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Abstract

Background: Decreasing trends in measles mortality have been reported in recent years. However, such estimates
of measles mortality have depended heavily on assumed regional measles case fatality risks (CFRs) and made little
use of mortality data from low- and middle-income countries in general and India, the country with the highest
measles burden globally, in particular.

Methods: We constructed a dynamic model of measles transmission in India with parameters that were empirically
inferred using spectral analysis from a time series of measles mortality extracted from the Million Death Study, an
ongoing longitudinal study recording deaths across 2.4 million Indian households and attributing causes of death
using verbal autopsy. The model was then used to estimate the measles CFR, the number of measles deaths, and
the impact of vaccination in 2000–2015 among under-five children in India and in the states of Bihar and Uttar Pradesh
(UP), two states with large populations and the highest numbers of measles deaths in India.

Results: We obtained the following estimated CFRs among under-five children for the year 2005: 0.63% (95% confidence
interval (CI): 0.40–1.00%) for India as a whole, 0.62% (0.38–1.00%) for Bihar, and 1.19% (0.80–1.75%) for UP. During 2000–
2015, we estimated that 607,000 (95% CI: 383,000–958,000) under-five deaths attributed to measles occurred in India as a
whole. If no routine vaccination or supplemental immunization activities had occurred from 2000 to 2015, an additional 1.
6 (1.0–2.6) million deaths for under-five children would have occurred across India.

Conclusions: We developed a data- and model-driven estimation of the historical measles dynamics, CFR, and
vaccination impact in India, extracting the periodicity of epidemics using spectral and coherence analysis, which
allowed us to infer key parameters driving measles transmission dynamics and mortality.

Keywords: Measles, Vaccine-preventable diseases, Child health, Immunization, Case fatality risk, Supplementary
immunization activities, Mathematical modeling, India

Background
The World Health Assembly officially endorsed in 2005
a goal to reduce measles-related deaths by 90% globally
between 2000 and 2010 [1]. The Measles & Rubella
Initiative (www.measlesrubellainitiative.org), a consor-
tium of leading global health agencies launched in 2001,
has been supporting the World Health Organization

(WHO) strategies required to reduce measles mortality
[2], including routine immunization of children, and
supplementing it by a second dose opportunity for
measles vaccine [3, 4]. In countries with routine
immunization systems that have achieved good popula-
tion coverage, the second dose of measles vaccine is usu-
ally included in the routine vaccination schedule [4].
Conversely, in countries where routine immunization
services have not yet met these targets, the second dose
of measles vaccine tends to be delivered through supple-
mental immunization activities (SIAs) [4].
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Researchers at the WHO have reported decreasing trends
in measles mortality [5]. Simons and colleagues [6] esti-
mated that global measles-related deaths decreased from
535,000 (95% confidence interval (CI): 347,000–976,000) in
2000 to 139,000 (71,000–448,000) in 2010. Measles mortal-
ity was estimated to have reduced by more than 75% in all
regions but the WHO Southeast Asia region [6]. In this re-
gion, India accounted for about 50% of global measles mor-
tality in 2010 [6]. Yet, the WHO estimates depended
heavily on measles case fatality risks (CFRs) reviewed from
the literature spanning more than two decades [7]. Such
reviewed CFRs were drawn from a variety of outbreak situ-
ations, surveillance methods, reporting conditions, and lo-
cations (e.g., community vs. in hospitals), leading to great
heterogeneity and vast confidence intervals, and were sub-
sequently pooled into regional estimates [7] for use in
WHO’s mortality estimation [5, 6]. These estimates made
little use of measles mortality data from low- and middle-
income countries in general, particularly regarding India,
the country with the highest measles burden globally. For
instance, available measles data for India include not only
national case notifications but also mortality data such as
those from the Million Death Study [8–10]. The Million
Death Study is an ongoing longitudinal study recording
deaths across 2.4 million Indian households (14 million in-
dividuals) and attributing causes of death using verbal aut-
opsy. Notably, the observed periodicity in measles deaths,
similar to the periodicity in measles cases, can help us iden-
tify some of the intrinsic features of measles transmission
in India. The periodicity in measles transmission may be
difficult to extract because of multiple frequencies and
noise contained in the measles mortality time series. How-
ever, the use of mathematical techniques such as the
Fourier transform [11], which we implement in this study,
is ideal for extracting such periodic features and therefore
represents a novel aspect of the methodological approach
we develop here and subsequently apply to India.
In this paper, we constructed a dynamic model of measles

transmission in India that was empirically inferred from a
time series of measles mortality extracted from the Million
Death Study. The model was then used to estimate among
under-five children: (1) the measles CFR, (2) the number of
measles-related deaths, and (3) the impact that routine and
SIA immunization has had since 2000. Model development
and estimation was also pursued for Bihar and Uttar
Pradesh (UP), two states with large populations, high
under-five mortality rates [12], relatively low vaccine cover-
age [13], and the highest numbers of measles-related deaths
in the country [10].

Methods
Measles deaths data
We used measles deaths data from the Million Death Study
(MDS), an ongoing longitudinal study recording deaths

occurring in 2.4 million households across India and attrib-
uting causes of death using verbal autopsy [8–10]. Deaths
attributed to measles were available over a period of 3 years
(2000–2003), and we analyzed weekly occurrence of mea-
sles deaths over this 3-year period in India and in the states
of Bihar and UP since the day of the first measles death
recorded (Fig. 1). We used anonymous secondary data
(Additional file 1: Web appendix I provides MDS research
ethics details), and the full protocol of the MDS can be con-
sulted online (http://www.cghr.org/project.htm).

Dynamic model of measles transmission
We adapted the Dynamic Measles Immunization Calcu-
lation Engine (DynaMICE), an existing dynamic com-
partmental discrete-time model of measles transmission
and vaccination stratified by age previously used to
examine measles transmission in high burden countries
[14] (see Additional file 1: Web appendix II). As dis-
cussed in [14], the model population occupied states
representing being susceptible to measles, being infected
with measles, and having recovered from measles with
lifelong immunity thereafter. The rate at which infection
occurred depended on the existing proportion of the
population who were already infected, the effective con-
tact rate between different age groups, and a periodic for-
cing term (using a sine function) representing seasonal
changes in measles transmissibility. Effective contact rates
and mixing between individuals in different age groups
were based on the British arm of the POLYMOD social
contact survey [15], as with our previous work [14]. We
also simulated measles case importation into the popula-
tion at a rate of one per week, to mitigate against unpre-
dictable effects on infection dynamics due to tiny fractions
of infected and numerical solver accuracy.
Although individuals in the population were categorized

according to discrete age classes from 0 to 80 years, a pro-
portion of each age class had their age incremented by one
at every time step. In keeping with the model described in
great detail in [14], vaccinated individuals were assumed to
have a reduced risk of measles infection. Vaccine efficacy
was assumed to be 85% for the first dose when vaccinating
before age one, 95% after age one, and 98% for two doses,
as suggested by a meta-analysis [16]. Vaccines were as-
sumed to be “all or nothing”: individuals receiving the vac-
cine were either completely protected or not at all. We
assumed that vaccination gave lifetime protection if it suc-
cessfully elicited an immune response, and that vaccinating
already infected individuals did not increase the rate of in-
fection clearance. The model was programmed using the
software R version 3.2.2 (www.r-project.org).
As in our previous study [14], the population age dis-

tribution was obtained from government sources [17]
along with crude birth rates and death rates to inform
initial age-specific population sizes and mortality rates.
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These demographic parameters were assumed to be
static over time (constant population growth) to avoid
difficulties around long-term population projection. The
average infectious period of measles was assumed to be
14 days [18]. Routine measles vaccination was assumed
to be delivered before age one, with the SIA being given
to all children between one and ten years. The probabil-
ity of receiving a routine and SIA dose was assumed to
be uncorrelated. Routine measles vaccine coverage was
obtained from government sources [13]. The timing of
the rollout and coverage estimates of the SIA doses were
based on that achieved by the 2010–2013 measles SIAs
[19, 20]. The SIA started in 2010 and increased in cover-
age year on year over three phases to reach a cumulative
coverage estimate of 91% across states receiving the SIA.
Different states had different timings; for example, Bihar
received the SIA earlier (phases 2 and 3) than UP (phase
3, which started in 2012) [20].

Model calibration
Model dynamics depend primarily on parameters (amp-
litude of seasonal variation in measles a0, basic
reproduction number R0) which cannot be directly ob-
served, so we instead infer these parameters by fitting
our model to the measles deaths data. First, we used the
measles mortality time series (Fig. 1) to infer the period-
icity in the oscillations in the number of measles deaths
over time in India, Bihar, and UP. To do so, we first
detrended the data using a Baxter-King filter [21] and
then conducted a spectral analysis of each of the three
time series applying a Fourier transform [11]. Subse-
quently, we obtained a spectrum composed of specific
frequencies (or periods) and corresponding amplitudes.
In our analysis, we used the five longest periods (1.50,
1.00, 0.75, 0.60, and 0.50 years).
Second, for India, Bihar, and UP, the dynamic model

was run for 100 years to allow it to reach a pre-

Fig. 1 Weekly measles deaths recorded over the period 2000–2003, for India (a), Bihar (b), and Uttar Pradesh (c), since the day of the first
measles death (source Million Death Study), with their associated frequency spectra with strength of harmonic on y-axis and period up to
2 years on x-axis. The black lines correspond to the raw data and corresponding spectra, while the red line denotes the data and spectra
post-detrending with the Baxter-King filter
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vaccination equilibrium, then run for a further 100 years
with routine vaccination to reach a post-vaccination
equilibrium, as implemented in [14]. We assumed rou-
tine first dose coverage only (at 56%), as there were no
SIAs in the years for which measles mortality data were
available (2000–2003). Subsequently, we obtained a peri-
odic time series of measles cases for distinct values of
the basic reproduction number (R0) and the amplitude
of the forcing term (a0). R0, which was defined using the
dominant eigenvalue of the next generation matrix, was
varied between 10 and 25 (based on ranges given in
[18]), while a0 was varied between 0 and 0.5 (Additional
file 1: Web appendix III, Figure S1). R0 was set by adjust-
ing the probability of an infected individual transmitting
measles to a susceptible individual following an effective
contact. The spectrum of the time series of measles cases
(once post-vaccination equilibrium was reached) was then
extracted for each combination of values of R0 and a0. As-
suming that periodicity in measles mortality would be the
same as periodicity in measles incidence (i.e., a constant
CFR), we then compared the model spectrum with the
mortality data spectra for India, Bihar, and UP.
We used the coherence function [22] as a measure of

similarity between the two time series (Additional file 1:
Web appendix III, section 2). Each (R0; a0) combination
was simulated and run until it reached equilibrium. For
each period of interest from the mortality data spectrum,
we estimated the coherence between the time series esti-
mated from the (R0; a0) combination and the measles
mortality time series. By combining the five coherence
estimates for each period (1.50, 1.00, 0.75, 0.60, and
0.50 years), we produced a pooled (or combined) coher-
ence [23] for each (R0; a0) combination (see the explan-
ation in Additional file 1: Web appendix III), from which
we could subsequently calculate a CFR estimate. We also
validated our procedure to ensure that a 3-year time
series provided sufficient information to recover values
of R0 and a0 from the underlying infection process (see
Additional file 1: Web appendix III, section 2).

Model analysis
First, based on the simulated models obtained, we esti-
mated the total number of measles cases, per given age
group, for India, Bihar, and UP for each R0 and seasonal
variation a0 combination. Subsequently, to estimate
CFR, we compared the total numbers of measles cases
estimated among under-five children with the numbers
of measles deaths among under-five children as extrapo-
lated from the same measles deaths data at the national
and state levels for 2005 by Morris and colleagues [10].
If the pooled coherence was significant, we used the as-
sociated coherence level for each simulated (R0; a0) com-
bination as weight to sample from the estimated cases
(i.e., case estimates from an (R0; a0) combination that

had a coherence value of 0.8 would have twice the prob-
ability of being sampled than those with a coherence of
0.4). This method produced a weighted distribution of
cases that we could then combine with the sampled distri-
butions of estimated deaths during the same time period
[10] (Additional file 1: Web appendix III, Table S1). This
yielded a CFR distribution for measles among under-five
children for India as a whole, Bihar, and UP, for 2005, pro-
vided with 95% CIs embedded in the coherence estimation
procedure (Additional file 1: Web appendix III, section 2).
Second, using the R0 and a0 parameters that produced the
greatest pooled coherence across the five chosen periods
and the estimated CFRs, we derived the number of mea-
sles deaths which would have occurred among under-five
children over the period 2000–2015 in India, Bihar, and
UP. Finally, we estimated the number of measles deaths
for under-five children that would occur over 2000–2015
had (1) the SIAs not happened, and (2) routine vaccin-
ation not occurred.

Results
The measles frequency spectrum for India showed
strong components for periods of 0.5, 1.0, and 1.5 years.
The Bihar frequency spectrum had a principal compo-
nent of 1.0 year, while the UP spectrum had strong
components at periods of 0.5 and 1.0 year (Fig. 1).
Subsequently, we ran the coherence estimations. Based
on the estimations for the pooled coherence (Fig. 2), we
extracted the following combinations for R0 and a0:
R0 = 24 and a0 = 0.18 for India as a whole, R0 = 20 and
a0 = 0.10 for Bihar, and R0 = 14 and a0 = 0.16 for UP.
Furthermore, we plotted the pooled coherence against

CFR for India, Bihar, and UP (Fig. 3), to display the asso-
ciated CFR values to the coherence values. This is done
because the varying of R0 and a0 sets both the period-
icity and the number of cases in the model, which deter-
mine the coherence and CFR, respectively. With the
pooled coherence estimates, we obtained the following
estimates of CFRs among under-five children calibrated
to the year 2005: 0.63% (95% CI: 0.40–1.00%) for India
as a whole; 0.62% (0.38–1.00%) for Bihar; 1.19% (0.80–
1.75%) for UP.
Over 2000–2015, assuming CFRs remained constant

over time, we estimated that a total of 607,000 (95% CI:
383,000–958,000) under-five deaths attributed to mea-
sles occurred in India as a whole. Likewise, 100,000
(61,000–161,000) under-five deaths caused by measles
occurred in Bihar, which represented about 17% of all
Indian under-five measles deaths; 313,000 (211,000–
461,000) under-five deaths caused by measles occurred
in UP, which represented around 52% of all Indian
under-five measles deaths.
If the SIAs of 2010–2013 had not occurred in India,

66,000 (95% CI: 41,000–108,000) excess under-five
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Fig. 2 (See legend on next page.)
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deaths would have occurred; among which 7000 (4100–
11,300) would have occurred in Bihar and 40,000 (27,000–
58,000) in UP. Lastly, if no routine vaccination coverage
or SIA occurred from 2000 to 2015, an additional 1.6
million (95% CI: 1.0–2.6 million) under-five deaths would
have occurred across India with 110,000 (70,000–169,000)
in Bihar and 491,000 (331,000–724,000) in UP.

Discussion
We present in this paper a data- and model-driven estima-
tion of the historical measles dynamics, CFR, and vaccin-
ation impact in India as a whole as well as in two key
states (Bihar and UP) for measles mortality. We used mea-
sles mortality data from verbal autopsy studies from a na-
tionally representative longitudinal cohort of 2.4 million
households and extracted the periodicity of measles epi-
demics, which allowed us to infer key parameters driving
the dynamics of measles transmission. To do this we used
spectral and coherence analysis together with statistical in-
ference using an age-stratified dynamic compartmental
model of measles transmission. This represents a first-of-
a-kind modeling approach for measles transmission in the
developing world.

Spectral analysis of measles mortality data suggested
that the time series consisted of the superposition of sev-
eral cycles of measles epidemics with different inter-
epidemic periods. We were able to estimate very high
basic reproduction numbers (R0 > 20) for the country as
a whole and Bihar. The case of UP with its lower esti-
mated basic reproduction number (R0 = 14) nevertheless
points to the great complexity and potentially significant
heterogeneity of measles transmission and mixing con-
tact patterns within the state. In addition, our modeling
approach allowed us to estimate a measles CFR between
0.40% and 1.80% in India, which offers a defensible
range of CFRs compared with those previously reported
in the literature [7]. It also enabled us to quantify the
burden of measles mortality in India, for which we de-
rived estimates in the range of other studies [24, 25].
Lastly, our analysis confirmed the likely high impact
[26–28] of measles SIAs in India which were rolled out
for about 110 million Indian children aged 9 months to
10 years [20] and could have potentially averted 66,000
deaths [19]. This is also consistent with the significant
child survival impact of SIA recently estimated for 25
sub-Saharan African countries [29].

(See figure on previous page.)
Fig. 2 Pooled coherence estimate across five periods (0.5, 0.6, 0.75, 1.0, 1.5 years) for India (a), Bihar (b), and Uttar Pradesh (c), plotted against
estimated basic reproduction number (R0) and amplitude of the forcing term (Amp or a0). Pink indicates a better match to periodicity in the
mortality data. The location of the maximum coherence is identified with an asterisk (*), and the 95% significance contour (coherence = 0.11) is
marked in dark blue

Fig. 3 Pooled coherence across five periods (0.5, 0.6, 0.75, 1.0, and 1.5 years) plotted against estimated case fatality risk (CFR) calculated from
corresponding R0 and a0 for India (a), Bihar (b), and Uttar Pradesh (c). The left and right green lines delimit the range of the CFR where coherence
is above the 95% significance level. The middle green line indicates the CFR for which the highest pooled coherence was estimated. The bottom
red line indicates the upper 95% significance limit for the coherence function
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Our modeling approach gives policymakers tools to es-
timate the impact of measles routine immunization and
SIAs in India, Bihar, and UP. India is highly diverse
in terms of geography, health systems, and local epi-
demiology. Due to a lack of robust mortality data at
state and district levels, this analysis modeled an in-
crease in overall vaccine coverage across India to the
average level seen in the recent SIA, rather than the
details of the SIA itself. As additional data become
available, our model will be able to capture finer scale
disease dynamics and more accurately assess interven-
tion impact.
Our study presents a number of strengths and limita-

tions. Our model is one of the few dynamic models [6, 30]
of measles transmission calibrated to measles data from
low- and middle-income countries; it is to the best of our
knowledge the only such model calibrated to measles
mortality data taking advantage of the spectral features
(periodicity) of measles infection [31]. As such, it enables
us to directly estimate the measles CFR for India, setting
itself free from the vast uncertainty in measles CFRs
pooled from previous studies [7]. In general, most at-
tempts at estimating measles mortality and vaccine impact
in low- and middle-income countries, and especially in
India, have focused on assuming a measles CFR taken
from the literature [5, 6, 27, 28, 32] and on good reporting
of measles case notifications during outbreaks, which is
unlikely. Hence, our paper proposes a new approach that
could strengthen measles mortality estimates and also be
applied to other settings where historical time series of
measles cases or deaths are available. It also builds on a
rich mortality dataset [8] rather than on under-reported
case notifications [33]. Yet, it has a number of limitations.
First, the time series used was short, with only 3 years of
measles deaths data, which increased the uncertainty of
the spectral estimation. Hence, the longest cycles in the
spectrum estimated (with period 1.5 years) may actually
be even longer (e.g., 2 years). This is supported by the fact
that most measles epidemics observed in the real world
have integer-valued periods. Other datasets may present a
longer time period; however, they often have a much
coarser nature (e.g., WHO measles case notification data
[33]), such as annual data rather than weekly data as with
the MDS. This can thus be equally restrictive in the pe-
riods calculable with Fourier analysis (Additional file 1:
Web appendix III, section 4). Second, it is possible that
some measles deaths were not recognized as such in the
MDS study, and as a result our CFR estimation would cor-
respond to a lower bound because of such under-
ascertainment. However, the MDS dataset has been well
validated and scrutinized to reduce biases and misclassifi-
cations in the assessment of under-five deaths [9, 10], so
we would anticipate this under-ascertainment to be min-
imal. Third, small number issues prevented us from

examining additional age groups (above age 5) and add-
itional states besides the highly populated states of Bihar
and UP. Fourth, our mortality data dated back from 2000
through 2003, which suggests that our extrapolation into
the future should be interpreted with caution. For ex-
ample, the CFR could well decrease over time as under-
five mortality decreases and health services improve. Fifth,
our modeling assumption of equilibrium behavior is a
simplification, because when vaccine coverage and birth
rates are changing, transitions in measles epidemic cy-
cles can also occur [31, 34]. However, this assumption
may not be highly inaccurate, because measles coverage
in India has been relatively stable in 2000–2003, and the
crude birth rate has been only gradually decreasing
from 1990 to 2005 [35, 36].

Conclusions
India is a key country for measles elimination objectives,
and between 2010 and 2013 India carried out measles
SIA campaigns targeting states where access to health
services is often limited. Our modeling approach enables
us to project measles incidence and mortality into the
future, allowing us to assess whether India could reach
measles elimination goals through both the scale-up of
routine immunization and the implementation of SIA
mass campaigns. A similar approach (e.g., Fourier ana-
lysis) could be applied in any setting with a time series
of measles deaths or notifications indicating the period-
icity of outbreaks, regardless of under-reporting in the
data. Hence, one could examine the progress of other
measles priority countries toward achievement of mea-
sles control and elimination.
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Abbreviations
CFR: Case fatality risk; DynaMICE: Dynamic Measles Immunization Calculation
Engine; MDS: Million Death Study; SIA: Supplemental immunization activity;
UP: Uttar Pradesh; WHO: World Health Organization

Acknowledgements
This work was funded by the WHO’s Initiative for Vaccine Research and Gavi,
the Vaccine Alliance. The views expressed are those of the authors and do not
necessarily represent the views of these institutions. This study could not have
been completed without the support of Raymond Hutubessy. We thank
Arindam Nandi and Ashvin Ashok for sourcing relevant data. We received
valuable comments from Matthew Ferrari and from participants of a workshop
on the broader economic benefits of vaccination and of the fourth meeting of
WHO’s SAGE working group in measles and rubella, particularly John Edmunds
and Peter Strebel. Finally, we thank two reviewers for very helpful and
constructive comments on our manuscript.

Verguet et al. BMC Medicine  (2017) 15:151 Page 7 of 8

dx.doi.org/10.1186/s12916-017-0908-3


Availability of data and materials
Part of the data utilized in this study are secondary data extracted from a
dataset property of the Registrar General of India and the overall mortality
results have been published [10, 37]. The rest of the data utilized is available
as referenced in the article.

Authors’ contributions
SV and MJit initiated and conceptualized the study. WS and PJ provided the
data. EJ, MJit, and SV coded the model and conducted the coherence
analyses. SV coordinated the research and did the spectral analysis with EJ
and MJit. SV wrote the first draft of the manuscript. MJit, EJ, MJohri, SKM,
CLG, WS, and PJ reviewed the report and provided advice and suggestions.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Anonymous secondary data were used (Additional file 1: Web appendix I
provides MDS research ethics details).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Global Health and Population, Harvard T.H. Chan School of
Public Health, 665 Huntington Avenue, Boston, MA, USA. 2Department of
Infectious Disease Epidemiology, London School of Hygiene and Tropical
Medicine, London, UK. 3University of Montreal Hospital Research Centre
(CRCHUM), Montréal, Québec, Canada. 4Department of Health Management,
Evaluation and Policy, School of Public Health, University of Montreal,
Montréal, Québec, Canada. 5Division of Infectious Diseases, Hospital for Sick
Children, Department of Pediatrics, University of Toronto, Toronto, Ontario,
Canada. 6Center for Global Health Research, Saint Michael’s Hospital and
University of Toronto, Toronto, Ontario, Canada. 7Canadian Partnership
Against Cancer, Toronto, Ontario, Canada. 8Modelling and Economics Unit,
Public Health England, London, UK.

Received: 16 December 2016 Accepted: 3 July 2017

References
1. World Health Organization. Global Immunization Vision and Strategy, 2006–

2015. Geneva: World Health Organization; 2005. http://apps.who.int/iris/
bitstream/10665/69146/1/WHO_IVB_05.05.pdf.

2. World Health Organization. Global Measles and Rubella Strategic Plan 2012–
2020. Geneva: World Health Organization; 2012. http://www.
measlesrubellainitiative.org/wp-content/uploads/2013/06/Measles-Rubella-
Strategic-Plan.pdf.

3. Orenstein WA, Hinman AR, Strebel PJ. Measles: the need for 2 opportunities
for prevention. Clin Infect Dis. 2006;42:320–1.

4. World Health Organization. Measles vaccines: WHO position paper. Wkly
Epidemiol Rec. 2009;84:349–60.

5. Wolfson LJ, Strebel PM, Gacic-Dobo M, et al. Has the 2005 measles mortality
reduction goal been achieved? A natural history modelling study. Lancet.
2007;369:191–200.

6. Simons E, Ferrari M, Fricks J, Wannemuehler K, Anand A, et al. Assessment
of the 2010 global measles mortality reduction goal: results from a model
of surveillance data. Lancet. 2012;379(9832):2173–8.

7. Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM. Estimates of
measles case fatality ratios: comprehensive review of community-based
studies. Int J Epidemiol. 2009;38:192–205.

8. Centre for Global Health Research. Million Death Study (MDS). http://www.
cghr.org/index.php/projects/million-death-study-project. Accessed 29 Dec 2015.

9. Bassani DG, Kumar R, Awasthi S, Morris SK, Paul VK, et al. Causes of neonatal
and child mortality in India: a nationally representative mortality survey.
Lancet. 2010;376(9755):1853–60.

10. Morris SK, Awasthi S, Kumar R, Shet A, Khera A, et al. Measles mortality in
high and low burden districts of India: estimates from a nationally
representative study of over 12,000 deaths. Vaccine. 2013;31(41):4655–61.

11. Bracewell R. The Fourier transform and its applications. New York:
McGraw-Hill; 1965.

12. Ram U, Jha P, Ram F, Kumar K, Awasthi S, et al. Neonatal, 1-59 month, and
under-5 mortality in 597 Indian districts, 2001 to 2012: estimates from national
demographic and mortality surveys. Lancet Global Health. 2013;1(4):e219–26.

13. Government of India Ministry of Health and Family Welfare. 2009 coverage
evaluation survey. New Delhi: UNICEF India Country Office; 2010.

14. Verguet S, Johri M, Morris SK, Gauvreau CL, Jha P, Jit M. Controlling measles
using supplemental immunization activities: a mathematical model to inform
optimal policy. Vaccine. 2015;33:1291–6.

15. Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. Social contacts and
mixing patterns relevant to the spread of infectious diseases. PLoS Med.
2008;5(3):e74.

16. Sudfeld CR, Navar AM, Halsey NA. Effectiveness of measles vaccination and
vitamin A treatment. Int J Epidemiol. 2010;39 Suppl 1:48–55.

17. Office of the Registrar General & Census Commissioner, India. Census of
India 2001. Population projections for India and states 2001–2026 (revised
December 2006).

18. Anderson RM, May RM. Infectious diseases of humans: dynamics and control.
Oxford: Oxford University Press; 1991.

19. Johri M, Verguet S, Morris SK, et al. Adding interventions to mass measles
vaccinations in India. Bull World Health Organ. 2016;94:718-27.

20. Ministry of Health and Family Welfare India. Measles SIA Coverage India
2010–2013. New Delhi: Ministry of Health and Family Welfare India; 2014.

21. Baxter M, King RG. Measuring business cycles: approximate band-pass filters
for economic time series. Rev Econ Stat. 1999;81(4):575–93.

22. Brillinger DR. Time series: data analysis and theory. 2nd ed. San Francisco:
Holden Day; 1981.

23. Amjad AM, Halliday DM, Rosenberg JR, Conway BA. An extended difference
of coherence test for comparing and combining several independent
coherence estimates: theory and application to the study of motor units
and physiological tremor. J Neurosci Methods. 1997;73(1):69–79.

24. Institute for Health Metrics and Evaluation. Global Burden of Disease Study
2013. http://vizhub.healthdata.org/gbd-compare/. Accessed 30 Dec 2015.

25. Liu L, Oza S, Hogan D, Perrin J, Rudan I, et al. Global, regional, and national
causes of child mortality in 2000–2013, with projections to inform post-2015
priorities: an updated systematic analysis. Lancet. 2015;385:430–40.

26. Dabral M. Cost-effectiveness of supplementary immunization for measles in
India. Indian Pediatr. 2009;46:957–62.

27. Bishai D, Johns B, Lefevre A, Nair D. Cost-effectiveness of measles eradication.
Final report. http://www.who.int/immunization/sage/1_Bishai_Economic_
analysis.pdf. Accessed 29 Dec 2015.

28. Levin A, Burgess C, Garrison L, Bauch C, Babigumira J. Economic evaluation
of measles eradication study: results for six countries and by income
groups. http://www.who.int/immunization/sage/2_Levin_Economic_
Evaluation_of_Measles_Eradication_final.pdf. Accessed 28 Jul 2017.

29. Ben Yishai A, Kranker K. All-cause mortality reductions from measles catchup
campaigns in Africa. J Hum Resour. 2015;50(2):516–47.

30. Ferrari MJ, Grais RF, Bharti N, Conlan AJK, Bjornstadt O, et al. The dynamics
of measles in sub-Saharan Africa. Nature. 2008;451:679–84.

31. Earn DJ, Rohani P, Bolker B, Grenfell BT. A simple model for complex dynamical
transitions in epidemics. Science. 2000;287:667–70.

32. Ozawa S, Clark S, Portnoy A, Grewal S, Brenzel L, Walker DG. Return on
investment from childhood immunization in low- and middle-income
countries, 2011–20. Health Affairs. 2016;35(2):199–207.

33. World Health Organization. Measles surveillance data. http://www.who.int/
immunization/monitoring_surveillance/burden/vpd/surveillance_type/
active/measles_monthlydata/en/. Accessed 29 Dec 2015.

34. Hempel K, Earn DJD. A century of transitions in New York City’s measles
dynamics. J R Soc Interface. 2015;12:20150024.

35. World Health Organization. WHO-UNICEF estimates of MCV1 coverage.
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/
tswucoveragemcv1.html. Accessed 19 Mar 2017.

36. World Bank. World Development Indicators. http://data.worldbank.org/data-
catalog/world-development-indicators. Accessed 19 Mar 2017.

37. Registrar General of India and Center for Global Health Research. Causes of death
in India, 2001-2003: sample registration system. Government of India; 2009.

Verguet et al. BMC Medicine  (2017) 15:151 Page 8 of 8

http://apps.who.int/iris/bitstream/10665/69146/1/WHO_IVB_05.05.pdf
http://apps.who.int/iris/bitstream/10665/69146/1/WHO_IVB_05.05.pdf
http://www.measlesrubellainitiative.org/wp-content/uploads/2013/06/Measles-Rubella-Strategic-Plan.pdf
http://www.measlesrubellainitiative.org/wp-content/uploads/2013/06/Measles-Rubella-Strategic-Plan.pdf
http://www.measlesrubellainitiative.org/wp-content/uploads/2013/06/Measles-Rubella-Strategic-Plan.pdf
http://www.cghr.org/index.php/projects/million-death-study-project
http://www.cghr.org/index.php/projects/million-death-study-project
http://vizhub.healthdata.org/gbd-compare/
http://www.who.int/immunization/sage/1_Bishai_Economic_analysis.pdf
http://www.who.int/immunization/sage/1_Bishai_Economic_analysis.pdf
http://www.who.int/immunization/sage/2_Levin_Economic_Evaluation_of_Measles_Eradication_final.pdf
http://www.who.int/immunization/sage/2_Levin_Economic_Evaluation_of_Measles_Eradication_final.pdf
http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragemcv1.html
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragemcv1.html
http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Measles deaths data
	Dynamic model of measles transmission
	Model calibration
	Model analysis

	Results
	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

