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Despite the extensive use of hormonal methods as either contraception or menopausal
hormone therapy (HT), there is very little known about the potential effects of these
compounds on the cellular processes of the brain. Medroxyprogesterone Acetate (MPA)
is a progestogen used globally in the hormonal contraceptive, Depo Provera, by women
in their reproductive prime and is a major compound found in HT formulations used
by menopausal women. MPA promotes changes in the circulating levels of matrix
metalloproteinases (MMPs), such as MMP-9, in the endometrium, yet limited literature
studying the effects of MPA on neurons and astroglia cells has been conducted.
Additionally, the dysregulation of MMPs has been implicated in the pathology of
Alzheimer’s disease (AD), where inhibiting the secretion of MMP-9 from astroglia reduces
the proteolytic degradation of amyloid-beta. Thus, we hypothesize that exposure to
MPA disrupts proteolytic degradation of amyloid-beta through the downregulation of
MMP-9 expression and subsequent secretion. To assess the effect of progestins on
MMP-9 and amyloid-beta, in vitro, C6 rat glial cells were exposed to MPA for 48 h
and then the enzymatic, secretory, and amyloid-beta degrading capacity of MMP-9 was
assessed from the conditioned culture medium. We found that MPA treatment inhibited
transcription of MMP-9, which resulted in a subsequent decrease in the production and
secretion of MMP-9 protein, in part through the glucocorticoid receptor. Additionally, we
investigated the consequences of amyloid beta-degrading activity and found that MPA
treatment decreased proteolytic degradation of amyloid-beta. Our results suggest MPA
suppresses amyloid-beta degradation in an MMP-9-dependent manner, in vitro, and
potentially compromises the clearance of amyloid-beta in vivo.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease with
three key pathological hallmarks: the progressive accumulation
of extracellular deposits (amyloid plaques); aggregates of
intracellular protein (neurofibrillary tangles); and loss of neurons
and synapses (reviewed by Haass and Selkoe, 2007). Extracellular
amyloid plaques are mostly composed of amyloid beta-peptide
(Aβ), which is generated by proteolytic cleavage of amyloid
precursor protein (APP; De Strooper, 2010). APP is recognized
by alpha-secretase (α;-secretase), which cleaves the precursor
protein, promoting the non-amyloidogenic cleavage of APP,
which has been shown to promote neuroprotection and
memory enhancement (Ghiso and Frangione, 2002). However,
as reviewed by Chen (2015), with aging, α-secretase becomes
progressively inefficient. This causes APP to be truncated
by non-specific proteases such as β-secretase and γ-secretase,
promoting the amyloidogenic cleavage of APP (Holsinger et al.,
2002; Yang et al., 2003; Zhang et al., 2014; Carroll and Li,
2016). Cleavage of APP at the β- and γ-secretase sites produces
the 40 or 42 amino acid fragments of Aβ (Aβ1–40 and Aβ1–42)
and subsequently, Aβ peptide is released into the extracellular
space (Chen, 2015; Xu et al., 2016). Extracellular Aβ assumes
several conformational states ranging from monomers to soluble
oligomers and fibrils. These polymers of Aβ quickly aggregate
and form the amyloid plaques which are characteristic of the
disease (Pryor et al., 2012).

The clearance of Aβ is mediated by several Aβ-degrading
zinc-metalloproteinases, including endothelin-converting
enzyme (ECE), angiotensin-converting enzyme (ACE),
insulin-degrading enzyme (IDE), neprilysin (NEP) and matrix
metalloproteinases (MMPs; Saido and Leissring, 2012). MMPs
are a family of highly regulated, zinc-dependent enzymes that
are produced by neurons and astroglia (Dzwonek et al., 2004).
These enzymes are initially secreted as catalytically inactive
pro-enzymes (proMMP-9), which are bound to endogenous
inhibitors, named tissue inhibitors of metalloproteinases
(TIMPs), through the C-terminal domain of each molecule. A
disturbance of this complex (proMMP-9•TIMP), by a proMMP
activator (MMP-3), causes the pro-enzyme (proMMP-9) to
dissociate, which becomes fully activated, and proceeds with
the degradation of its substrates (Ogata et al., 1995; Rosenblum
et al., 2007). Functionally, MMPs are extremely diverse, with
regulatory roles in many important cellular processes including
synaptic plasticity and cognition, neuroinflammation, blood-
brain barrier (BBB) integrity, cell migration, survival, and
apoptosis, as reviewed by Vafadari et al. (2016). MMPs are
overexpressed during various pathological conditions such
as stroke, epilepsy, schizophrenia, and neurodegeneration
(Vafadari et al., 2016). Their expression can be induced by a
large variety of factors, including cytokines, growth factors,
metal ions, antibiotics, and hormones (Van den Steen et al.,
2002; Vandooren et al., 2017). In the context of AD, Aβ

exposure induces the expression and secretion of MMPs from
cultured neurons, reactive astroglia, and neuroblastoma cells
(Deb and Gottschall, 1996; Deb et al., 2003; Talamagas et al.,
2007; Mizoguchi et al., 2009). When secreted from astroglia,

proMMP-9 is immediately cleaved into an active form (MMP-9)
in the extracellular compartment, thus contributing to the
maintenance of the balance between Aβ production and
clearance (Ogata et al., 1995; Akiyama et al., 2000; Wegiel et al.,
2000). In contrast to other Aβ-degrading proteases, MMP-9 is
known to degrade Aβ fibrils in vitro, Aβ plaques in situ, and Aβ

in vivo (Backstrom et al., 1996; Yan et al., 2006; Yin et al., 2006;
Hernandez-Guillamon et al., 2015). Consequently, modulation
of MMP-9 levels can therefore impact the clearance of Aβ and
promote its deposition.

Medroxyprogesterone Acetate (MPA) is a widely used,
synthetic progestin that is primarily found in the contraceptive,
Depo Proverar, and HT, Prempror and Premphaser.
Merlo and Sortino (2012) utilized estrogen to induce the
Aβ-degrading activity of MMP-9, establishing MMP-2 and
MMP-9’s contribution to the neuroprotective effect of the
hormone in vitro (Merlo and Sortino, 2012). Our work focused
on MPA, and its ability to modulate the levels of MMP-9,
and by extension the degradation of Aβ. MPA exerts adverse
effects on cognition, substantiating the risk of dementia in
menopausal women (Shumaker et al., 2003, 2004), promoting
memory impairments in menopausal animal models (Braden
et al., 2010, 2011, 2017), and inducing amnesia in case study
reports of premenopausal women (Gabriel and Fahim, 2005).
MMP-9 is critical for cellular processes involved in learning and
memory, as it regulates dendritic spine morphology, maintains
late-phase long term potentiation (LTP), and controls postnatal
brain development (Nagy et al., 2006; Michaluk et al., 2011;
Kamat et al., 2014; Gorkiewicz et al., 2015; Reinhard et al., 2015;
Kaczmarek, 2016). MPA has also been shown to alter MMP-9
activity and production in BV2 microglial, cancer, and epithelial
cells (Di Nezza et al., 2003; Hwang-Levine et al., 2011; Allen
et al., 2019). Additionally, the secretion of MMP-9 was found
to be negatively impacted by MPA in the aforementioned cell
types (Deb and Gottschall, 1996; Deb et al., 2003; Hwang-Levine
et al., 2011; Allen et al., 2019). It is currently unknown if
hormonal modulation of glial-secreted MMP-9, using MPA,
impacts degradation of Aβ. The pharmacological inhibition
of MMP-2 and MMP-9, using both specific and non-specific
enzymatic inhibitors, has also been shown to attenuate astroglia
cell-mediated Aβ degradation (Yin et al., 2006). Therefore,
MPA-mediated reduction of glial-secreted of MMP-9 would
likely result in dysregulated APP processing, fostering conditions
that would disrupt clearance of Aβ. On the premises that: (1) this
commonly used progestin negatively impacts the secretion of
this Aβ-degrading enzyme, in the aforementioned cell types; and
(2) inhibition of glial secretion of MMP-9 reduces the proteolytic
degradation of amyloid-beta, our central hypothesis is that
MPA diminishes the secretion of MMP-9, thereby reducing the
degradation of amyloid-beta.

Here, we provide evidence that illustrates the connection of
MPA, MMP-9, and Aβ. We found that MPA influences Aβ

degradation by modulating the expression and/or activity of Aβ-
degrading enzymes in a glial cell line (C6). C6 rat glial cells are
a commonly used glial cell line and have also been identified as
a useful cell line to study hormone action in glia (Kumar et al.,
1986; Buchanan et al., 2000; Su et al., 2012b). We demonstrate
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that MPA significantly reduces enzymatic activity and secretion
of MMP-9 and that MPA significantly reduces the degradation
of Aβ. Together, these data implicate MPA in a negative effect
on the Aβ-degrading enzyme, MMP-9. These data support a
potential role where MPA perturbs Aβ clearance mechanisms,
indicating the necessity for in vivo investigations of MPA’s
influence on AD-related pathology.

MATERIALS AND METHODS

Cell Culture
The C6 rat glial cell line was obtained from the American
Type Culture Collection (ATCC #CCL 107). C6 cells were
maintained in Hyclone Dulbecco’s modified Eagle’s medium
(DMEM)/high glucose (Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (FBS;
Atlanta Biologicals) and 1% penicillin/streptomycin (Thermo
Fisher Scientific, Waltham, MA, USA). Once cells reached 80%
confluency, they were trypsinized and spun down at 325.5 × g
for 3 min. Cells were counted with a Nexcelom Bioscience
Cellometer AutoT4 (Lawrence) and seeded at a density of 1× 106

cell/well in 6-well cluster plates, incubated overnight at 37◦C in
5% CO2.

Treatments
Serum-supplementedmedia was removed and the cell monolayer
was washed once with phosphate buffer saline (1× PBS)
and fresh-serum free media (OptiMEM; Thermo Fisher
Scientific, Waltham, MA, USA), containing either 0.1% dimethyl
sulfoxide (DMSO; Millipore Sigma), various concentrations of
Medroxyprogesterone Acetate (MPA; 10 nM, 100 nM, 1 µM,
and 10 µM; Millipore Sigma), GM6001 (1 µM; Calbiochem,
La Jolla, CA, USA), or RU486 (2 µM; Millipore Sigma). All
treatments were diluted in serum-free medium to a final DMSO
concentration of 0.1%. Cell viability was always above 90% as
assessed by Calcein AM (Thermo Fisher Scientific, Waltham,
MA, USA). C6 cells were incubated at 37◦C in 5% CO2 for
48-h or 72-h. The conditioned media was collected and used to
assess MMP-9 enzymatic activity (by gelatinase zymography),
quantify extracellular MMP-9 (by ELISA), and assess proteolytic
degradation of amyloid-beta (by Western blot). Supernatants
were stored at −80◦C and thawed on ice during experimental
analyses. Repeated freeze-thaw cycles were avoided by aliquoting
the samples. The cells were collected and used to quantify
intracellular MMP-9 protein levels (by ELISA) and assess
MMP-9 mRNA expression (by qRT-PCR).

Cell Viability
Cell viability was assessed using Calcein AM (Life Technologies)
and reconstituted at 2 mM in dimethylsulfoxide. About
50,000 C6 cells were seeded in a black-walled clear bottom 96 well
plate (Corning; #3601). C6 cells were treated with 10 nM–10 µM
of MPA. After exposure to MPA (10 nM–10 µM) for 72-h, the
plate was washed three times with PBS 1×. A total of 100 µl of
1 µM Calcein AM was added to the wells. The plate was
incubated at 22◦C in the dark for 30 min. The plate was read
using a BioTek Synergy H1 Hybrid reader (Winooski, VT, USA).

Lactate Dehydrogenase Assay
Cell death after MPA treatment was assessed using the PierceTM

lactate dehydrogenase (LDH) Cytotoxicity Assay (Thermo Fisher
Scientific, Waltham, MA, USA) kit. Reaction substrates were
prepared as per the manufacturer’s instructions. LDH assay was
performed with the media from the black-walled clear bottom
96 well plate. Forty-five minutes before the end of the 72-h
exposure period, 10 µl 10× lysis buffer was added to one control
well, and the plate was placed back in the incubator. After the
exposure period, 50µl of media was carefully removed from each
well and transferred to a new 96 well clear-bottom assay plate.
Next, 50 µl of the LDH reaction mixture was added to each well,
and the plate was incubated for 30 min at room temperature,
protected from light. The reaction was stopped by adding 50µl of
LDH stop solution to each sample. The plate was read using the
BioTek Synergy H1 Hybrid Reader (BioTek) at an absorbance of
490 nm and 680 nm.

Assay of MMP-9 Activity by Gelatin
Zymography
The gelatinolytic/proteolytic activity of MMP-9 secreted into
the culture medium was determined with gelatin zymography
by electrophoresis of serum-free conditioned media (CM)
collected from confluent C6 cells, following (Frankowski et al.,
2012). Briefly, CM freed of cell debris by centrifugation
were mixed with Laemmli sample buffer (Bio-Rad; #1610747)
lacking reducing agents. Electrophoresis in precast Novex
polyacrylamide zymogram gels (Invitrogen) was performed at a
constant voltage of 125V for 90 min in SDS Tris-Glycine Buffer,
followed by a series of three 15 min washes in 1× renaturation
buffer (Invitrogen). The gels were transferred to 1× Developing
buffer (Life Technologies) for 30 min with gentle shaking and
then placed at 37◦C for and 18 h incubation. The following
day, the gels were stained in a solution with 45% ethanol, 54%
sterile diH2O, 1% acetic acid, and 0.125 g Coomassie brilliant
blue R-250 (Sigma) between 45 min to 1-h. The gels were
then transferred to de-staining solution #1, containing 25%
ethanol, 10% acetic acid, and 65% diH2O for 45 min. De-staining
solution #1 was decanted and then replaced by a de-staining
solution #2, containing 5% ethanol, 7.5% acetic acid, and 87.5%
diH2O for 1–3 h. Areas of gelatinolytic degradation appeared as
transparent bands on the blue background. Gels were imaged
using ChemiDocTM XRS+ System (Bio-Rad, Hercules, CA, USA).
Images were acquired using Bio-Rad Quantity OneTM software.
The Novex Sharp Pre-stained Protein Standard (Invitrogen) was
used to identify MMP species or the MMP-9 Active, Human,
Recombinant (Millipore Sigma; #PF024-5UG) was used as a
reference standard, showing MMP-9 gelatinolytic activity at
67 kDa. The bands in the gel are quantified using ImageJ
1.38X(NIH).

Intracellular and Extracellular MMP-9
Levels
CM samples and cell lysates were analyzed with a matrix
metalloproteinase-9 (MMP-9) ELISA kit following the product
manuals (R&D Systems QuantikineTM; #RMP900). The results
were calculated from the standard calibration curves on internal
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standards. After adding stop solution, optical density (OD) was
measured at 450-nm with correction wavelength at 550-nm
immediately using BioTek Synergy H1 Hybrid plate reader
(BioTek). The final readings were obtained by subtracting
450-nm from 550-nm OD reading to correct for optical
imperfections of the microplate reader. A standard curve was
generated with reagents provided in the kit and the sample
values were read against the standard to determine MMP-9
concentrations in each treatment.

RNA Isolation and Quantitative Real-Time
PCR
Cells were seeded at 1× 106 cells/well in a 6-well plate and left to
reach ∼80% confluency throughout 24-h. The media was gently
aspirated from cells and replaced by 2 ml of OptiMEM Reduced
Serum Media (Thermo Fisher Scientific, Waltham, MA, USA),
supplemented with 1% penicillin/streptomycin (Thermo Fisher
Scientific, Waltham, MA, USA), or the various concentrations
of MPA. After a 12-h exposure period, cells were collected
using a Cell Lifter (Corning, Corning, NY, USA), washed with
1× PBS, and pelleted by centrifugation at 325.5× g for 3 min,
followed by the addition of 1 ml QIAzol Lysis Reagent for RNA
purification (Qiagen).

Total RNA was purified by using the miRNeasy Mini Kit
(Qiagen) as per the manufacturer’s instructions. For all lysate
samples, 200 µl chloroform was added, and vortexed for 1 min
followed by incubation on ice for 5–10 min. Next, the samples
were centrifuged for 15 min at 12,000× g at 4◦C. The upper
aqueous phase (∼300 µl) was transferred to a new collection
tube and mixed with 600 µl 100% ethanol. The solution was then
placed on an RNeasy MinElute spin column and centrifuged at
8, 000× g for 15 s. The flow-through was discarded and 700 µl
buffer RW1 (20% Ethanol, 900 mM guanidinium isothiocyanate
(GITC), 10 mM Tris-HCl pH 7.5) was added to the spin column
and centrifuged at 8,000× g for 15 s. Two washes of 500µl buffer
RPE (80% Ethanol, 100 mM NaCl, 10 mM Tris-HCl pH 7.5)
were then performed, with the first lasting 15 s and the second
lasting 2min. The RNeasyMinElute spin columnwas then placed
in a new collection tube and spun at 8, 000× g for 5 min to
dry the column membrane. Lastly, the column was placed in
another collection tube and 40 µl RNase-free water was added
to the center of the membrane and incubated for 1 min, and then
centrifuged at 8,000× g for 1 min ending with the purified RNA
eluted in the collection tube.

RNA concentrations for each sample were measured using
Nanodrop 2000 spectrophotometer (Thermo Scientific). For
cDNA synthesis, 0.75µg total RNAwas reverse transcribed using
the miScript II RT kit (Qiagen). A reaction mix (20 µl total
volume) was made using 4 µl 5× miScript HiFlexBuffer, 2 µl
10×miScript Nucleics Mix, 2 µl miScript Reverse Transcriptase
Mix, and 12 µl Template RNA/nuclease-free water. Before use
for quantitative real-time PCR (qRT-PCR), cDNA was diluted in
nuclease-free water, at a ratio of 1:10.

Expression of MMP-9 mRNA was determined using target-
specific RT2 primer assays and the RT2 SYBRr Green PCR
kit (Qiagen; 5 µl SYBRr Green; 0.5 µl Target Primer; 4.5 µl
diluted cDNA). qRT-PCR reactions were performed in duplicate

for each sample, using the CFX384 TouchTM RT PCR Detection
System (Bio-Rad) for 45 cycles as follows: 15 s at 94◦C, 30 s at
55◦C, 30 s at 70◦C. Negative control reactions were included
as wells containing only master mix and nuclease-free water
(no template cDNA). The expression levels of target genes in
cell lysates was standardized against Adenylyl cyclase-associated
protein 1 (CAP-1; IDT). Quantification of PCR amplified mRNA
specific cDNA was done by the comparative cycle threshold CT
method (2−∆∆CT). Ct values of mRNA were subtracted from the
average Ct of the internal controls, and the resulting ∆CT was
used in the equation: relative copy numbers = (2−∆∆CT).

Amyloid-Beta Preparation and
Amyloid-Beta Degradation in
Astroglia-Conditioned Medium
Synthetic Aβ1–42 (Invitrogen; #30112) was prepared from
lyophilized Aβ1–42 monomers that were suspended in 167 µl
of HPLC grade water (Thermo Fisher Scientific, Waltham, MA,
USA) and incubated at room temperature for 5 min. The
dissolved Aβ1–42 was then diluted to 230 µM by adding 833 µl
of Ca2+-free phosphate-buffered saline (PBS) and incubated for
48-h at 37◦C for polymerization. After polymerization, synthetic
Aβ1–42 (230 µM) at a final concentration of 23 µM was freshly
prepared and added to either serum-free media (SFM), untreated
CM, MPA-treated CM, or GM6001-treated CM of C6 glial cells.
Themixtures were then incubated at 37◦C (Yin et al., 2006). After
24 h, samples were collected and residual Aβ1–42 was analyzed by
Tris-Glycine—Western blotting.

Western blot was performed using denaturing 4–20% Novex
Wedgewell Tris-Glycine SDS gels (Invitrogen) with 90 min
electrophoresis at 125V, 30 mA and iBlot Gel Transfer
Stacks (Invitrogen) with 7 min of electrical blotting. The
polyvinylidene difluoride (PVDF) membrane (Invitrogen) with
proteins transferred was blocked by Odyssey Blocking Buffer (LI-
COR Biosciences; #927-40000) for 1-h and was incubated with
primary 6E10 (1:1,000, Biolegend; #803016) overnight and then
with secondary (anti-mouse conjugated with fluorescence; LI-
COR) at room temperature for 90 min. Bands were visualized
using LI-COR Odyssey IR Imager (LI-COR). Quantification
using densitometric analysis was performed using Odyssey
imaging systems (LI-COR Biosystems, Lincoln, NE, USA).
Densitometry signal for each range of oligomers [low molecular
weight aggregates (<15 kDa), intermediate-sized oligomers
(∼15–55 kDa), high molecular weight oligomers (>56 kDa), or
the entire lane for total Aβ1–42] was normalized relative to the
signal of the control lane (SFM) and fold change over untreated
cells was plotted.

Statistical Analyses
All biological experiments were repeated at least three times
with n = 3–16 plates/wells per treatment. The results from the
experiments are reported as means ± SEM. All quantitative data
were assessed for significance using a one-way ANOVA with
Dunnett’s post hoc test. All results were analyzed by GraphPad
Prism 8.0 software (GraphPad Software). A p-value < 0.05 was
used to establish significance.
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RESULTS

Medroxyprogesterone Acetate Reduces
MMP-9 Enzymatic Activity
To study the effect of Medroxyprogesterone Acetate (MPA)
on matrix metalloproteinase-9 (MMP-9) activity, we incubated
C6 cells for 48 and 72-h with increasing concentrations of
MPA (10 nM—10 µM). The conditioned media (CM) were
then collected and analyzed by gelatin zymography. This
technique allows for the visualization of both active and
proenzyme (inactive) forms of gelatinases (MMP-2 and MMP-
9; Frankowski et al., 2012). Untreated C6 cells show constitutive
expression of active MMP-9 denoted by the 92 kDa gelatinase
band (Figures 1A,B; Supplementary Figures S3, S4), with
no detections of bands representative of MMP-2 activity.
Densitometric analysis of zymograms obtained in five different
experiments indicated that 48-h incubation of C6 cells with
MPA inhibited MMP-9 activity in a dose-dependent manner,
with significant reductions occurring at the three highest
concentrations (100 nM, 1 µM, and 10 µM) compared to
untreated control cells (Figures 1C,D). As expected, GM6001,
an MMP inhibitor, suppressed MMP-9 enzymatic activity by
80%. This dose-dependent, inhibitory effect of both MPA and
GM6001 on enzymatic activity persisted at 72-h.

To determine whether the inhibitory effect of MPA on
MMP-9 activity was due to interference with the activation
process of MMP-9, post-secretion, we incubated C6 cells with
medium alone. After 48-h, the CM was collected, divided into
aliquots, and treated with increasing concentrations of MPA.
The media was then incubated for 24 more hours at 37◦C and
analyzed by gelatin gel zymography. The inhibitory effect ofMPA
was lost, suggesting that MPA does not directly interact with
MMP-9 and confirming the interference with the activity of the
protease is cell-mediated (data not shown).

To exclude the possibility of drug toxicity as the reason of
its inhibitory effect, C6 cells were incubated with increasing
concentrations of MPA (10 nM, 100 nM, 1 µM, and 10 µM)
or 1 µM GM6001, then cell viability using Calcein AM and
LDH release were assessed. MPA did not cause any appreciable
cellular toxicity, even at the highest concentration used (10 µM;
Supplementary Figure S1).

Medroxyprogesterone Acetate Reduces
MMP-9 Production
Based on our finding that MPA caused decreased enzymatic
activity of MMP-9, we next assessed whether the inhibitory
effect of MPA on MMP-9 enzymatic activity was due to a
reduction in the overall secretion of MMP-9 protein or TIMP-1
inhibition. To measure extracellular and intracellular MMP-9
protein levels, C6 cells were incubated for 48-h with increasing
concentrations of the drug. Both the media and the cell lysates
were collected and analyzed by ELISA for MMP-9 (pro-MMP-
9, TIMP bound MMP-9, and latent MMP-9; Figures 2A,B).
The analysis of three experimental replicates showed that
MPA significantly inhibited extracellular MMP-9 protein levels
(Figure 2A). MMP-9 inhibition ranged from 30% to 60% relative

to control (Figure 2A). Intracellular MMP-9 protein expression
was also significantly decreased after MPA treatment, in a
dose-dependent manner (Control: 0.85548 ng/ml; 10 nM MPA:
0.88669 ng/ml; 100 nM MPA: 0.568602 ng/ml; 1 µM MPA:
0.468092 ng/ml; 10 µM MPA: 0.369965 ng/ml; Figure 2B).
Because intracellular MMP-9 protein levels were negatively
impacted by our MPA treatment, we evaluated the expression
level of MMP-9 in cells treated with MPA by quantitative RT-
PCR. Additionally, our zymography experiments revealed no
detection of MMP-2 enzymatic activity, thus we performed an
analysis of MMP-2 mRNA expression simply to confirm the
lack of MMP-2 expression in the C6 cells (Figure 3A). Analysis
of MMP-9 mRNA expression shows the experimental groups
were significantly lower when compared with the control group
(Figure 3A). Such repression appears after 12-h of treatment but
is not detectable at later time points (24-h; Figure 3B).

Medroxyprogesterone Acetate’s Effects
Are Mediated Through the Glucocorticoid
Receptor
To investigate a potential mechanism by which MPA causes
repression of MMP-9 transcription, we first considered a
receptor-mediated approach. At the molecular level, MPA
elicits its biological effects through multiple receptors, including
the progesterone receptor (PR), androgen receptor (AR), and
glucocorticoid receptor (GR; Africander et al., 2011). Notably,
these cells are devoid of the PR and AR (Su et al., 2012b). The
GR, however, is present in C6 cells and MPA binds to the GR
with a high affinity, acting as a partial to a full agonist for the
GR (Koubovec et al., 2004, 2005; Su et al., 2012a,b; Louw-du
Toit et al., 2014). We tested the hypothesis that MPA’s effects on
enzymatic activity and production of MMP-9 are mediated by
the GR (Figure 4). C6 cells were pretreated with mifepristone,
RU486 (2 µM), for 30 min, followed by MPA treatment for
another 48-h, using the lowest and highest concentrations of
MPA at which significant effects were seen on enzymatic activity,
an intracellular protein, and mRNA levels (100 nM and 10
µM). Densitometric analysis of the zymogram (Figure 4A;
Supplementary Figure S5) shows pharmacological inhibition
of the GR with RU486 attenuated MPA’s effect on MMP-9
activity (100 nM MPA: 51.61%; 100 nM MPA/RU486: 82.23%;
10 µM: 41.99%; 10 µM MPA/RU486: 64.79% (Figure 4B).
This suggests our findings are potentially due, in part, to a
GR-mediated mechanism.

Medroxyprogesterone Acetate
Antagonizes the Degradation of Aβ
Previous reports have suggested that MMP-9 is capable of
degrading amyloid-beta in vitro (Backstrom et al., 1996). To
explore the possibility that inhibition of MMP-9 would interfere
with amyloid-beta degradation, C6 wells were treated with
MPA for 48-h and the CM were incubated with freshly
prepared synthetic human Aβ1–42 for 24-h at 37◦C. The
doses selected for this experiment were the lowest and the
highest dose at which we observed significant effects on
enzymatic activity, intracellular protein, and mRNA levels
(100 nM and 10 µM). Using the anti-Aβ 6E10 antibody,
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FIGURE 1 | Medroxyprogesterone Acetate (MPA) reduced the gelatinolytic activity of MMP-9 in C6 glial cells. (A,B) Representative zymograms showing MMP-9
activity of MPA-treated conditioned media (CM) determined by gelatin zymography. After a 48-h (left) or 72-h (right) incubation period in serum-free media,
supernatants obtained from 1 × 106 cells were analyzed by gelatin zymography. DMSO at 0.1% was used as the vehicle control and constitutively showed MMP-9
gelatinolytic activity (lane 1). Upon MPA treatment, MMP-9 gelatinolytic activity was significantly decreased (lanes 2–5). GM6001 (lane 6) was used as a negative
control for active MMP-9. (C,D) Densitometric analysis of conditioned media from astroglia determined by gelatin zymography. C6 glial cells were incubated for 48-h
(left) or 72-h (right) with increasing concentrations of MPA and GM6001, a non-specific MMP inhibitor. Results are expressed as percentage of activity of treated to
untreated cells (mean ± SEM). MMP-9 gelatinolytic activity of untreated cells is expressed as 100%. MPA significantly decreased MMP-9 enzymatic activity in a
dose-dependent manner (P < 0.001) compared with that found in untreated cells. The results are representative of five independent experiments. ***p < 0.001.

Aβ levels were then measured by Tris-Glycine Gel-Western
blotting (Figure 5A; Supplementary Figure S6). This approach
yielded the resolution of groups of oligomers as indicated
in Figure 5A, consistent with the literature (Prangkio et al.,
2012). Incubation of Aβ with CM resulted in a significant
reduction in Aβ levels, causing the appearance of several Aβ

fragments, which are indicative of MMP cleavage (Backstrom
et al., 1996). This Aβ-degrading activity was antagonized byMPA
(100 nM and 10 µM). Densitometric analysis (Figures 5B–E)
established that CM modestly altered low molecular weight
aggregates (<15 kDa), while MPA-treated CM samples showed
no effect (Figure 5B). However, MPA-treated CM samples
overall mitigated proteolytic cleavage of intermediate-sized
oligomers (∼15–55 kDa; Figure 5C), high molecular weight
oligomers (>56 kDa; Figure 5D), and total (Figure 5E) Aβ

species. Incubation of Aβ1–42 with CM significantly abated
Aβ levels and MPA treatment weakened this effect. To verify
the contribution of MMPs to Aβ degradation in CM, we
incubated CM with freshly prepared synthetic human Aβ1–42
for 24-h at 37◦C in the presence or absence of the broad-
spectrum, MMP inhibitor, GM6001, and found that the Aβ-

degrading activity in CM was attenuated (Supplementary
Figures S2, S7). Additionally, we incubated SFM with freshly
prepare synthetic human Aβ1–42 for 24-h at 37◦C in the
presence or absence of active recombinant MMP-9 protein
(rMMP-9). These data confirmed findings in the literature
that MMP-9 possesses Aβ-degrading activity (data not shown;
Backstrom et al., 1996; Yan et al., 2006; Hernandez-Guillamon
et al., 2015). Next, we assessed the possibility of a direct
action of MPA on Aβ. We treated SFM with MPA for
48-h. incubated the supernatant with 23 µM Aβ1–42, for an
additional 24-h at 37◦C and we found MPA-treated SFM failed
to digest Aβ (data not shown). We determined our observed
impairment of proteolytic degradation occurred by an indirect,
cell-mediated mechanism.

DISCUSSION

Ninety percentage of the cells in the central nervous system
(CNS) are glia (Haydon, 2001). Glial cells (astrocytes,
oligodendrocytes, and microglia) communicate with neurons
to regulate synaptic plasticity and neurotransmission (Fields
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FIGURE 2 | The effect of 48-h MPA treatment on MMP-9 protein in C6 glial
cells. (A) Extracellular MMP-9 secretion was detected using the ELISA kit.
MPA inhibited the expression of extracellular MMP-9 in treated C6 glial cells.
Results are representative of three independent experiments. (B) The effect of
48-h MPA treatment on intracellular MMP-9 in C6 glial cells. MMP-9 secretion
was detected using the ELISA kit. Results are expressed as means ± SEM.
MPA inhibited the expression of intracellular MMP-9 in treated C6 glial cells.
Results are representative of five independent experiments. *p < 0.05,
**p < 0.01, and ***p < 0.001.

et al., 2014). Accumulating evidence suggests MMP secretion
from astroglia contributes to the degradation and clearance
of amyloid plaques (Yan et al., 2006; Yin et al., 2006;
Wang et al., 2014), emphasizing the critical role of induction
and secretion of MMPs in the brain. There are several reports
showing astroglia conditioned media (CM) possesses Aβ-
degrading activity, in part, through the secretion of MMPs
(Backstrom et al., 1996; Yin et al., 2006; Fragkouli et al., 2014).
Moreover, MMP-9 possesses α-secretase-like activity and
cleaves APP at several sites, promoting the non-amyloidogenic

FIGURE 3 | The effect of MPA treatment on MMP-2/-9 mRNA in C6 glial
cells. (A) The mRNA levels of MMP-2 and MMP-9 were measured by
qRT-PCR in C6 glial cells treated with MPA for 12-h, using MMP-2 and
MMP-9 specific primers. (B) At 24-h, the suppression of MMP-9 mRNA levels
is no longer detected. Data are represented by the mean ± SEM of three
independent qRT-PCR experiments performed in duplicates. The expression
levels are represented relative to the GAPDH reference gene. Results are
representative of five independent experiments. *p < 0.05 and **p < 0.01.

processing of the precursor protein and clearance of Aβ

(Backstrom et al., 1996; Yin et al., 2006; Talamagas et al., 2007;
Filippov and Dityatev, 2012).

The present study investigated the expression of MMP-9
in C6 glial cells treated with MPA. Several reports have
demonstrated that MPA can alter MMP-9 levels, where levels
are increased in macrophages and, alternatively, reduced in
BV2 microglial, endometrial cancer, and primary amnion
epithelial cells (Di Nezza et al., 2003; Hwang-Levine et al., 2011;
Allen et al., 2019). Consistent with these reports, we found that
MMP-9 protein expression and enzymatic activity is lowered
by treatment with MPA. However, the majority of the previous
in vitro studies have used non-CNS cell lines to observe the
effect of MPA on MMP-9, with little to no investigation of the
effects of MPA on glial secretion of MMP-9. Additionally, due to
the lack of focus in a CNS-related system, previous work failed
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FIGURE 4 | RU486 pretreatment antagonized the effects of MPA on MMP-9
activity. (A) Representative zymogram showing MMP-9 activity of
MPA-treated conditioned media (CM). DMSO at 0.1% was used as the
vehicle control and constitutively showed MMP-9 gelatinolytic activity (lane 1).
C6 cells were pretreated with mifepristone, RU486 (2 µM), for 30 min,
followed by MPA treatment for another 48-h. Treatment with RU486, alone,
did not alter MMP-9 enzymatic activity (lane 2). Upon MPA treatment, MMP-9
gelatinolytic activity was significantly decreased (100 nM, lane 3; 10 µM,
lane 5). Pretreatment with RU486 (2 µM) antagonized MPA’s effect on
enzymatic activity (100 nM, lane 4; 10 µM, lane 6). (B) Densitometric analysis
of conditioned media from astroglia determined by gelatin zymography.
Results are expressed as percentage of activity of treated to untreated cells
(mean ± SEM). MMP-9 gelatinolytic activity of untreated cells is expressed as
100%. RU486 treatment is represented by the white bar, 100 nM MPA
treatments are represented by the light gray bars (solid and striped), 10 µM
MPA treatments are represented by the dark gray bars (solid and striped).
Results are representative of three independent experiments. **p < 0.01.

to investigate the potential for MPA to influence AD-related
pathology via the hormonal modulation of MMP-9.

To our knowledge, this is the first in vitro analysis of the effect
of MPA on MMP-9’s enzymatic activity and production, in a
C6 glial cell line. Our results show that MMP-9 is expressed in
C6 glial cells in control conditions and is suppressed by exposure
to MPA at both the mRNA and the protein level. We found that
MPA suppresses MMP-9 activity in a dose-dependent manner
(Figure 1). Decreased MMP-9 activity was reflected by impaired
synthesis of the MMP-9 protein (Figures 3A,B) and was further
supported with data showing a suppression of MMP-9 mRNA
(Figure 3A). We observed a spurious increase at the highest
concentration of MPA (10 µM), which may be indicative of
off-target effects because of such a high dose of the hormone. In
agreement with our hypothesis, experiments on CM confirmed
the inhibitory effects of MPA on the enzymatic activity of MMP-
9. Conversely, we found MPA did not cause secretory inhibition

of MMP-9, but rather suppressed the transcription of MMP-9 at
the mRNA level.

The glucocorticoid receptor (GR) is typically found, in an
inactive state, in the cytoplasm, and, upon ligand binding,
it becomes and trans-represses pro-inflammatory genes. This
is thought to be substantiated either through direct DNA-
binding, by binding a glucocorticoid response element (GRE)
or the nuclear factor kappa B (NF-κB) response element (NF
κBRE; Meijsing et al., 2009; Surjit et al., 2011; Watson et al.,
2013; Weikum et al., 2017; Hudson et al., 2018; Sacta et al.,
2018) or 2), or through a DNA independent, direct protein-
protein interaction/crosstalk with other transcription factors,
including NF-κB and AP-1 (McEwan et al., 1997; Webster
and Cidlowski, 1999; De Bosscher et al., 2003; Liu and Xu,
2012; Trevor and Deshane, 2014). The initial finding of MPA’s
capability of interfering with the activities of NF-κB or AP-1,
at the promoter level, suggested MPA represses cytokine-
induced, AP-1 driven genes, as well as NF-κB-driven genes,
without impacting the DNA-binding activity of NF-κB, in a
GR-dependent manner (Koubovec et al., 2004). Conversely,
Simoncini et al. (2004) demonstrated MPA’s anti-inflammatory
effects and MPA’s ability to reduce hydrocortisone-dependent
nuclear translocation of NF-κB in human endothelial cells.
C6 cells have spontaneous NF-κB nuclear activity, suggesting
the presence of constitutive NF-κB activity, which explains
the constitutive basal expression of MMP-9 observed in our
experiments (Robe et al., 2004). We treated C6 cells with a
GR antagonist, which attenuated MPA’s effects on MMP-9
enzymatic activity (Figure 4). In this case, we suspect there may
be a GR-dependent transrepression of MMP-9, via interaction
with either NF-κB or AP-1, which are generally accepted as
regulators of MMP-9 expression (Jonat et al., 1990; Paliogianni
et al., 1993; Yokoo and Kitamura, 1996; Barnes, 1998; Bond et al.,
2001; Ronacher et al., 2009; Africander et al., 2011; Li et al.,
2012; Mittelstadt and Patel, 2012). The literature also extensively
supports the notion that glucocorticoids alter MMP-9 expression
(Rosenberg et al., 1996; Park et al., 1999; Eberhardt et al., 2002;
de Paiva et al., 2006), as well as MMP-3 (Richardson and Dodge,
2003; Koyama et al., 2017), which is the enzyme responsible for
the conversion of MMP-9 from an inactive to an active state.
Therefore, it is plausible the progestin binds to the cytosolic GR,
activates the GR, and then activated GR binds to NF-κB, in turn,
negatively interfering with the transcriptional enhancer and, in
turn, promoting transrepression of MMP-9. Notably, C6 cells
have also been shown to express mRNA for the membrane
progesterone receptors (mPR; Su et al., 2012a). Salazar et al.
(2016) demonstratedMPA elicits progestin-induced intracellular
signaling in PR-negative breast epithelial cells, suggesting a
potential mode of action via membrane progesterone receptors.
Possibly, our observations may be partially due to non-genomic
signaling through membrane progesterone receptors, however,
there is currently a lack of information regarding MPA’s relative
binding affinity to membrane progesterone receptors and a lack
of evidence relating to MPA’s propensity to elicit its effects via
non-genomic membrane-bound signaling. Future studies should
aim to further delineate the precise mechanisms by which our
observations in the present study occur.
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FIGURE 5 | Western blot detection and densitometric analysis of Aβ using 6E10 antibody (A) Representative Western blot of Aβ using 6E10 antibody. Freshly
prepared synthetic human Aβ1–42 (23 µM) was added to serum-free media (SFM; lane 1), SFM that had been conditioned by incubation with C6 glial cells (CM; lane
2), or CM that had been treated with MPA (100 nM or 10 µM) for 48-h (lanes 3 and 4). The mixture was then incubated for 24 h at 37◦C, and residual Aβ was
analyzed by Tris-Glycine—Western blotting. Incubation of Aβ1–42 with CM significantly decreased Aβ levels. MPA treatment attenuated this effect. (B–E)
Densitometric analysis shows that MPA-treated CM samples induced significant differences in Aβ species. Incubation of Aβ1–42 with CM significantly decreased Aβ

levels. MPA treatment attenuated this effect. Results are representative of three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001.
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To our knowledge, this is the first investigation of the
effects of MPA treatment on MMP-9’s Aβ-degrading activity.
Our objective was to relate progestin-induced reductions of
active MMP-9 levels with a loss of Aβ1–42 degradation. We
were interested in observing the effects after exposure to
high concentrations of Aβ (23 µM) and, using Western blot
analysis, we were able to confirm the diminished ability
of MPA-treated C6 cells to degrade Aβ1–42 (Figure 5).
A key finding of our current study was that MPA-treated
CM samples did not significantly alter low molecular weight
aggregates (Figure 5B). However, MPA treatment impaired the
degradation of intermediate-sized and high molecular weight
oligomeric Aβ species. Of interest is the observed effect on
oligomeric Aβ, which is suggested to be the culprit of the
neurodegeneration seen in AD (Lesné et al., 2008, 2013;
Lublin and Gandy, 2010). Our data suggest MPA treatment
potentially promotes AD-related pathology. Our inclusion of
the non-specific MMP inhibitor, GM6001, yielded a greater
effect on degrading activity. This affirmed our observations
were, in part, MMP-9 dependent, as GM6001 was shown to
inhibit the enzymatic activity of MMP-9 by 80% (Figure 1).
Enzymatic activity of MMP-9 was inhibited to the same extent
by GM6001 and 10 µM MPA, which was reflected in their
hindrance of Aβ degradation. Degradation of Aβ was not fully
thwarted with GM6001 treatment, implicating the potential for
additional proteases that exist in CM. As previously discussed,
in addition to MMPs, Aβ can be degraded by other proteases,
including ECE, IDE, and NEP (Saido and Leissring, 2012).
Prior literature supports a minimal contribution of IDE, NEP,
and ECE as extracellular, secreted amyloid-beta scavengers
from astrocytes. According to Yin et al. (2006), in addition
to NEP, ECE, and IDE, there may be proteases that have
yet to be experimentally identified, contributing to astrocyte-
mediated degradation of Aβ, because NEP, ECE, and IDE
were undetected with Western blot analysis of conditioned
media of neonatal mouse astrocytes. Moreover, it has been
reported that cultured cells may be incapable of secreting
IDE, and it is still undetermined whether NEP is capable
of degrading oligomeric amyloid beta (Saido and Leissring,
2012; Song et al., 2018). There is evidence that estrogen
promotes amyloid beta degradation through the induction of
NEP (Liang et al., 2010), and there is also evidence that
IDE is induced by 17β- estradiol, reducing amyloid beta load
in vivo (Zhao et al., 2011). Thus, the literature generally
supports the idea that hormones are capable of regulating
these specific amyloid beta degrading enzymes and suggests
MPA could also potentially regulate additional amyloid beta
degrading enzymes. However, we focused on MMP-9, because
MMP-9 is the only amyloid beta scavenger shown to possess
the ability to degrade Aβ fibrils in vitro, Aβ plaques in situ,
and Aβ in vivo, making it the most unique and distinguished
of the known scavengers (Backstrom et al., 1996; Yan et al.,
2006; Yin et al., 2006; Hernandez-Guillamon et al., 2015).
Overall, our findings suggest MMPs are involved in the
degradation of Aβ in CM and MPA impedes on the degradation,
through the downregulation of MMP-9 production, in a
GR-dependent manner.

We noted several limitations in the present study. First, our
synthetic Aβ formulation and its aggregated forms may not fully
represent the in vivo phenomena, due to variability in oligomer
generation (refer to Supplementary Figure S7). Additionally, the
effective concentrations of MPA in our study ranged from 10 nM
to10 µM. Although our working concentrations are relatively
high, peak serum concentrations of MPA fall between 10 nM
and 100 nM (Tomasicchio et al., 2013), after women receive
an intramuscular injection of 150 mg, every 3 months. These
are concentrations at which our observed effects on MMP-9
and Aβ-degrading activity occurred. Furthermore, our in vitro
model utilizes a transformed glial cell line. The utilization of
primary cells are more reliable than cell lines, however, this
would require pharmacological induction of MMP-9 expression
or transfection of an MMP-9 expression vector. As previously
mentioned, C6 cells have spontaneous NF-κB nuclear activity,
suggesting the presence of constitutive NF-κB activity, which
explains the constitutive basal expression of MMP-9 observed
in our experiments (Robe et al., 2004), and circumvented the
necessity for induction or transfection of MMP-9 expression.
Although in vitro experiments using cell culture are useful,
providing pertinent information, ultimately in vivo experiments
are needed to confirm these effects.

Based on our findings, progestin-induced downregulation
of MMPs is partially responsible for hampering the proteolytic
cleavage of Aβ1–42 and supports a possible link between MPA
administration and AD-related pathology. The importance of
MMP-mediated degradation of toxic Aβ1–42 species and its
potential neuroprotective effect is abolished with MPA-induced
reduction in MMP-9 expression and production. Most
importantly, this commonly used progestin suppresses both
the transcription and the activation of glial MMP-9, which is
responsible for reduced Aβ degradation. Taken together, our
study confirmed Aβ-degrading activity was reduced, in part,
through the impairment of MMP-9 production.

In summary, our work demonstrates the necessity for a
further delineation of MPA’s effects on MMP-9 production. We
also raise awareness for the unmet need for in vivo investigation
for the potential cognitive and pathological outcomes of MPA.
There is currently an abundance of literature which focuses on
the effects of estrogen, estradiol, testosterone, and progesterone
on the brain, and particularly amyloid-beta production and
clearance (Vest and Pike, 2013; Li and Singh, 2014; Giatti et al.,
2016; Uchoa et al., 2016). There is still a paucity of published
research addressing the potential effects of progestins, more
specifically MPA, on the brain. While limited research with
MPA suggests a negative impact on the brain, these studies
need to be extended to model systems relevant to women
in their reproductive prime, as a majority of efforts have
been in menopausal animal models and menopausal woman
(Shumaker et al., 2003, 2004; Braden et al., 2010, 2011, 2017;
Lowry et al., 2010; Akinloye Olanrewaju et al., 2013). Our
finding that MPA limits MMP-9 production could ultimately
negatively impact synaptic plasticity in vivo, as MMP-9 is
considered ‘‘indispensable’’ for neuronal plasticity (Nagy et al.,
2006; Michaluk et al., 2011; Kamat et al., 2014; Gorkiewicz
et al., 2015; Lepeta and Kaczmarek, 2015; Kaczmarek, 2016).
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Thus, independent of AD-related pathology, MPA’s suppression
of MMP-9 production could still prove harmful for learning
and memory. Herein, we encourage additional investigations
related to MPA’s effects on the brain. Future efforts should be
extended to model systems relevant to AD-related pathology. It
is conceivable that the prolonged use of MPA will progressively
subdue the proteolytic degradation of Aβ by MMP-9, in vivo,
promoting AD-related pathology. This hypothesis is currently
being tested in our laboratories.
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FIGURE S1 | Effect of MPA on cell viability and LDH release. (A) Calcein AM and
(B) Lactate dehydrogenase (LDH) data indicate that significant cell death did not
occur at any concentration of MPA treatment.

FIGURE S2 | Western blot detection and densitometric analysis of Aβ using
6E10 antibody. Representative Western blot of Aβ using 6E10 antibody. Freshly
prepared synthetic human Aβ1–42 was added to serum-free media (SFM; lane 1),
SFM that had been conditioned by incubation with C6 glial cells (CM; lane 2), or
CM that had been treated with 1 µM GM6001 (lane 3) for 48-h. The mixture was
then incubated for 24 h at 37◦C, and residual Aβ was analyzed by (A),
Tris-Glycine—Western blotting. (B) Densitometric analysis of overall total
Aβ1–42shows that incubation of Aβ1–42 with CM significantly decreased Aβ levels
and GM6001 treatment attenuated this effect. Results are representative of two
independent experiments. *p < 0.05, **p < 0.01.

FIGURE S3 | Full Zymogram gel of cropped image as shown in Figure 1A.
Using a 10-well gel, MMP-9 Active, Human, Recombinant (Millipore Sigma;
#PF024-5UG) was used as a reference standard showed MMP-9 gelatinolytic
activity at 67 kDa (lane 1). DMSO at 0.1% was used as the vehicle control and
constitutively showed MMP-9 gelatinolytic activity (lane 3). Upon MPA treatment,
MMP-9 gelatinolytic activity was significantly decreased (lanes 4–7). GM6001
(lane 8) was used as a negative control for active MMP-9.

FIGURE S4 | Full Zymogram gel of cropped image as shown in Figure 1B.
Using a 12-well gel, DMSO at 0.1% was used as the vehicle control and
constitutively showed MMP-9 gelatinolytic activity (lanes 1 and 7). Upon MPA
treatment, MMP-9 gelatinolytic activity was significantly decreased (lanes 2–5 and
8–11). GM6001 (lanes 6 and 12) was used as a negative control for
active MMP-9.

FIGURE S5 | Full Zymogram gel of cropped image as shown in Figure 4. Using
a 10-well gel, DMSO at 0.1% was used as the vehicle control and constitutively
showed MMP-9 gelatinolytic activity (lane 1). C6 cells were pretreated with
mifepristone, RU486 (2 µM), for 30 min, followed by MPA treatment for another
48-h. Treatment with RU486, alone, did not alter MMP-9 enzymatic activity (lane
2). Upon MPA treatment, MMP-9 gelatinolytic activity was significantly decreased
(100 nM, lane 3; 10 µM, lane 5). Pre-treatment with RU486 (2 µM) antagonized
MPA’s effect on enzymatic activity (100 nM, lane 4; 10 µM, lane 6).

FIGURE S6 | Full Western Blot gel of cropped image as shown in Figure 5A.
Li-Cor Pre-Stained Protein Ladder (ChameleonTM Duo; #928-60000; lane 1).
Freshly prepared synthetic human Aβ1–42 (23 µM) was added to serum-free
media (SFM; lane 3), 10% fetal bovine serum (FBS) media (lane 4), SFM that had
been conditioned by incubation with C6 glial cells (CM; lane 5), or to 100 nM
MPA-treated CM (lane 6) or 10 µM MPA-treated CM (lane 7).

FIGURE S7 | Full Western Blot gel of cropped image as shown in
Supplementary Figure S2. Li-Cor Pre-Stained Protein Ladder (ChameleonTM

Duo; #928-60000; lane 1). Freshly prepared synthetic human Aβ1–42 (23 µM) was
added to serum-free media (SFM; lane 2), SFM that had been conditioned by
incubation with C6 glial cells (CM; lane 3), CM that had been treated with 1 µM
GM6001 (lane 5), or to CM that had been treated with MPA (10 nM, 100 nM, 1
µM, and 10 µM) for 48-h (lanes 7–10). As noted in our “Discussion”, our synthetic
Aβ preparation exhibited variability in oligomer generation. The variability in
aggregates stems from using HPLC grade water as our solvent, instead of
alcohol, such as hexafluoroisopropanol (HFIP), which removes preexisting
aggregates and beta-sheet secondary structures from Aβ1–42, yielding the peptide
in one specific form of Aβ1–42 species. The solvent used to dissolve the lyophilized
peptides determines the initial conformation of amyloid-beta and also the
aggregation kinetics (Wei and Shea, 2006). Additionally, while performing
replicates of our studies, our amyloid preparation was stored at −80. Amyloid
peptides are shown to be sensitive to temperature and freezing even at low
concentrations, where freezing the peptide allows for uncontrolled
oligomerization, causing the variation in aggregates once it goes through a
freeze/thaw cycle (Filippov et al., 2008). We observed changes in the preparation
as an effect of time and temperature. During our experiments and replicates, we
found that if the preparation was not freshly made with each replicate, our
Western blot detection would then lack the sensitivity required to detect
MPA-induced effects on degradation. The effects of CM and GM600, however,
could still be detected, using a synthetic preparation that was not
freshly made.
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