortisol production can lead to hypertension, central
obesity, insulin resistance, and glucose intolerance [96]. Besides, studies in the past have
demonstrated that elevated levels of inflammatory biomarkers, including C-reactive pro-
tein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva can be found in
obese/overweight children and adults [96]. In fact, salivary antioxidant status has been
considered to be a measure of oxidative stress in individuals with T2D.

Malik et al. [112], driven by the strong potential of electrochemical variations in saliva
for the detection of blood glucose, developed an electrochemical ML sensing technology
that could use this physiological fluid for the assessment of glucose in blood. They reached
an 85% accuracy, which is comparable to the accuracy of commercially available glucose-
sensing dispositives. They also point out the possibility of miniaturizing these ion-selective
sensor arrays for POC usage.
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3.3. Breath

The analysis of breath for disease diagnosis is a practice used even in the time of
Hypocrates, when it was found to be a useful method for monitoring human health [114].
Human breath is mainly composed of N2 (78%), O2 (16%), CO2 (4–5%), H2 (5%), inert gases
(0.9%), and water vapor, but it also contains traces of inorganic (e.g., N2O, NO, or CO) and
organic (e.g., acetone, ethanol, isoprene, or ethane) volatile species [114,115].

Acetone was first considered as a good breath-biomarker for DM in 1857 [116], and it
is actually a good candidate, as its concentration in human breath appears to rise as the
severity of DM increases, and there is a linear correlation between its concentration in blood
and breath [114,117]. As shown in Table 1, patients without DM usually present breath
acetone concentration lower than 2 ppm, while those having DM have values which can
grow up to tenths of ppm [32]. Along with acetone, also isoprene (105 ppb in the breath of a
person without DM) and aldehydes have proved to be good biomarkers for DM, and there
are specific sensing approaches for acetone, aldehydes, and isoprene sensing, but they are
not colorimetric or use gas samples other than breath as a proof of concept [114,118]. Nev-
ertheless, Mazonne et al. [115,119] describe excitingly promising multi-sensing colorimetric
PADs that change their color, showing different patterns depending on what gas mixture
(i.e., breath) they are exposed to. In particular, they have been able to detect diverse types of
lung cancer which were associated to a particular color pattern of the sensor arrays, acting
like a ‘fingerprint’ of the disease. This ‘fingerprint’ multi-sensing concept is not new, and
is closely related to the broadly-used and studied electronic tongues and noses [120–122],
and opens up a world of low-cost user-friendly POC possibilities if applied to a naked-eye
colorimetric approach.

Sarno et al. [123] propose an Arduino-assisted electronic nose capable of distinguishing
among healthy (<120 mg/dL), pre-diabetic (120–150 mg/dL), and diabetic (>150 mg/dL)
blood glucose concentrations by the analysis of the breath of the patient. The electro-
chemical data obtained from the sensor array was processed by a deep-learning classifi-
cation method after optimization with discrete wavelet transform, and the output show
an accuracy of 96.29%. A similar approach is also presented by Parte et al. [124], with a
conductivity-based metal oxide gas sensor array and a modified deep learning convolution
neural network algorithm integrated with support vector machines in order to detect
acetone in breath and correlate it to DM. These are just two recent representative examples
of the great potential of electronic noses (and gas sensor arrays in general) coupled to ML
approaches for the non-invasive diagnosis of diabetes [125].

3.4. Tears

The volume of samples obtained from the tears by means of, for instance, a Schirmer
strip (Figure 5), can be enough for a single-sensor method but, usually, slightly higher
volumes would be needed in multi-array sensing in order to obtain high-enough sensitiv-



Sensors 2022, 22, 718 10 of 18

ity [66]. Moreover, the procurement of tears is a relatively non-invasive technique, as its
sampling implies the use of cumbersome methods that might not be especially comfortable
to the patient, yet easily approachable [83]. Beyond this, one should not avoid mention-
ing some selected works about this rich fluid that contains numerous analytes of great
relevance for the assessment of the health status of the patient [32], including numerous
proteins that permit proteomic approaches in the diagnosis of DR [47,61,126–129]. Kang
et al. [130] reported a colorimetric Schirmer strip (which permits direct, rapid sampling)
for the detection of glucose by the classic GOx-HRP bi-enzymatic method, previously
mentioned (Figure 5). Gabriel et al. [81] and Moreira et al. [131] presented colorimetric,
chitosan-modified paper-based sensors for the enzymatic detection of glucose. Both works
are based upon the GOx-HRP method, and tear samples were previously obtained by
means of borosilicate glass microcapillary tubes before dropping on the paper device.

Prostaglandin E2 (also known as dinoprostone) is found in tears [132], and it is synthe-
sized by the arachidonic acid and cyclooxygenase (COX) pathways. Up-regulation of COX2
occurs in retinal cells during the early onset of DR. Under these conditions, prostaglandin
production is elevated, which in turn leads to an increased expression of vascular endothe-
lial growth factor (VEGF), implicated in vascular leakage and neovascularization [133].
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3.5. Sweat

Sweat might not be the best option for multi-array screening approaches; it seems that
this body fluid could be more suitable for monitoring purposes, especially in the form of
wearable electrochemical devices, which are usually interfaced with a ML software [134].
This approach can overcome the lack of big amounts of sample with direct contact of the
sensor with the skin. In order to gain more insight into this complex fluid and its appli-
cations in diagnostics, we refer to the reviews from Senf et al. [66], Bandodkar et al. [135],
and Kim et al. [136]. Additionally, an interesting microfluidic, colorimetric approach is
presented by Choi et al. [137].

3.6. Other Samples

There is a large amount of literature about the sensing of glucose, lactose, and
other species that could act as biomarkers for DM. Although some of these studies do
not test the sensors with urine, saliva, tear, sweat, or breath samples, their principles
could potentially aid in the design of a POC multi-sensor device, and should not be
overlooked [73,77,80,82,138–144]. Herein, a selection of articles is briefly described as a
first approach to the extensive literature on the topic. Chiang et al. [145] present colorimetric
PADs, whose hydrophobic frontier wax patterns were designed by means of a 3D printer.
This procedure could reduce production time and cost. The described sensors showed
a LOD of 0.3 mM for the detection of glucose and confirmed linearity between 0.5 and
4.5 mM, which would be sufficient for screening purposes with either urine, saliva, or tear
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samples. Li et al. [141] describe a colorimetric multi-sensing PAD which also uses a 3D
printer for the delimitation of the wax-walled microfluidic channels. They simultaneously
determine glucose, bovine serum albumin, and pH (proof of concept, no LOD reported) by
means of a multichannel pattern. Another paper-based sensor for the detection of glucose
(among others) is described in Wei et al. [84]. It consists in an enzymatic approach that
relies in distance readout instead of color output, which makes it suitable for users with
color blindness (Figure 6).
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4. Sensor Array ML Technologies for DM and DR Screening

The diagnosis of a disease is a complex task involving a great number of factors,
variability and uncertainty, and DM and DR are no exception. It is implausible to achieve a
satisfactory verdict within an acceptable confidence range by relying upon a single factor.
That is one of the multiple reasons why there is a growing interest in big-data studies
(and their related computational methods). ML techniques, such as principal component
analysis (PCA) and partial least squares (PLS), are already widely used to model and
predict inherent correlations in complex biological data, as is the case of metabolomics and
proteomics studies [128,146].

In some cases, by using such big-data approaches, we are, in a way, mimicking what
nature already does in order to interpret complex information. This is the case, for instance,
for taste or smell, where a considerable amount of sensors presenting diverse responses
to different odor/taste molecules produce a great amount of both relevant and irrelevant
data, which creates a specific profile or ‘fingerprint’ that is latterly filtered and interpreted
by the brain. This is how (generically speaking) some big-data/ML approaches work,
including electronic noses/tongues [46,120,123,147–150]. It is worth highlighting that this
fingerprint-based approach, which is commonly known as ‘non-targeted’, permits the
gaining of useful output without the need of exactly knowing which specific analytes or
processes occur in the sample (which tend to be markedly complex). Figure 7 illustrates the
parallelism between taste and non-targeted sensing approaches.

ML computational strategies can be classified, for instance, in terms of supervision.
Supervised models use labeled datasets that are employed for the training of the ML
model. Once trained, the model is put into a test (validation phase) in order to assess its
performance in predicting the label of ‘unknown’ (to the model, but not to the examiner’s)
datasets. Depending on the selected datasets and labels, the ML model will be able to
classify datasets into groups (e.g., distinguish datasets from patients with or without DM) or
correlate dependent and independent variables, which permits the prediction of numerical
values (e.g., sensing output and glucose concentration). Some of the most-used supervised
models are PLS and its multiple variations, neural networks (e.g., artificial, convolutional,
recurrent, or deep neural networks; ANN, CNN, RNN and DNN, respectively), support
vector machine (SVM), or genetic algorithms (GA). On the other hand, unsupervised
models analyze and cluster unlabeled datasets without the need for labeling (i.e., no human
intervention needed during the analysis of the data). This is the case, for instance, the
widespread PCA model, and the neural networks can also adopt to the unsupervised
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approach. In order to bypass patient-based variability and to reduce the number of false
positives and negatives, we propose the reader to consider a supervised (classification-
based) and non-targeted approach for the development of diagnostic technologies.
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5. Special Mention to Paper-Based Supports

As the reader will have noticed, a great number of studies on paper-based sensors
have been described in this review. The concept of PADs was first introduced by the
Whitesides group in 2007 [151] and, since then, these devices have been widely used in
several relevant fields, comprising clinical diagnostics [130] and, more specifically, in the
detection of glucose [152]. The intrinsic microfluidic nature of cellulose nanofibers induces
capillary force through the gaps of the material [130] which, together with the possibility
of containing liquids in precise fluidic patterns [151], permits the design of multi-channel
sensor arrays for the simultaneous sensing of diverse species at a time [153]. PADs can
be fabricated in a fast and economic way, and can be easily designed to be accessible for
non-trained personnel [154]. Moreover, they permit a wide range of detection approaches,
including the user-friendly colorimetry [155,156]. Taking all of this into consideration, it is
not surprising that a great percentage of POC sensing devices, especially those intended
to be used in developing countries or low-resource environments, use this material as a
support [35].

6. Conclusions

At present, it is unquestionable that ML modeling is one of the most promising and
powerful tools for the development of diagnosis methods and technologies. It permits
the fast cribbage and analysis of huge amounts of data from overwhelmingly complex
biological matrices which, applied to diagnostics, can be translated into valuable support
technologies that would ease rapid decision-making in early diagnosis and screening pro-
grams. We have seen that one can find a great number of colorimetric and electrochemical
sensing methods for the detection of DM- and DR-related biomarkers, including some
recent efforts towards the development of sensor-array technologies exploiting or not ML
models for the sensing of diverse biomarkers and for diagnose purposes (including DM).
With this review, we want to transmit our founded trust in ML-supported sensor arrays
for the screening and early diagnosis of DM and DR, and we hope that the provided
information and point of view will ease and encourage the reader to design and develop
these promising technologies.
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