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Background. Long noncoding RNA (lncRNA) critically impacts the modulation of tumor developments and progressions. Our
study is aimed at investigating the expressing patterns, clinical significance, and biological roles of lncRNA TSPEAR-AS2
(TSPEAR-AS2) in oral squamous cell carcinoma (OSCC). Material and Approach. The expressing states achieved by TSPEAR-AS2
were examined in OSCC specimens and cell lines by RT-PCR. The clinical significance of TSPEAR-AS2 was statistically analyzed.
OSCC proliferating, invading, and migrating processes were examined with the use of wound healing assays, transwell, colony
formation, and cell counting kit-8. Additionally, the downstream molecular mechanism of TSPEAR-AS2 in OSCC was explored.
Results. TSPEAR-AS2 was overexpressed in OSCC tumors and cells. High TSPEAR-AS2 was associated with advanced TNM stage.
Patients with high TSPEAR-AS2 expression displayed a shorter disease-free survival and total survival of OSCC patients than those
with low TSPEAR-AS2 expressing level. It was found that knockdown of TSPEAR-AS2 could inhibit the proliferating, invading,
and migrating processes pertaining to OSCC cells. Luciferase reporter tests and RNA pull-down results revealed that TSPEAR-AS2
enhanced the expressions of PPM1A by regulating miR-487a-3p, and TSPEAR-AS2 could be adopted as a miR-487a-3p sponge to
inhibit PPM1A expression. Conclusion. Our study highlighted the significance of the TSPEAR-AS2/miR-487a-3p/PPM1A axis
within OSCC progression and offered a novel biomarker and novel strategies for OSCC treatments.

1. Introduction

Oral squamous cell carcinoma (OSCC), ranking among the
top eight causes of cancer-related death globally, takes up
>90% of head and neck cancer, affecting more than 400 000
people every year [1, 2]. The two main risk factors are alcohol
and smoking for OSCC. Poor oral hygiene is also found to be
involved in the aetiology of OSCC [3]. Despite the fact that
great advances have been made in surgical techniques and che-
moradiation therapy, the 5-year survival rate for OSCC
patients remains very low [4, 5]. The inability for diagnosing
in the preliminary phase refers to the main reason for the unfa-
vorable outcome of OSCC cases [6, 7]. It has been confirmed
the involvements of multiple genetic and epigenetic abnormal-
ity in OSCC progressions, but the molecular mechanisms
involved in OSCC tumorigenesis remain largely unclear.

Long noncoding RNAs (lncRNAs), with the transcription
based on RNA polymerase II, are defined as transcripts con-
taining >200 nucleotides [8]. More and more evidences have
demonstrated that lncRNAs as one type of transcription fac-
tor display vital roles in diverse biological procedures [9, 10].
The dysregulation of lncRNAs is also demonstrated with the
involvement inside the occurrence and progression of several
tumors [11, 12]. For instance, overexpression of lncRNA
PART1 promoted the proliferating and metastasis processes
of lung carcinoma cells by sponging miR-17-5p [13]. lncRNA
LINC00844, a highly expressed lncRNA in hepatocellular
carcinoma, was shown to be a tumor inhibitor within hepato-
cellular carcinoma and suppress the metastasis of tumor cells
via targeting AZGP1 [14]. In OSCC, lncRNA LINC01929
was demonstrated to strengthen the ability of OSCC cells in
the proliferation and metastasis via targeting the miRNA-
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137-3p/FOXC1 axis [15]. Although a lot of human lncRNAs
have been reported to be abnormally expressed in OSCC so
far, the physiological functions of most lncRNAs have
remained largely unclear.

Previously, lncRNA TSPEAR-AS2 was shown to display
regulatory effects on hypoxia-induced pulmonary artery
hypertension in cellular levels [16]. Recently, Ma and his
group firstly reported TSPEAR-AS2 as a gastric cancer-
related lncRNA which served as an oncogene and suppressed
the metastasis of tumor cells via suppressing GJA1 expres-
sion [17]. However, the potential functions of TSPEAR-AS2
in other tumors have not been investigated. In this study,
we provided evidences that TSPEAR-AS2 was an overex-
pressed lncRNA in OSCC specimens and may be a novel bio-
marker for OSCC patients. In addition, we also studied the
function of TSPEAR-AS2 in OSCC as well as its potential
mechanisms.

2. Materials and Methods

2.1. Collection of Human Clinical Specimens. The researchers
carried out the collection of ninety-five clinically-related
OSCC tumor tissue and paired nearby nontumor tissue in
the First People’s Hospital of Yunnan Province. The tissue
received the collection in the surgical process, and then it
underwent the storage within liquid nitrogen or under the
temperature of -80°C to be employed subsequently. All the
patients verified as OSCC according to histopathological
evaluation were operated on at the First People’s Hospital
of Yunnan Province. This study was performed following a
protocol approved by the Ethics Committee of The First Peo-
ple’s Hospital of Yunnan Province. The respective patient
provided written informed consent for participation.

2.2. Cell Culture and Transfection. The Cell Bank of the Chi-
nese Academy of Sciences (Shanghai, China) offered six
OSCC cell lines (SNU1041, FADU, HSU3, SCC25, SCC9,
and SCC4) and the NHOK cell lines. All cells received the
culture within DMEM (Invitrogen, Shenzhen, Guangdong,
China) with 10% FBS (Biocyto, Guangzhou, Guangdong,
China) under the temperature of 37°C in 5% CO2 and
saturated humidity. Scrambled shRNA of TSPEAR-AS2
(sh-NC), TSPEAR-AS2 shRNAs (sh-TSPEAR-AS2-1 and
sh-TSPEAR-AS2-2), miR-487a-3p mimic (NC mimics), and
miR-487a-3p inhibitors (NC inhibitors) was purchased from
GenePharma (China). Next, the mentioned received the
transfection to SCC25 and FADU cell with the use of Lipo-
fectamine 2000 (Invitrogen/Thermo Fisher Scientific).

2.3. RNA Extraction and RT-qPCR. The researchers adopted
TRIzol reagent for obtaining overall RNA from specimens
and cells. By the use of the PrimeScript RT reagent kit, 3μg
RNA overall received the reverse transcription to cDNA.
RT-qPCR was performed with the use of FastStart Universal
SYBR Green Master (Roche, Pudong, Shanghai, China) on a
Bio-Rad RT-PCR cycler (Roche, Pudong, Shanghai, China).
GAPDH and U6 became the control to normalize mRNA’s
and miRNA’s expressing levels, separately. Relative expres-

sion values of genes were analyzed by the 2−ΔΔCt approach.
Table 1 lists the primer sequence of RNAs.

2.4. Cell Counting Kit-8 (CCK-8) Assay. To analyze the
growth of the OSCC cell lines, the CCK-8 test (Dojindo Lab-
oratories) was performed by complying with the producer’s
protocol. OSCC cells were cultured in 96-well plates over-
night. After 1 d, 2 d, 3 d, and 4d, cells were added with
CCK-8 (Lifusai, Nanjing, Jiangsu, China). Optical density at
490 nm was measured using a microplate reader, and data
were expressed as absorbance values. GraphPad Prism 8 soft-
ware (GraphPad Software, Inc.) was used to plot the cell
growth curve. The tests were carried out no less than 3 times.

2.5. Colony Formation Assays. 0:5 × 103 cells received the
inoculation to a 12-well plate and then the 10-day culture.
Fresh medium on the 5th day was used to replace the original
medium. After the incubating process, the researchers
adopted PBS for rinsing cells. Next, the 5min immobilizing
process for cells was carried out by using 4% paraformalde-
hyde, and then the 30 s staining process by using 0.1% crystal
violet was used. Finally, the counting and recording processes
were used for the number of colonies (over 50 cells).

2.6. EdU Incorporation Assays. Cells received the culture
within 24-well plates, and the researchers introduced 10μM
EdU to each well. Subsequently, 4% formaldehyde was used
to fix the cells for 30min. 48 h later, 50μM of EdU labeling
medium was introduced to the respective well, and the cell
received the 8 h incubation. Next, the cells were stained with
Hoechst 33342 for 20min and were captured. Eventually,
under the microscope, EdU-positive cells received the obser-
vation and the counting process.

2.7. Wound Healing Assay. The researchers carried out the
seeding and culturing process for the cell within a confluent
monolayer in a rectangular cell culture plate. The cell
received the culture till the confluence reaching nearly
100%. 10L pipette tips were used to create cell wounds.
Moreover, in FBS-free F12K medium (Procell, Nanjing,
Jiangsu, China), cells were then cultivated. At 24 h after
culture, an inverted microscope was used to measure the
width of the wounds. Gap distance was quantified using
NIH ImageJ software version 1.50.

2.8. Transwell Assay. Using transwell chambers, the ability of
cell invasion was examined. A total of 2 × 104 cells was sup-
plemented to the upper compartment of each transwell
chamber (pore size: 8μM; Corning, Haidian, Beijing, China),
and 600μL of medium containing 10% FBS received the
addition into the compartment which was relatively low.
When 24h incubating process was achieved under room
temperature, the researchers employed a cotton swab for
scraping cells on the upper chamber’s internal surface. In
the chamber which was relatively low, ethyl alcohol was
applied for fixing the invaded cell. Next, 0.1% crystal violet
was applied to stain the collect cells for 15min. Cell number
was manually counted.
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2.9. Subcellular Fractionation. Cytoplasmic and nuclear
separations were carried out with the use of PARIS Kit (Life
Technologies, Hangzhou, Zhejiang, China) based on the
producer’s guideline.

2.10. RNA Pull-Down Assay. Biotinylated TSPEAR-AS2
probe, miR-487a-3p probe, and the relative control were
obtained according to GenePharma (Shanghai, China).
Cellular lysates were combined with M-280 streptavidin
magnetic beads (Invitrogen) as discussed in prior studies
[18], and qRT-PCR was used to detect the TSPEAR-AS2 or
miR-487a-3 expression.

2.11. Luciferase Reporter Assay. TSPEAR-AS2-WT/MUT or
PPM1A-WT/MUT was subcloned into the pmirGLO dual-
luciferase vector (Biomart, Haidian, Beijing, China). First,
SCC25 or FADU cells received the cotransfection by using
pmirGLO-TSPEAR-AS2-WT/MUT and NC mimics or
miR-487a-3pmimics. Second, SCC25 or FADU cells received
the cotransfection by using miR-487a-3p mimics and
pmirGLO-PPM1A-WT/MUT. Luciferase and renilla signals
received the measurement 48 h after being transfected with
the use of the Dual-Luciferase Reporter Assay System
(Promega, Pudong, Shanghai, China). Luciferase reporter
assays were conducted in triplicate.

2.12. Western Blot Assay. SCC25 and FADU cells were
harvested and lysed in RIPA Lysis Buffer (Yita Biology,
Pinggu, Beijing, China) to collect proteins. Proteins were sep-
arated using SDS-PAGE at 30μg/lane and transferred to a
nitrocellulose membrane (EMD Millipore, Pudong, Shang-
hai, China). Next, our group blocked the membrane with
5% dried skimmed milk for 1 h. Then, the membrane was
incubated with primary antibodies including anti-PPM1A
(Cat no. ab14824, Abcam) and anti-GAPHD (Cat no.
ab8245; Abcam) at 4°C throughout the night and with horse-
radish peroxidase- (HRP-) conjugated secondary antibodies
(Guduo, Shanghai, China) for 1 h under ambient tempera-
tures. The researchers employed ImageJ software for quanti-
fying the density exhibited by the respective band.

2.13. Statistical Analysis. Data had the presentation of mean
± standard deviation (SD). A statistic-based investigation
was conducted with the use of SPSS (IBM, Armonk, NY,

USA) and diagrams received the mapping process with the
use of GraphPad Prism software. For comparison within dif-
ferent groups, Student’s t-test or one-way ANOVA was per-
formed. The OS and DFS were analyzed by log-rank test, and
survival curves were plotted according to Kaplan-Meier. The
Cox proportional hazards model was employed for the mul-
tivariate analysis. The statistical significance (P value) is set as
less than 0.05.

3. Results

3.1. Expression of TSPEAR-AS2 in OSCC Tissues and
Adjacent Normal Tissues. For exploring the potential role of
TSPEAR-AS2 in OSCC, the expression of TSPEAR-AS2
was analyzed in OSCC tissues and cell lines. As shown in
Figure 1(a), compared with normal group, the expression of
TSPEAR-AS2 was distinctly increased in OSCC tissues
(P < 0:05). ROC assays showed strong separation between
the two groups (tumor group vs. normal group), with an
AUC of 0.8114 (0.7478-0.8749) (Figure 1(b)). In addition,
higher levels of TSPEAR-AS2 were observed in OSCC speci-
mens with III-IV compared with those with I-II (Figure 1(c)).
ROC assays showed strong separation between the two
groups (I-II vs. III-IV), with an AUC of 0.8387 (0.7550-
0.9225) (Figure 1(d)). Furthermore, our group also observed
that TSPEAR-AS2 expression was distinctly upregulated in
six OSCC cells compared with NHOK cells (Figure 1(e)).

3.2. The Prognostic Value of TSPEAR-AS2 Expression in
OSCC Patients. To better understand the potential roles of
TSPEAR-AS2 in OSCC development, the patients were
divided into high and low expression groups by the median
expression level of TSPEAR-AS2 (5.89). The Chi-square test
revealed that high TSPEAR-AS2 expression was associated
with the advanced TNM stage (P = 0:022) (Table 2). How-
ever, there was no association between TSPEAR-AS2 expres-
sion and other clinical factors (all P > 0:05). With five-year
follow-up by the apartment of our hospital, we collected
five-year survival data, which was analyzed by Kaplan-
Meier analysis and log-rank test. We found that the patients
in the high TSPEAR-AS2 expression group had shorter over-
all survival (OS, P = 0:0120, Figure 1(f)) and disease-free sur-
vival (DFS, P = 0:0008, Figure 1(g)) than those in the low
TSPEAR-AS2 expression group. More importantly, after
multivariate analyses of prognostic factors in OSCC patients,
the TSPEAR-AS2 expression level was identified to be an
independent prognostic factor for OS (HR = 2:893, 95% CI:
1.217-4.324; P = 0:014), as well as DFS (HR = 3:015, 95%
CI: 1.334-4.732; P = 0:007) of OSCC patients (Table 3).

3.3. The Effects of TSPEAR-AS2 Knockdown in OSCC
Progression. For exploring the regulating effect exerted by
TSPEAR-AS2 in OSCC cells, three shRNAs (sh-TSPEAR-
AS2-1 and sh-TSPEAR-AS2-2) targeted to TSPEAR-AS2
and one scrambled control shRNA (sh-NC) were applied.
The efficiency was then determined in stably transfected cells
by RT-qPCR (Figure 2(a)). CCK-8 results showed that the
proliferation of TSPEAR-AS2 knockdown cells received the
significant inhibition in contrast to the negative control and

Table 1: The primers used in this study for RT-PCR.

Names Sequences (5′-3′)
TSPEAR-AS2: F ACCCTCGACGTCCGTCCACGG

TSPEAR-AS2: R GCAGGCCATGCAAGTCACAG

miR-487a-3p: F ATGGCGGAATCATACAGGGAC

miR-487a-3p: R CTCAACTGGTGTCGTGGAGTC

PPM1A: F AGGGGCAGGGTAATGGGTT

PPM1A: R GATCACAGCCGTATGTGCATC

GAPDH: F GGAGCGAGATCCCTCCAAAAT

GAPDH: R GGCTGTTGTCATACTTCTCATGG

U6: F GCGCGTCGTGAAGCGTTC

U6: R GTGCAGGGTCCGAGGT
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the blank group in both SCC25 and FADU cell lines
(Figure 2(b)). Colony formation assay and Edu assays also
showed that knockdown of TSPEAR-AS2 considerably sup-
pressed the viability of SCC25 and FADU cells (Figures 2(c)
and 2(d)). Subsequently, we performed wound healing assay
and transwell assay to explore the effects of TSPEAR-AS2
knockdown on metastatic abilities of OSCC cells. It was
observed that knockdown of TSPEAR-AS2 visibly reduced

the migrative (Figure 3(a)) and invasive (Figures 3(b) and
3(c)) abilities of SCC25 and FADU.

3.4. TSPEAR-AS2 Served as a Sponge of miR-487a-3p. It has
been demonstrated that numerous cytoplasmic lncRNAs
have been reported to be competing endogenous RNAs
(ceRNAs) through the competitive bind process of micro-
RNAs [19, 20]. With the use of the subcellular fractionating
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Figure 1: The distinct upregulation of TSPEAR-AS2 in OSCC patients and its clinical significance. (a) TSPEAR-AS2 level was distinctly
greater within OSCC tissue as compared with that in normal tissues. (b) ROC curve analysis for the detection of CRC using TSPEAR-AS2.
(c) The comparison of TSPEAR-AS2 levels in OSCC specimens with I-II or III-IV. (d) TSPEAR-AS2 can be used to distinguishing OSCC
specimens with III-IV from those with I-II. (e) Relative TSPEAR-AS2 expression was measured by qRT-PCR in six OSCC cells and
NHOK cells. (f and g) The correlation of TSPEAR-AS2 expression with OS (f) and DFS (g) of OSCC patients analyzed by Kaplan-Meier
analysis. ∗∗∗P < 0:001, ∗∗P < 0:01.
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process, TSPEAR-AS2 had the expression within the nucleus
and cytoplasm, and a greater proportion of TSPEAR-AS2 was
observed in the cytoplasm (Figure 4(a)). Bioinformatics tools
estimated the complementary binding site in TSPEAR-AS2
and miR-487a-3p, which was confirmed using the luciferase
reporter assay (Figures 4(b) and 4(c)). RNA pull-down assays
also demonstrated the combination between TSPEAR-AS2
and miR-487a-3p (Figure 4(d)). Finally, RT-PCR assays
revealed that after TSPEAR-AS2 expression was suppressed,
the levels of miR-487a-3p were increased in SCC25 and FADU
(Figure 4(e)).

3.5. PPM1AWas Identified as a Direct Target of miR-487a-3p
in OSCC Cells. To explore the specific mechanism of the
TSPEAR-AS2/miR-487a-3p axis, we predicted the potential
targets of miR-487a-3p by using TargetScan. The results
showed that PPM1A might be a potential target of miR-
487a-3p (Figure 5(a)), which was demonstrated with the
use of luciferase reporter assays (Figure 5(b)). In addition,
we observed that miR-487a-3p overexpression distinctly
suppressed the levels of TSPEAR-AS2 and PPM1A, while
miR-487a-3p knockdown displayed an opposite effect
(Figure 5(c)). Further rescue experiments revealed that
knockdown of miR-487a-3p distinctly reversed the suppres-
sion of TSPEAR-AS2 knockdown on the expression of
PPM1A (Figure 5(d)) in FADU cells.

4. Discussion

The identification of sensitive biomarkers was very impor-
tant for the improvements of the clinical outcome of OSCC
patients [21, 22]. There have been many papers reporting
the discovery of OSCC biomarkers, but only a few bio-
markers have been validated and successfully applied in rou-
tine clinical practice [23, 24]. Moreover, most biomarkers
possess limitations for the early detection of OSCC, and their
prognostic value was plagued by inaccuracies. In recent years,

more and more studies highlighted the potential of lncRNAs
used as novel biomarkers for cancer patients [25, 26]. Several
lncRNAs, such as lncRNA HOXA11-AS, lncRNA CASC9,
and lncRNA LEF1-AS1, have been shown to possess diagnos-
tic and prognostic values for OSCC patients [27–29]. In
this study, we identified a novel OSCC-related lncRNA,
TSPEAR-AS2 which was highly expressed in OSCC and
could be used as a diagnostic and prognostic marker for
OSCC patients. The OS and DFS of OSCC patients with
high TSPEAR-AS2 expression were distinctly shorter than
those with low TSPEAR-AS2 expression, which was con-
sistent with the prognostic value of TSPEAR-AS2 expres-
sion in gastric cancer patients [17]. However, the sample
size was relatively small. We will collect more samples
for research in the future.

Because of the role of cell signaling pathways in cancer
initiation, progression, and metastasis, lncRNAs involved in
these pathways can influence all aspects of tumorigenesis
[30, 31]. Therefore, lncRNAs may play a role in carcinogen-
esis or tumor inhibition. For instance, suppression of TTN-
AS1 resulted in an ability inhibition of OSCC cells in the
tumor growth and metastasis via miR-411-3p/NFAT5 axis
[32]. Overexpression of MCM3AP-AS1 promoted the
proliferation and invasion of OSCC cells via regulating
miR-204-5p/FOXC1 [33]. Given that TSPEAR-AS2 was
highly expressed in OSCC specimens and predicted a poor
prognosis of OSCC patients, we performed loss-of-function
assays, finding that knockdown of TSPEAR-AS2 distinctly
suppressed the proliferation, migration, and invasion of
OSCC cells. In the future, in vivo assays were needed to
further demonstrate the effects of TSPEAR-AS2 on OSCC
progression. Previously, the similar oncogenic roles of
TSPEAR-AS2 on gastric cancer cells were also demonstrated,
suggesting the great potential of TSPEAR-AS2 used as a
novel therapeutic target [17].

As revealed in existing research, miRNA is carcinogenic
or inhibitory within tumorigenesis, and the expressions
achieved by lncRNAs are able to control the activities of
miRNAs [34, 35]. Increasing evidences show that lncRNAs
control OSCC to develop and progress by sponging an array
of downstream miRNAs [36, 37]. Thus, delving into the
mentioned miRNAs can help develop feasible approaches
for preventing and treating the OSCC. Our experiments
demonstrated TSPEAR-AS2 had a major expression within
the cytoplasm, suggesting the tremendous possibility of
TSPEAR-AS2 acting as a ceRNA. Starbase 2.0 revealed
miR-487a-3p may be a target of TSPEAR-AS2, which was
further confirmed by Luciferase Reporter Gene Assay, RNA
pull-down, and RT-PCR. Previously, miR-487a-3p has been
reported to be overexpressed in several tumors, such as colon
cancer and gastric cancer [38, 39]. Importantly, in OSCC,
miR-487a-3p was found to display an upregulated level and
suppress the proliferation and metastasis of OSCC cells
[40]. These findings suggested TSPEAR-AS2 may display
its oncogenic roles via sponging miR-487a-3p.

PPM1A refers to a protein phosphatase 2C family
member of Ser/Thr protein phosphatases [41]. It can control
TGF-beta/Smad19-21 andmitogen-activated protein kinase22
cellular signaling channels, and proliferating, invading, and

Table 2: Relationship between lncRNA TSPEAR-AS2 expression
and clinicopathological characteristics.

Variable Cases (n)

TSPEAR-
AS2

expression
P values

High Low

Age 0.745

<60 45 24 21

≥60 50 25 25

Gender 0.972

Male 58 30 28

Female 37 19 18

Histology/differentiation 0.082

Well + moderate 57 26 31

Poor 38 23 15

TNM stage 0.022

I + II 59 25 34

III + IV 36 24 12
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migrating processes of cells [42, 43]. In OSCC, PPM1A has
been reported to be highly expressed and promoted the prolif-
eration and metastasis of OSCC cells, whereas how PPM1A

controls the mentioned activities requires in-depth studies
[40]. In this study, we found PPM1A may be a target of
miR-487a-3p. Overexpressed miR-487a-3p suppressed the

Table 3: Multivariate analyses of prognostic factors in OSCC patients.

Variables
Overall survival Disease-free survival

HR 95% CI P value HR 95% CI P value

Age 0.783 0.453-1.343 0.459 0.821 0.445-1.532 0.321

Gender 0.556 0.341-1.231 0.244 0.671 0.445-1.435 0.329

Histology/differentiation 1.132 0.673-1.873 0.112 1.345 0.792-1.832 0.093

TNM stage 3.132 1.325-4.789 0.005 3.436 1.429-5.554 0.001

TSPEAR-AS2 expression 2.893 1.217-4.324 0.014 3.015 1.334-4.732 0.007
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Figure 2: TSPEAR-AS2 depletion inhibits OSCC proliferation. (a) Relative expression of TSPEAR-AS2 after transfection with shRNAs. (b)
CCK8 assay for cell proliferation analysis. (c) Colony formation test was carried out for cell proliferation after transfection of sh-TSPEAR-
AS2-1 or sh-TSPEAR-AS2-2. (d) TSPEAR-AS2 knockdown inhibited cell proliferation, as determined by EdU assays. ∗∗P < 0:01.
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expression of PPM1A, while miR-487a-3p knockdown dis-
played an opposite effect. Based on the oncogenic roles of
PPM1A in OSCC progression, we supposed that miR-487a-
3p may serve as a tumor suppressor via targeting PPM1A.

Finally, we performed rescue experiments, finding that knock-
down of miR-487a-3p distinctly reversed the suppression of
TSPEAR-AS2 knockdown on the expression of PPM1A pro-
tein. Thus, our findings suggested that TSPEAR-AS2 may
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7Disease Markers



0

50

100

150

200

Re
la

tiv
e e

xp
re

ss
io

n

Nuclear
Cytoplasm

SCC25

0

50

100

150

200

Re
la

tiv
e e

xp
re

ss
io

n

TS
PE

A
R-

A
S2

G
A

PD
H U
6

TS
PE

A
R-

A
S2

G
A

PD
H U
6

Nuclear
Cytoplasm

FADU

(a)

TSPEAR-AS2-WT 5' augucagggcaCCAGUAUGAUc 3'

miR-487a-3p 3' uugaccuacagGGACAUACUAa 5'

TSPEAR-AS2-MUT 5' augucagggcaCCAACGACUCc 3'

chr21:45938753-45938774[+]

(b)

0.0

0.5

1.0

1.5

Re
la

tiv
e l

uc
ife

ra
se

 ac
tiv

ity

NC mimics
miR-487a-3p mimics

TSPEAR-AS2-WT TSPEAR-AS2-MUT

SCC25

**

0.0

0.5

1.0

1.5

Re
la

tiv
e l

uc
ife

ra
se

 ac
tiv

ity

NC mimics
miR-487a-3p mimics

**

FADU

TSPEAR-AS2-WT TSPEAR-AS2-MUT

(c)

0

2

4

6

8

Re
la

tiv
e f

ol
d 

ch
an

ge

TSPEAR-AS2
miR-487a-3p

** **

Input Ago2 Input Ago2

(d)

0

2

4

6

Re
la

tiv
e m

iR
-4

87
a-

3p
 ex

pr
es

sio
n

sh-NC
sh-TSPEAR-AS2-1
sh-TSPEAR-AS2-2

** **

** **

SCC25 FADU

(e)
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display its suppression on the abilities of the proliferating,
migrating, and invading processes pertaining to OSCC
cell by increasing PPM1A expressing level by sponging
miR-487a-3p.

5. Conclusion

To sum up, we identified TSPEAR-AS2 as a tumor-driver
within OSCC, and the greater expressing state of TSPEAR-
AS2 showed a relationship to tumor metastasis and poor
prognosis. TSPEAR-AS2/miR-487a-3p/PPM1A axis may
act as a new ceRNA regulatory network, thus, accelerating
the malignant processes of OSCC. TSPEAR-AS2 may
become a novel biomarker and therapeutically related target
for this disease in the future.
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