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Abstract Methylaspartate ammonia lyase (MAL; EC
4.3.1.2) catalyzes the reversible addition of ammonia to
mesaconate to give (25,3S5)-3-methylaspartate and (2S5,3R)-
3-methylaspartate as products. MAL is of considerable
biocatalytic interest because of its potential use for the
asymmetric synthesis of substituted aspartic acids, which
are important building blocks for synthetic enzymes,
peptides, chemicals, and pharmaceuticals. Here, we have
cloned the gene encoding MAL from the thermophilic
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bacterium Carboxydothermus hydrogenoformans Z-2901.
The enzyme (named Ch-MAL) was overproduced in
Escherichia coli and purified to homogeneity by immobi-
lized metal affinity chromatography. Ch-MAL is a dimer in
solution, consisting of two identical subunits (~49 kDa
each), and requires Mg** and K' ions for maximum
activity. The optimum pH and temperature for the deami-
nation of (25,35)-3-methylaspartic acid are 9.0 and 70°C
(keat=T78 s! and K,=16 mM). Heat inactivation assays
showed that Ch-MAL is stable at 50°C for >4 h, which is
the highest thermal stability observed among known
MALs. Ch-MAL accepts fumarate, mesaconate, ethylfuma-
rate, and propylfumarate as substrates in the ammonia
addition reaction. The enzyme also processes methylamine,
ethylamine, hydrazine, hydroxylamine, and methoxylamine
as nucleophiles that can replace ammonia in the addition to
mesaconate, resulting in the corresponding N-substituted
methylaspartic acids with excellent diastereomeric excess
(>98% de). This newly identified thermostable MAL
appears to be a potentially attractive biocatalyst for the
stereoselective synthesis of aspartic acid derivatives on
large (industrial) scale.

Keywords Methylaspartate ammonia lyase - Thermostable
enzyme - Carboxydothermus hydrogenoformans - Enzyme
catalysis - Amino acids

Introduction

Enantiomerically pure amino acids constitute a significant
part of the chiral building blocks for a range of natural
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products, pharmaceuticals, and agrochemicals (Schulze and
Wubbolts 1999; Pollard and Woodley 2007; Panke et al.
2004). The synthesis of enantiomerically pure amino acids
still remains a challenging task with traditional chemical
catalysts (Schoemaker et al. 2003; Weiner et al. 2010). In
some cases, the use of biocatalysts is an attractive alternative
option (Wohlgemuth 2010). Recently, the ammonia lyases
and aminomutases (which exhibit ammonia lyase activity)
have gained a lot of interest for the asymmetric synthesis of
chiral x- and f3-amino acids, with the advantage that they
use readily available unsaturated acids as substrates (Turner
2010; Verkuijl et al. 2010; Szymanski et al. 2009; Wu et al.
2009, 2010; Weiner et al. 2008). However, most known
ammonia lyases show low stability and therefore they are not
compatible with the harsh reaction conditions that are usually
required for industrial processes, such as high temperature,
high pH, and high ammonia concentrations needed to
catalyze the reverse reactions (Turner 2010). Hence, there
is a clear need for the discovery and characterization of novel
ammonia lyases with increased stability.

3-Methylaspartate ammonia lyase (MAL; EC 4.3.1.2)
catalyzes the reversible amination of mesaconate (1) to give
(25,35)-3-methylaspartate (2) as a major product and
(25,3R)-3-methylaspartate (3) as a minor product (Scheme 1)
(Barker et al. 1959; Goda et al. 1992). MAL was discovered
initially in Clostridium tetanomorphum and subsequently
also in several other anaerobic bacteria, where the enzyme
forms part of the glutamate catabolic pathway that converts
(S)-glutamic acid via 2 to finally yield acetyl-CoA (Kato and
Asano 1997). Recently, it has been shown that MAL also
forms part of the methylaspartate cycle in haloarchaea, in
which acetyl-CoA is oxidized to glyoxylate via methylas-
partate. This is a novel pathway of carbon assimilation in
addition to the already known glyoxylate cycle and
ethylmalonyl-CoA pathway (Khomyakova et al. 2011).

Microbial genome and metagenome sequencing projects
have revealed that there is a large diversity of protein
sequences that based on sequence similarities to C. fetano-
morphum MAL (Ct-MAL) might be classified as putative
MALs. However, so far, MALs have been isolated and
characterized from only a few different organisms, including
C. tetanomorphum, Bacterium cadaveris, Morganella mor-
ganii, Citrobactor amalonaticus, Escherichia coli, and
Fusobacterium varium (Barker et al. 1959; Kato and Asano

+ +
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Scheme 1 MAL-catalyzed reversible amination of mesaconate to
yield (25,35)- and (2S,3R)-3-methylaspartate
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1997, 1995a, b; 1998; Asano and Kato 1994). The best
studied MALs are those from C. tetanomorphum and C.
amalonaticus, for both of which the structures have been
solved by X-ray crystallography (Levy et al. 2002; Asuncion
et al. 2002). Based on these structural studies (Levy et al.
2002; Asuncion et al. 2002) and recent mutagenesis
experiments (Raj et al. 2009), a mechanism has emerged
for the MAL-catalyzed deamination reaction. In this
proposed mechanism, a (S)- or (R)-specific catalytic base
(Lys-331 and His-194, respectively; C+~-MAL numbering)
abstracts the C-3 proton of the respective stereoisomer of
3-methylaspartate to generate an enolate anion intermedi-
ate that is stabilized by coordination to the essential active
site. Mg?" jon. Collapse of this intermediate eliminates
ammonia and yields the product, mesaconate.

Ct-MAL has been shown to accept a range of different
nucleophiles (amines) and electrophiles (substituted fuma-
rates). The broad substrate scope of Ct-MAL has been
exploited for the stereoselective synthesis of various N-, 3-,
and N,3-(di)substituted aspartic acids (Akhtar et al. 1987;
Botting et al. 1988; Gulzar et al. 1997). A recent
mutagenesis study on Cz-MAL has shown that the
H194A, Q329A, and K331A mutants display distinct
diastereoselectivities and may be useful for the diastereo-
selective synthesis of (25,35)-3-methylaspartic acid (Raj et
al. 2009). Its broad substrate scope, high activity, and
stereoselectivity make Ct-MAL an attractive biocatalyst for
organic synthesis. However, the enzyme is not stable upon
long-term storage (at +4 or —80°C) and rapidly loses
activity at elevated temperatures (Barker et al. 1959).
Hence, in order to use the MAL reaction for biocatalytic
applications, it is essential to identify putative MAL
isozymes with increased stability.

In this study, we screened the microbial genomes
available in the NCBI database for homologues of Ct-
MAL with the aim to identify MALs from thermophilic
microorganisms. Here, we report the identification of a
MAL enzyme (designated Ch-MAL) from the thermophilic
bacterium Carboxydothermus hydrogenoformans Z-2901,
which was isolated from a hot spring in Russia and grows
at very high temperatures (Svetlichny et al. 1991; Wu et al.
2005), which shares significant sequence identity (53%)
with C-MAL. The gene encoding Ch-MAL was cloned
and the corresponding enzyme overproduced, purified, and
subjected to kinetic and biochemical characterization. Ch-
MAL shows optimal activity at 70°C and pH 9.0 and is
stable at 50°C for >4 h, which is the highest thermal
stability observed among reported MALs. Like C-MAL,
Ch-MAL has a broad substrate scope, accepting various
substituted fumarates and amines, and exhibits high activity
and diastereoselectivity. This makes Ch-MAL an attractive
enzyme for biocatalytic applications, as well as a promising
scaffold for engineering to yield highly stable and efficient
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enzymes for the asymmetric synthesis of new aspartic acid
derivatives.

Materials and methods
Materials

All chemicals were purchased from Sigma-Aldrich unless
stated otherwise. The sources for the media components,
buffers, solvents, Pre-packed PD-10 Sephadex G-25 col-
umns, and molecular biology reagents, including PCR
purification, gel extraction, and Miniprep kits, are reported
elsewhere (Raj et al. 2009). Oligonucleotides for DNA
amplification were synthesized by Operon Biotechnologies
(Cologne, Germany).

Bacterial strains, plasmids, and growth conditions

E. coli strain TOP10 (Invitrogen) was used for cloning,
isolation of plasmids, and in combination with the pPBAD/
Mpyc-His A vector (Invitrogen) for recombinant protein
production. The genomic DNA of C. hydrogenoformans Z-
2901, the source of the Ch-MAL gene, was kindly provided
by Professor Frank Robb (Center of Marine Biotechnology,
University of Maryland, USA). E. coli TOP10 cells were
grown in Luria—Bertani (LB) medium containing 100 pg/
mL ampicillin (Ap). Ct-MAL was produced in E. coli
TOP10 and purified to homogeneity using a previously
published protocol (Raj et al. 2009).

General methods

BLASTP searches of the National Center for Biotechnol-
ogy Information (NCBI) databases were performed using
the Ct-MAL amino acid sequence (GenBank number
AAB24070.1) as the query sequence. Amino acid sequen-
ces were aligned using a version of the ClustalW multiple-
sequence alignment routines available in the computational
tools at the EMBL-EBI website. Techniques for restriction
enzyme digestions, ligation, transformation, and other
standard molecular biology manipulations were based on
methods described elsewhere (Sambrook et al. 1989) or as
suggested by the manufacturer. PCR was carried out in a
DNA thermal cycler (model GS-1) obtained from Biolegio
(Nijmegen, The Netherlands). DNA sequencing was per-
formed by Macrogen (Seoul, South Korea). Proteins were
analyzed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) under denaturing conditions
on gels containing polyacrylamide (10%). The gels were
stained with Coomassie brilliant blue. Protein concentra-
tions were determined by the Waddell method (Waddell
1956). Kinetic data were obtained on a V-650 spectropho-

tometer from Jasco (IJsselstein, The Netherlands). High
performance liquid chromatography (HPLC) was performed
using a Waters 510 HPLC Pump (Waters Corporation,
USA) in combination with a variable wavelength UV
detector 875-UV (Jasco) and a BD112 recorder (Kipp
and Zonen, The Netherlands). '"H NMR spectra were
recorded on a Varian Inova 500 (500 MHz) spectrometer
using a pulse sequence for selective suppression of the
proton signals for water by presaturation methods. 'H
chemical shifts (§) are reported in parts per million (ppm)
downfield from tetramethylsilane and are calibrated on
protons in the NMR solvents (H,O: §=4.79).

Construction of the expression vector for the production
of Ch-MAL

The Ch-MAL gene was amplified from genomic DNA of C.
hydrogenoformans 7-2901 (Wu et al. 2005) using two
synthetic primers and high fidelity Phusion polymerase by
following the protocol supplied with the polymerase
(Finnzymes, Espoo, Finland). The forward primer (5'-G
GAG CGG TGG CAT ATG AGA ATA AAA GAT G -3)
contains an Ndel restriction site (in bold) followed by 13
bases corresponding to the coding sequence of the Ch-MAL
gene. The reverse primer (5'- CC TTC CGG AAG CTT
ACC AAC TTT TTT CTG AAA TGT GAC C -3') contains
a HindlIll restriction site (in bold) followed by 25 bases
corresponding to the complementary sequence of the Ch-
MAL gene. The resulting PCR product and the pBADN/
Myc-His A vector were digested with Ndel and HindIll
restriction enzymes, purified, and ligated using T4 DNA
ligase. Aliquots of the ligation mixture were transformed into
competent E. coli TOP10 cells. Transformants were selected
at 37°C on LB/Ap plates. Plasmid DNA was isolated from
several colonies and analyzed by restriction analysis for the
presence of the insert. The cloned Ch-MAL gene was
sequenced to verify that no mutations had been introduced
during the amplification of the gene.

Expression and purification of Ch-MAL

The Ch-MAL enzyme was produced in E. coli TOP10 using
the pPBADN expression system. Fresh TOP10 cells
containing the appropriate expression plasmid were
collected from a LB/Ap plate using a sterile loop and
used to inoculate LB/Ap medium (15 mL). After growth
for 8 h at 37°C, a sufficient quantity of the culture was
used to inoculate 1 L of fresh auto-induction (ZYM)
medium (10 g/L trypton, 5 g/L yeast extract, 25 mM
Na,HPO, buffer, 25 mM KH,PO,4, 5 mM Na,SO,4,
pH 6.7), containing 0.5% (v/v) glycerol, 0.05% (w/v)
glucose, MgSO, (2 mM), ampicillin (100 pg/mL), and
arabinose (0.05% w/v), in a 3-L Erlenmeyer flask to an
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initial Ago9 of ~0.1 (Studier 2005). Cultures were grown
for 24 h at 22°C with vigorous (170 rpm) shaking. Cells
were harvested by centrifugation (6,000xg, 15 min).
Protein purification was performed using an immobilized
metal affinity chromatography procedure as previously
described (Raj et al. 2009). The elution buffer was
exchanged against Tris—HCIl buffer (50 mM, pH 8.0),
containing MgCl, (2 mM) and KCI (0.1 mM), using a pre-
packed PD-10 Sephadex G-25 gel filtration column. The
purified enzyme was stored at +4°C or —80°C until further
use. At both temperatures, the enzyme can be stored for
several months without significant loss of activity.

Determination of the molecular mass of Chi-MAL

The native molecular mass of Chi-MAL was determined
by gel filtration chromatography. The purified enzyme
(1 mg/mL) was applied to a Superdex 200 column (10/
300; GE Healthcare, USA), previously equilibrated with
Tris—HCI buffer (50 mM, pH 8.0), containing MgCl,
(2 mM) and KCl (0.1 mM). The column was eluted with
the same buffer at a flow rate of 0.5 mL/min. The column
was calibrated with the reference proteins aldolase (MW
158 kDa), bovine serum albumin (MW, 66.7 kDa), and
ovalbumin (MW, 44 kDa) (GE Healthcare). The subunit
molecular mass of Ch-MAL was determined by mass
spectrometry using an API 3000 triple-quadrapole mass
spectrometer (Applied Biosystems/MDS Sciex) connected
to an LC system via a TurbolonSpray source. For this, the
Tris—HCI buffer of the protein sample was exchanged to
NH4CO,H (5 mM, pH 7.0) using a Nanosep centrifugal
device (PALL Life Sciences). Data were collected and
analyzed using Analyst 1.5.1 data acquisition software
(Applied Biosystems/MDS Sciex).

Enzyme assays

The rate of the MAL-catalyzed amination of 1 was
monitored by following the depletion of 1 at 270 nm (=
482 M™' cm™") in Tris—HCI buffer (500 mM, pH 9.0)
containing MgCl, (20 mM) and NH,4CI (400 mM) at 30°C
(Raj et al. 2009). The rate of the MAL-catalyzed
deamination of 2 was monitored by following the
formation of 1 at 240 nm (¢=3,850 M ' em™") in Tris—
HCI buffer (500 mM, pH 9.0), containing MgCl, (20 mM)
and KCI1 (1 mM), at either 30°C or 70°C (Botting et al.
1988; Raj et al. 2009). At 70°C, the pH of the Tris buffer
was adjusted to the desired pH of 9.0. Like Ct-MAL, Ch-
MAL requires both Mg®" and K" ions for its deamination
activity, whereas for the amination activity only Mg”" is
needed. Optimal activity was obtained with 20 mM MgCl,
and 1 mM KCl, and these concentrations were used for all
enzyme assays.

@ Springer

Determination of pH and temperature optima of MAL

The pH optima of Chi-MAL and C+-MAL were determined in
Tris—HCI buffer (500 mM), containing MgCl, (20 mM) and
KCI (1 mM), with pH values ranging from 6.0 to 9.5 at 30°C.
A sufficient quantity of enzyme was added and its activity
assayed using 2 (15 mM) as the substrate. Stock solutions of
2 were made in Tris buffer (500 mM), and the pH of the
stock solutions were adjusted to the desired pH (6.0-9.5).
The normalized initial reaction rates were plotted against pH.

The temperature optima for Ch-MAL and C+-MAL were
determined in Tris—HCI buffer (500 mM, pH 9.0), containing
MgCl, (20 mM) and KCI (1 mM), using a temperature range
of 10-90°C. At each temperature, the pH of the Tris buffer
was adjusted to the desired pH (9.0). A sufficient quantity of
enzyme was added and its activity assayed using 2 (15 mM)
as the substrate. Stock solutions of 2 were made in Tris—HCI
buffer (500 mM, pH adjusted to 9.0). The normalized initial
reaction rates were plotted against temperature.

Thermostability assay

The thermostability of CA--MAL or C+-MAL was examined
in Tris—HCI buffer (500 mM, pH 9.0), containing MgCl,
(20 mM) and KCI (I mM). An appropriate amount of
enzyme was incubated in the assay buffer (25 mL) at 50°C.
Samples (1 mL) were withdrawn every 5 min, and the
residual activity was measured using 2 (15 mM) as the
substrate. The initial reaction rates were plotted against time.

Product analysis of the amination of 1 by MAL

"H NMR spectra monitoring the Ch-MAL- or Ct-MAL-
catalyzed amination of 1 were recorded according to a
protocol reported elsewhere (Raj et al. 2009), with the
following modifications. Reaction mixtures consisted of
NH,4CI (500 pL of 1 M stock solution in water, pH 9.0,
containing 20 mM MgCl,), D,O (100 pL), and 1 (100 pL of
a 500 mM stock solution in water, pH 9.0). Reactions were
initiated by the addition of 10-15 pL of freshly purified
enzyme (400 pg of either C+-MAL or Ch-MAL), and each
reaction mixture was incubated at 22°C. 'H NMR spectra
were recorded 2 h, 7 days, and 14 days after the addition of
enzyme. Product amounts were estimated by integration of
the signals corresponding to 2 and 3. The 'H NMR signals
for 1, 2, and 3 were previously reported (Raj et al. 2009).

Procedure for the nucleophile screening

The nucleophile scope of Chi-MAL was examined by using
"H NMR spectroscopy. Ch-MAL was incubated (in
separate reactions) with different amines in the presence
of 1. The reaction mixtures consisted of amine (500 pL of a
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1 M stock solution in water, pH 9.0, containing 20 mM
MgCl,), 1 (100 pL of a 500 mM stock solution in water,
pH 9.0), and D,O (100 uL). Reactions were initiated by the
addition of 10-15 pL of freshly purified Ch-MAL
(400 ng), and each reaction mixture was incubated at 22°C.
"H NMR spectra were recorded 2 h, 7 days, and 14 days
after the addition of enzyme. To identify the products of the

Synthesis of 2-substituted fumaric acids

o) o) O (0]
)J\)J\ o
OEt EtOH, Na

A

reactions and to assign their relative (threo or erythro)
configuration, the "H NMR spectra were compared to those
generated for the same reactions catalyzed by Ct-MAL
(performed as described above for Ch-MAL) as well as to
previously published 'H NMR spectral data (Akhtar et al.
1987; Gulzar et al. 1997). Relative product distributions were
estimated by integration of the corresponding signals.

1. Bry, Et,0 o R

D — )%(OH
2. KOH, EtoH HO

3. KOH, H,0 o)

4a: R=nPr 7% (from A)
4b: R=nBu 24% (from A)
4c: R=Et 33% (from B)

4a: 2-Propylfumaric acid The synthesis of 4a (and 4b and
4c¢) is largely based on a previously published protocol
(Akhtar et al. 1987). Accordingly, sodium (10 mmol,
230 mg) was dissolved in ethanol (6.0 mL). Ethyl
acetoacetate (9.0 mmol, 1.14 mL) was added dropwise over
5 min at 5°C, followed by n-propyl iodide (12 mmol,
1.17 mL). The reaction mixture was refluxed for 2 h and was
then cooled to room temperature, poured on water (30 mL),
and extracted with Et;0 (3%25 mL). Organic fractions,
containing a mixture of mono- and dialkylated product, were
dried and concentrated to ~15 mL volume. Bromine (4.0 g)
was added slowly at room temperature, and the reaction
mixture was refluxed for 3 h. The volatiles were evaporated,
and the residue was slowly added to a solution of KOH
(4.0 g) in ethanol (15 mL). The resultant mixture was heated
at reflux for 30 min, after which 20 mL of water was added
and the refluxing continued for another 20 min. The reaction
mixture was washed with EtOAc (2x40 mL). The aqueous
phase was acidified with aqueous HCI (12 N) to pH<1 and
extracted with Et;0 (4x50 mL). The collected organic
fractions were dried, decolourized with activated carbon, and
the solvent was evaporated. The resultant residue was
triturated with pentane to yield white crystals (100 mg, 7%)
[Mp., 173.5-174.7°C (lit., 172—174°C, Akhtar et al. 1987);
'"H NMR (400 MHz, D,0+K,COs): § 0.70 (t, 3H, *J=
7.6 Hz, CH3), 1.19-1.25 (m, 2H, CH;CH,), 2.63 (t, 2H, *J=
7.2 Hz, CH,C=C), 6.18 (s, 1H, vinyl H)]. 'H NMR was
consistent with literature data (Akhtar et al. 1987).

4b: 2-Butylfumaric acid This was prepared according to the
same procedure as 2-propylfumaric acid [yield, 24%; yellow
crystals; Mp., 171.7-172.5°C (lit., 170-171°C, Akhtar et al.

1987); 'TH NMR (400 MHz, D,O+K,CO): 6 0.71 (t, 3H, *J=
7.2 Hz, CH3), 1.06-1.24 (m, 4H, CH;CH,CH,), 2.31 (t, 2H,
3J=7.2 Hz, CH,C=C), 6.17 (s, 1H, vinyl H)]. '"H NMR was
consistent with literature data (Akhtar et al. 1987).

4c: 2-Ethylfumaric acid This was prepared according to the
same procedure as 2-propylfumaric acid, starting with commer-
cially available ethyl 2-ethylacetoacetate [yield, 33%; yellow
crystals; Mp., 197-198°C (lit., 195°C, Akhtar et al. 1987); 'H
NMR (400 MHz, D,0): 6 0.89 (t, 3H, >J=7.2 Hz, CHj), 2.49
(d, 2H, *J=7.2 Hz, CH,), 6.57 (s, 1H, vinyl H)]. "H NMR was
consistent with literature data (Akhtar et al. 1987).

Procedure for the electrophile screening

The electrophile scope of Ch-MAL was analyzed by 'H
NMR spectroscopy. In separate experiments, Ch-MAL
was incubated with fumarate (or substituted fumarates)
and ammonia. Reaction mixtures consisted of NH,4Cl
(500 uL of 1 M stock solution in water, pH 9.0, containing
20 mM MgCl,), D,O (100 uL), and (substituted) fumarate
(100 uL of a 500-mM stock solution in water, pH 9.0).
Reactions were initiated by the addition of 10-15 puL of
freshly purified Ch-MAL (400 pg), and each reaction
mixture was incubated at 22°C. "H NMR spectra were
recorded 2 h, 7 days, and 14 days after the addition of
enzyme. To identify the products of the reactions and to
assign their relative (threo or erythro) configuration, the 'H
NMR spectra were compared to those obtained for the same
reactions catalyzed by C+-MAL (performed as described
above for Ch-MAL) as well as to previously published 'H
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NMR spectral data (Akhtar et al. 1987; Gulzar et al. 1997).
Product amounts were estimated by integration of the
corresponding signals.

The enantiomeric excess of the product of the MAL-
catalyzed addition of ammonia to fumarate (i.e., aspartate)
was determined by chiral HPLC using a Chirex 3126-(D)-
penicillamine column (250%4.6 mm, Phenomenex, USA)
with 2 mM CuSOQO, solution-methanol (90:10) as eluent at a
flow rate of 1 mL/min. Retention times were as follows:
(S)-aspartate, 23.4 min; (R)-aspartate, 31 min).

Preparative scale synthesis of threo-(2S,3S)-N,
3-dimethylaspartic acid

Purified Ch-MAL was used for the synthesis of threo-(2S,3S)-
N,3-dimethylaspartic acid. A solution (20 mL) of 1 (0.2 g,
1.54 mmol), methylamine (1.04 g, 15.4 mmol), and MgCl,
(20 mM) was prepared. The pH was adjusted to 9.0 by the
addition of small aliquots of an aqueous NaOH (I M)
solution. The reaction was started by the addition of CA--MAL
(10 mg), and the reaction mixture was incubated at 50°C. The
progress of the reaction was monitored using 'H NMR
(500 MHz) spectroscopy. After 8 days, the reaction was
terminated, and the reaction mixture was lyophilized, after
which the product was purified using cation exchange
chromatography (Dowex, 50W X8, 100-200 mesh size,
Merck). A Dowex column (15.0 g resin per 1 g of mesaconate)
was prepared by pretreatment of the resin with a solution of
aqueous NH3 (2 M, four column volumes), aqueous HCI
(1 N, two column volumes), and distilled water (four column
volumes). The lyophilized reaction mixture was suspended
in aqueous HCI (1 N, 20 mL) and loaded on the column. The
column was washed with distilled water (one column
volume), and the product was eluted with aqueous NHj
(2 M, two column volumes). The ninhydrin-positive frac-
tions were pooled and concentrated under reduced pressure,
followed by lyophilization. The product was obtained as a
white solid (152 mg) {yield, 61%; '"H NMR (200 MHz,
D,0): § 1.13 (d, 3H, *J=7.6 Hz, CHCH3), 2.75 (s, 3H,
CH;NH), 2.82-2.95 (dq, 1H, *J=7.6 Hz, °J=3.0 Hz,
CHCH;), 3.79 (d, 1H, *J=3.0 Hz, CHNH); '*C NMR
(50 MHz, D,0): § 11.7, 33.0, 40.8, 65.4, 172.2, 180.9; high
resolution mass spectra (HRMS) (ESI+): m/z calc. for
C¢H,NO,, 162.0766 [M+H]"; found, 162.0760}.

Results
Identification of a thermostable MAL
A sequence similarity search in the NCBI microbial

genome database was performed with the BLASTP
program using the C+-MAL amino acid sequence as the
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query. This search yielded several bacterial proteins that
shared high sequence identity (>50%) with C+~-MAL. The
top 20 hits included a sequence from the thermophilic
bacterium C. hydrogenoformans Z7Z-2901, which was
isolated from a hot spring in Kunashir Island (Russia)
and grows optimally at 78°C (Svetlichny et al. 1991; Wu
et al. 2005). This bacterial protein (designated Ch-MAL)
is annotated as a putative methylaspartate ammonia lyase
and was selected for further study.

The Ch-MAL protein is predicted to be 420 amino acids
in length. Unlike the C--MAL gene, the gene encoding Ch-
MAL is not located next to a gene encoding a putative
glutamate mutase (Kato and Asano 1997). In fact, the
genomic context of the gene encoding Ch-MAL does not
provide any clues about the biological function of this
protein in C. hydrogenoformans Z-2901. The sequence of
Ch-MAL is 53% identical and 73% similar to that of Ct-
MAL. A sequence alignment shows that nine of the ten
active site residues of C+-MAL are conserved in Ch-MAL
(Asuncion et al. 2002) (Fig. S1, supporting information).
The non-conserved residue, Thr-360, is replaced by Ser-359
in Ch-MAL. As there are no significant active site differ-
ences between Ch-MAL and Ct-MAL, a catalytic mecha-
nism, with important roles for Lys-331 and His-194 (Ct-
MAL numbering) as the S- and R-specific base/acid
catalysts, similar to that of C--MAL (Raj et al. 2009) may
be expected for Ch-MAL. To obtain insight into the
functional properties of this C-MAL homologue, Ch-
MAL was overproduced, purified, and subjected to kinetic
and biochemical characterization (see below).

Expression and purification of Ch-MAL

The gene coding for Ch-MAL was amplified from
genomic DNA of C. hydrogenoformans 7-2901 and
cloned into the expression vector pBADN/Myc-His A,
resulting in the construct pPBAD(Ch-MAL). The Ch-MAL
encoding gene in pBAD(Ch-MAL) is under transcriptional
control of the araBAD promoter, and the recombinant
enzyme was produced upon induction with arabinose in E.
coli TOP10 as a C-terminal Hisg-tag fusion protein.
Optimal expression of the Chi-MAL gene was achieved
when the TOP10 cells were cultivated at 22°C in an auto-
induction medium (Studier 2005) in the presence of 0.05%
(w/v) arabinose. The recombinant enzyme was purified by
a one-step Ni-sepharose affinity chromatography protocol,
which typically provides ~200 mg of homogeneous
enzyme per liter of culture. The purified CA-MAL has a
molecular mass of ~50 kDa when analyzed by SDS-
PAGE. Ch-MAL was further analyzed by electrospray
ionization mass spectrometry (ESI-MS) and gel filtration
chromatography. Analysis of Ch-MAL by ESI-MS
showed, upon deconvolution, one major peak that corre-
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sponds to a mass of 49,291 (+3)Da. A comparison of this
value to the calculated mass (49,288 Da) indicates that, in
contrast to Cys-361 in C+-MAL (Asuncion et al. 2002), no
oxidation of the active site cysteine (Cys-360) in Chi-MAL
had occurred upon purification. Gel filtration chromatog-
raphy resulted in elution of Ch-MAL as a single
symmetrical peak, which corresponds to a native molec-
ular mass of ~100 kDa. A comparison of this value to that
of the subunit mass suggests that, like Ct-MAL (Asuncion
et al. 2002), Ch-MAL is a homodimeric protein.

Ammonia lyase activity of Ch-MAL

To examine whether Ch-MAL exhibits ammonia lyase
activity, the enzyme was incubated with 2 (in 500 mM
Tris—HCI buffer, pH 9.0), and the reaction was monitored
by a previously described spectroscopic assay (Raj et al.
2009). The results show that CA-MAL deaminates 2 to
yield 1, and maximum activity is achieved in the presence
of both Mg*" (>20 mM) and K™ (>1 mM) ions in the
assay buffer. Having established that Ch-MAL exhibits
methylaspartate ammonia lyase activity, kinetic parame-
ters were measured (at 30°C) and compared to those
previously measured for C+-MAL (Table 1). Ch-MAL
catalyzes the deamination of 2 with a catalytic efficiency
(kea/Ki) of 3.5%x10° M 's™!, which is ~25-fold lower
than the value measured for the same reaction catalyzed
by Ct-MAL.

Optimum pH and temperature for the ammonia lyase
activity of Ch-MAL

The optimum pH for the Ch-MAL-catalyzed deamination
of 2 was determined at 30°C in Tris—HCI buffers (500 mM,
containing 20 mM MgCl, and 1 mM KCI) with pH values
ranging from 6.0 to 9.5. The Chi-MAL enzyme is active in
the complete pH range tested and shows maximum activity
at pH 9.0 (Fig. 1a). A similar pH optimum was found for
Ct-MAL (Fig. la). The optimum temperature for the

Table 1 Kinetic parameters for the C+-MAL and Ch-MAL catalyzed
deamination of (285,35)-3-methylaspartic acid (2)

EHZYmC kcat (Sil) Km (mM) kcal/Km (M71 Sil)
C-MAL (at 30°C)*  89+4 1.0£0.1 8.9x10*
Ch-MAL (at 30°C) 16+1 4.6+0.4 3.5x10°
Ch-MAL (at 70°C)  78+4 16+3 49x10°

The steady state kinetic parameters were determined in Tris—HCl
buffer (500 mM, pH 9.0) containing MgCl, (20 mM) and KCI (I mM)
at 30°C or 70°C

*These kinetic data were obtained from Raj et al. (2009). Errors are
standard deviations from each fit
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Fig. 1 Effect of a pH and b temperature on the deamination activity
of Ch-MAL (filled triangles) and Ct-MAL (empty squares)

deamination of 2 by Ch-MAL was determined in Tris—
HCI buffer (500 mM, pH 9.0, containing 20 mM MgCl,
and 1 mM KCI) at different temperatures ranging from 10
to 90°C. Ch-MAL was active at all temperatures analyzed
and showed the highest activity at 70°C (Fig. 1b). For
comparison, Ct-MAL was found to be active at temper-
atures ranging from 10 to 70°C with maximum activity at
50°C (Fig. 1b). The observation that Ch-MAL shows
maximum activity at 70°C, prompted us to measure kinetic
parameters at this temperature. At 70°C, Ch-MAL catalyzes
the deamination of 2 with a k. of 78 s ! and a K,, of
16 mM, which results in a kg,/K,, that is slighly higher
(1.4-fold) than that measured at 30°C (Table 1). The
observed 4.9-fold increase in kg, confirms that Chi-MAL
is more active at elevated temperatures. At 70°C, C+-MAL
is almost completely inactive (Fig. 1b).
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Thermostability of Ch-MAL

The preceding results demonstrate that Ch-MAL and Ct-
MAL have different temperature—activity profiles, with Ch-
MAL being active at higher temperatures. To compare the
thermostability of these two MALS, they were incubated at
50°C (in separate incubations), and samples were with-
drawn every 5 min to measure residual ammonia lyase
activity. Interestingly, Ch-MAL stayed fully active upon
incubation at 50°C. Even after 4 h of incubation, the
enzyme retained more than 95% of its initial activity toward
2 (Fig. 2). In contrast, the ammonia lyase activity of Ct-
MAL decreased rapidly upon incubation at 50°C, and
within 30 min half of its initial activity was lost. After 4 h,
Ct-MAL retained only ~4% of its initial activity toward 2.
Hence, in contrast to C+-MAL, Ch-MAL is highly stable at
50°C.

Amination activity of Chi-MAL

The rate of amination of 1 by Ch-MAL was monitored by
following the depletion of 1 at 270 nm in Tris—HCI buffer
(500 mM, pH 9.0) containing MgCl, (20 mM) and NH,Cl
(400 mM) at 30°C (Botting et al. 1988; Raj et al. 2009).
Ch-MAL catalyzes the amination of 1 with an apparent k,/
K, value of 2.5x10* M 's™!, which is only 3.5-fold lower
than the value measured for the same reaction catalyzed by
Ct-MAL (Table 2). The Ch-MAL-catalyzed amination of 1
was also monitored by 'H NMR spectroscopy to verify that
the products of the reaction are 2 and 3 (Scheme 1). The
Ch-MAL catalyzed amination of 1 indeed yields 2 and 3, as
indicated by signals in the NMR spectra consistent with the
structures of these amino acid products (Fig. 3a). Although
the "H NMR spectra showed signals for both 2 and 3, those
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Fig. 2 The thermostability of CA-MAL (filled triangles) and Ct--MAL
(empty squares) upon incubation at 50°C
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Table 2 Apparent kinetic parameters for the Ch-MAL and Ct-MAL
catalyzed amination of mesaconate (1)

Enzyme keae 1) K, for 1 (mM) keal Ky M1 s
C+-MAL? 61+1 0.7+0.02 8.7x10
Ch-MAL 15+1 0.6+0.1 2.5x10*

The steady state kinetic parameters were determined in Tris—HCl
buffer (500 mM, pH 9.0) containing MgCl, (20 mM) and NH4CI
(400 mM) at 30°C

#These kinetic data were obtained from Raj et al. (2009). Errors are
standard deviations from each fit

corresponding to 2 predominated in the initial spectra,
whereas signals for 3 increased in the later spectra. Hence,
2 is the kinetically preferred product. After a 14-day-
incubation period at 22°C, a final conversion of ~76% was
achieved, giving a ~1:1 ratio of 2:3 (Fig. 3a; Table 3). For
comparison, the Ct-MAL-catalyzed amination of 1 was also
followed by '"H NMR spectroscopy, showing the same
kinetic profile of product (2 and 3) formation (Fig. 3b;
Table 3). These results suggest that, like C-MAL, Ch-MAL
likely catalyzes the rapid anti-addition and the much slower
syn-addition of ammonia to 1, yielding 2 and 3, respectively
(Raj et al. 2009; Akhtar et al. 1987).

Electrophile scope of Chi-MAL

It has previously been determined that C-MAL accepts
fumarate and several of its 2-substituted derivatives as
alternative substrates (Akhtar et al. 1987; Botting et al.
1988). These observations prompted us to examine whether
Ch-MAL also catalyzes the amination of these electro-
philes. The Ch-MAL-catalyzed addition reactions were
monitored by "H NMR spectroscopy. To identify the
products of the reactions and to establish their relative
configuration (threo or erythro), we compared the "H NMR
spectra of the products of the Ch-MAL-catalyzed addition
reactions to those obtained for the same reactions catalyzed
by Ct-MAL, the products of which have previously been
identified and their absolute configuration assigned (Akhtar
et al. 1987). Representative conversions for each reaction
are summarized in Table 3. Both MALs efficiently catalyze
the amination of fumarate and ethylfumarate (in addition to
the natural substrate methylfumarate). While C+-MAL has
reasonable activity toward propylfumarate, this compound
is a poor substrate for Ch-MAL. Butylfumarate is not
accepted as substrate by either MAL.

Fumarate appears to be the best non-natural substrate for
Ch-MAL, showing ~97% conversion after 2 h of incuba-
tion. The 'H NMR spectrum recorded 7 days after the
addition of enzyme showed the nearly complete disappear-
ance of the signals corresponding to fumarate and the
formation of new signals corresponding to the expected
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product, aspartate (Fig. S2). The absolute configuration of
this product was determined by using chiral HPLC, with
authentic (R)-and (S)-aspartate for comparison, and found
to be (S)-aspartate (>99% ee). Ethylfumarate is also a good
substrate for Chi-MAL, showing ~60% conversion after 2 h
of incubation. After a 14-day incubation period, a final
conversion of ~65% was achieved, and the spectrum
showed signals corresponding to the expected products

threo-(2S,35)-3-cthylaspartate (P1) and erythro-(2S,3R)-3-
ethylaspartate (P2). The ratio of S/P1/P2 was determined to
be 35:60:5 (Fig. S3). Propylfumarate is a poor substrate for
Ch-MAL; the spectrum recorded after 14 days of incuba-
tion showed only ~7% conversion of substrate with
formation of threo-(2S,3S5)-3-propylaspartate as the
expected product (Fig. S4). The tentative assignment of
the absolute configuration of the 3-ethylaspartate and 3-
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Table 3 Addition of ammonia to various electrophiles catalyzed by Ch-MAL or C+-MAL

Electrophile Ch-MAL% conversion Ch-MAL ee® or d.r.° of product Ct-MAL% conversion Ct-MAL ee? or d.r.® of product
(days of incubation) (days of incubation)

Fumarate 99 (7) ee>99% 99 (7) ee>99%

Methylfumarate 76 (14) d.r.=52:48 81 (14) d.r.=51:49

Ethylfumarate 65 (14) d.r.=95:5 71 (14) d.r.=72:28

Propylfumarate ~7 (14) d.r.=100:0 61 (14) d.r.=100:0

#The enantiomeric excess of the (S)-aspartic acid product was determined by chiral HPLC

® The diastereomeric ratio (threo:erythro) of the 3-substituted aspartic acid products was determined by 'H NMR spectroscopy

propylasparate products was made on the basis of analogy
to the known configuration of the products of the
corresponding C-MAL catalyzed reactions (Akhtar et al.
1987).

Nucleophile scope of Ch-MAL

We next screened Ch-MAL for its ability to add different
unnatural amines to mesaconate (1). The reactions were
followed using "H NMR spectroscopy. The products were
identified (and their relative configuration established) by
comparing the "H NMR spectra of the Ch-MAL-catalyzed
addition reactions to those obtained for the same reactions
catalyzed by Ct-MAL, the products of which have
previously been identified and their absolute configuration
assigned (Gulzar et al. 1997). Representative conversions
for each reaction are summarized in Table 4. Both MALs
efficiently catalyze the addition of hydroxylamine and
hydrazine (in addition to the natural nucleophile, ammonia)
to mesaconate. Methylamine, ethylamine, and methoxyl-
amine are also processed by both MALs, but at a much
lower catalytic rate. Propylamine is not accepted as
alternative nucleophile by either MAL.

Hydroxylamine and hydrazine seem to be the best
alternative nucleophiles for Ch-MAL, showing ~80% and
~60% conversion after 2 h of incubation, respectively. For

Table 4 Addition of various amines to mesaconate catalyzed by Ch-
MAL or C+-MAL (reactions were followed by "H NMR spectroscopy)

Amine Ch-MALY% conversion Ct-MAL% conversion
(days of incubation) (days of incubation)

Ammonia 76 (14) 81 (14)
Methylamine® 70 (14) 64 (14)

Ethylamine® 30 (14) 14 (14)
Methoxylamine® 9 (14) 67 (14)
Hydroxylamine® 99 (7) 96 (7)

Hydrazine® 100 (7) 100 (7)

#The enzyme showed high diastereoselectivity in the formation of the
corresponding amino acid product (>98% de)
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both these amines, '"H NMR spectra recorded 7 days after
the addition of enzyme showed the nearly complete
disappearance of the signals corresponding to mesaconate
(1) and the formation of new signals corresponding to the
expected products, threo-(2S,3S)-N-hydroxy-3-methylas-
partate and threo-(2S5,35)-2-hydrazino-3-methylaspartate,
respectively (Figs. S8 and S9) (Table 4). Methylamine and
ethylamine are also accepted as substrates, showing ~12%
and <1% conversion after 2 h of incubation, respectively.
After a 14-day-incubation period, respective conversions
of ~70% and ~30% were achieved (Table 4), and the 'H
NMR spectra showed signals corresponding to the
expected products, threo-(2S,3S5)-N,3-dimethylaspartate
and N-ethyl-3-methylaspartate, respectively (Figs. S5 and
S6). The relative configuration of the latter product has not
been determined. Methoxylamine is a poor substrate for Ch-
MAL. The spectrum recorded after 14 days of incubation
showed only ~9% conversion of substrate with formation of
threo-(2S,3S)-N-methoxy-3-methylaspartate as the expected
product (Fig. S7). The tentative assignment of the absolute
configuration of the amino acid products was again made on
the basis of analogy.

Preparative scale synthesis of threo-(25,35)-N,
3-dimethylaspartic acid

In order to demonstrate the potential of Ch-MAL for
chemical synthesis, the enzyme was used to synthesize
threo-(2S,35)-N,3-dimethylaspartic acid at preparative
scale. Accordingly, Chi-MAL was incubated with methyl-
amine (1.04 g, 15.4 mmol) and mesaconate (0.2 g,
1.54 mmol) at 50°C, and the reaction was monitored by
"H NMR spectroscopy (Fig. 4a); after 8 days of incubation,
a final conversion of ~75% was achieved. The product was
purified using a Dowex cation exchange column, giving a
final yield of 61% (white solid), and identified as threo-
(25,35)-N,3-dimethylaspartic acid by '"H NMR (Fig. 4b),
3C NMR, and HRMS (Gulzar et al. 1997). The enzyme
showed high diastereoselectivity in the formation of threo-
(28,35)-N,3-dimethylaspartic acid (>98% de, as assessed by
"H NMR spectroscopy).
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Fig. 4 Enzymatic synthesis of threo-(25,35)-N,3-dimethylaspartic
acid. a Progress curve of the Ch-MAL-catalyzed methylamine
addition to mesaconate (1) as monitored by '"H NMR spectroscopy.
b "H NMR spectrum of purified threo-(25,3S)-N,3-dimethylaspartic
acid. The "H NMR signals for this amino acid are reported elsewhere
(Gulzar et al. 1997)

Discussion

The thermophilic, Gram-positive bacterium C. hydrogeno-
formans Z-2901 has attracted much interest because of its
unique biology: It grows at very high temperature, it lives
almost entirely on a diet of carbon monoxide, and it
converts water to hydrogen gas as part of its metabolism.
The genome sequence of this extreme thermophile contains
two open reading frames coding for putative MALs (Wu et
al. 2005). It can be anticipated that the MALs from C.
hydrogenoformans exhibit increased thermostability com-
pared to known MALs from mesophilic hosts (Barker et al.
1959; Kato and Asano 1997, 1995a, b, 1998; Asano and
Kato 1994).

Herein, we have described the cloning, recombinant
expression and purification of Ch-MAL from C. hydro-
genoformans 7Z-2901, which provided an opportunity to

characterize the substrate specificity and thermostability of
a MAL isozyme from an extreme thermophile. The enzyme
can be highly overproduced in E. coli in a soluble and
active form and rapidly purified with the help of a C-
terminal hexahistidine tag. The thermostability, activity, and
substrate specificity of Ch-MAL were compared to Ct-
MAL, the best studied MAL from a mesophilic host. As
might be expected, Ch-MAL and C-MAL have different
temperature-activity profiles, with Chi-MAL being active at
much higher temperature. Ch-MAL catalyzes the deamina-
tion of (25,35)-3-methylaspartate (2, Scheme 1) with a A,/
Ky of 3.5x10° M 's™" at 30°C and 4.9x10° M 's™" at
70°C, which is somewhat lower (18- to 25-fold) than the
value measured for the same conversion catalyzed by Cr-
MAL at 30°C. The lower catalytic efficiency of the Ch-
MAL catalyzed reaction results mainly from a higher K,
value, which suggests less optimal binding of 2 in the
active site of Ch-MAL. A comparison of the kinetic
parameters for the Ch-MAL and Ct-MAL catalyzed
amination of 1 (Table 2) shows similar catalytic efficiencies
for both enzymes. These results indicate that Ch-MAL
functions as an effective 3-methylaspartate ammonia lyase,
catalyzing the reversible addition of ammonia to mesaconate
to give (25,35)-3-methylaspartate and (2S,3R)-3-methylas-
partate as products. Activity measurements further showed
that Ch-MAL is highly thermostable and retains >95% of its
initial activity after heating for 4 h at 50°C. Importantly, and
in contrast to C+-MAL (Barker et al. 1959), Ch-MAL can be
stored at 4°C for several months without significant loss of
activity. Thus, Ch-MAL indeed exhibits enhanced stability
compared to C+-MAL and other MALs from mesophilic
hosts (Barker et al. 1959; Kato and Asano 1995a, b, 1997,
1998; Asano and Kato 1994).

Ch-MAL has been shown to catalyze the regioselective
addition of ammonia to several substituted fumarates,
resulting in the corresponding 3-substituted aspartic acids
with the threo-isomers being the kinetically preferred
products (Table 3). In addition, the enzyme is highly
enantioselective in the addition of ammonia to fumarate,
leading to the formation of (S)-aspartic acid with >99% ee.
While Ch-MAL efficiently processes fumarate and small
substituted fumarates such as methylfumarate and ethyl-
fumarate, it displays low (propylfumarate) or no (butylfu-
marate) activity with larger substrates. This suggests that
the binding pocket for the C-2 alkyl substituent in CA--MAL
is designed to bind small alkyl chains and excludes large
groups. A similar electrophile scope and isomer preference
was found for C+-MAL (Table 3). Ch-MAL (and Ct--MAL)
also accepts various unnatural amines in the addition to
mesaconate, yielding the corresponding N-substituted meth-
ylaspartic acids (Table 4). The enzyme efficiently processes
small substituted amines such as hydroxylamine and
hydrazine, but displays low (methylamine, ethylamine,
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and methoxylamine) or no (propylamine) activity with
larger amine nucleophiles. These observations suggest that
the amine binding pocket of Ch-MAL (and Ct-MAL) is
designed to bind small amine compounds and excludes
large nucleophiles. In contrast to the enzyme-catalyzed
ammonia addition reactions, both MALs showed high
diastereoselectivity in the amine additions to mesaconate,
resulting in the formation of the N-substituted methylas-
partic acids with high diastereomeric excess (>98% de, as
assessed by "H NMR spectroscopy) (Akhtar et al. 1987;
Botting et al. 1988; Gulzar et al. 1997).

In conclusion, Ch-MAL from C. hydrogenoformans Z-
2901 can be overproduced in E. coli and purified in high
yield. This MAL is a promising new biocatalyst because it
is highly thermostable and accepts various substituted
fumarates and amines to produce a range of aspartic acid
derivatives. These chiral amino acids are important building
blocks for synthetic enzymes, peptides, chemicals, and
pharmaceuticals (Kahn 1993; Burger and Spengler 2000;
Hughes et al. 2000). To further enlarge the substrate scope
of MAL and improve its stereoselectivity in the amination
reactions, protein engineering experiments, guided by the
previously published crystal structure of C. amalonaticus
MAL in complex with substrate 2 (Levy et al. 2002), have
been initiated in our laboratory. If successful, these efforts
may help to increase the number and diversity of enzyme
applications in industry.
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