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Gastric cancer (GC) is the fourth most common cancer and the second most frequent cause of cancer-related deaths, accounting for
10.4% of cancer deaths worldwide. Despite the improvements, estimated cure rates for patients with advanced stages remain poor,
and in the metastatic setting, chemotherapy is the mainstay of palliative therapy and results in objective response rates (ORRs)
of only 20–40% and median overall survivals (OS) of 8–10 months. Therefore, many investigators believe that the potential
for making significant progress lies in understanding and exploiting the molecular biology of these tumors to investigate new
therapeutic strategies to combat GC, such as specific immunotherapy. In this paper, we analyze the different approaches used for
immune-based (especially dendritic and T cells) therapies to gastric cancer treatment and discuss the results obtained in preclinical
models as in clinical trials.

1. Introduction

Gastric cancer (GC) is the fourth most common cancer and
the second most frequent cause of cancer-related deaths,
accounting for 10.4% of cancer deaths worldwide [1], with
high incidence in definite area (China, Eastern Europe, and
Japan) [2]. Surgical tumor resection remains the primary
curative treatment for GC but the overall 5-year survival
rate remains poor, ranging between 20–25%. The addition
of combined modality strategies (pre- or postoperative
chemo/radiotherapy or perioperative chemotherapy) results
in 5-year survival rates of only 30–35% [3–6]. preop-
erative chemo/radiotherapy produces pathologic complete
responses (pCRs) in no more than 20–30% of patients
[5], while preoperative chemotherapy alone is only rarely
associated with pCRs [3, 7]. Worldwide, despite the improve-
ments, estimated cure rates for patients with advanced stages
remain poor and, in the metastatic setting, chemotherapy
is the mainstay of palliative therapy and results in objective
response rates (ORRs) of only 20–40% with a median overall
survivals (OS) of 8–10 months [8].

Therefore, many investigators believe that the poten-
tial for making significant progress lies in exploiting the
molecular biology of tumors to investigate new therapeutic
strategies: such as epithelial growth factor receptor (EGFR)
inhibitors [9], antiangiogenic agents [10], apoptosis promot-
ers [11], and specific immunotherapy [12, 13].

Evidence from different investigations suggests a role for
the immune system in the treatment of cancer: tumours
are 100 times more likely to occur in people who take
immunosuppressive medications than in people with normal
immune function [14]. Patients who have undergone renal
transplantation have an estimated 3 to 5 times higher overall
incidence of malignancy in the long term than general
population [15]. Conversely, heightened antitumor activity
of the immune system has been suggested in many reports
of spontaneous cancer regression [16]. A positive correlation
between tumor infiltrating T lymphocytes and patients
survival has been observed [17], and spontaneous tumor-
specific T cell responses have been found in patients with
different tumours [18]. Immune defence against cancer is
mediated through antigen-specific and nonspecific immune
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mechanisms, that are provided by cells of the macrophage
and NK cell lineage and/or by soluble factors such as
inflammatory cytokines.

The functioning of the antigen-specific immune system
is based on a division of tasks between T cells and B cells
(Figure 1). Various reagents (vaccines, infusion of T cells or
cytokines) can stimulate the immune system through one
of several mechanisms: (1) stimulation of the antitumor
response, either by increasing the number of effector cells or
by producing soluble mediators (e.g., cytokines); (2) alter-
ation of tumor cells to increase their immunogenicity and
susceptibility to immunological defences; or (3) improve-
ment of susceptibility to cytotoxic drugs or radiotherapy,
such as stimulating bone marrow function with granulocyte
colony stimulating factor (G-CSF). However, the cancer also
developed a number of different strategies to escape immune
surveillance such as loss of tumor antigen expression,
MHC downregulation, expression of Fas-L that can induce
apoptosis in activated T cells, secretion of cytokines such as
IL-10 (Interleukin-10) and/or TGF-ß (Tumor grow factor-
β) and generation of regulatory T cells (Treg) [19, 20]. The
requirement for an immune-based strategy against cancer
is the induction of an effective tumor-specific immunity in
order to break immunological tolerance to the tumor and
generate antitumor immunity. To achieve this goal, several
strategies both in preclinical models and in clinical trials are
currently being investigated.

In this paper, we examine the currently used different
approaches for immune-based gastric cancer therapies and
the results obtained in some clinical trials. These trials
have had variable eligibility requirements and have grouped
together combinations of patients with esophageal, gastro-
esophageal (GE) junction, and/or gastric primary tumors.
Histologies on these trials are squamous cell carcinomas
(SCC), which mostly occur in the proximal third of the
esophagus and adenocarcinomas, which arise in the distal
two-thirds of the esophagus, GE junction, and stomach.

2. Innate and Adoptive Immunity Cells as
Antitumoral Therapy in Gastric Cancer

2.1. Dendritic Cell-Based Vaccination. Dendritic cells (DCs)
are the most powerful professional antigen-presenting cells
(APC) at the interface between innate and adaptive immu-
nity with the ability to activate many effector cells (NK, T, B,
and NKT cells).

Studies in mice shown that ex vivo generated DCs can
induce antigen-specific T cell immunity and are superior to
other types of tools (e.g., vaccines) [21]. These studies are the
basis to design DC-based anticancer vaccines in clinical trials
(Figure 2).

Antigen presentation by dendritic cells is a central
element in the induction of the cellular immune responses
necessary for tumor immunotherapy [22, 23]. Since DCs
have this intrinsic ability to prime immune responses, there
has been a great deal of interest in the use of these cells for
cancer therapy [24].

More than 150 DC-based clinical studies for the treat-
ment of solid or haematological malignancies have been
reported so far (http://www.mmri.mater.org.au/).

Melanoma is the most frequent type of cancer treated
with DC-based immunizations, with nearly 40 published
clinical studies, followed by 20 studies on prostate cancer, 16
of renal cell carcinoma, 12 of breast cancer, and 9 of multiple
myeloma, leukemia, colorectal cancer, and gliomas.

About the gastric cancer, it was demonstrated that
patients with many DCs infiltration had lower lymph node
metastases and lymphatic invasion than patients with fewer
DCs infiltration. The 5-year survival rates of patients with
many DCs infiltration were 78%, better than that of patients
with fewer DCs infiltration [25]. According to the function
of DCs described above, we know that DCs are related to
clinical stage, invasion, metastasis, and GC prognosis [26].
Therefore, it will be feasible that DC-based tumor vaccines
become a new effective immune-adjuvant GC therapy,
which can decrease the incidence and recurrence rates after
operation for gastric cancer.

Galletto [27] gained DCs derived from adherent blood
mononuclear cells of five GC patients, which were exposed
to apoptotic autologous tumor (AAT) cells and cultured
for 24 h with monocyte-conditioned medium to achieve full
DCs maturation. Tumor-specific response was evaluated as
single-cell cytokine release in an enzyme-linked immunospot
(ELISPOT) and cytotoxicity in a cold target inhibition 51Cr-
release assay. Data has shown that T cell memory against
gastric cancer antigens could be triggered by tumor-loaded
autologous DCs.

In addition, Kono [28] reported that tumor vaccination
therapy with DCs pulsed with HER-2/neuro-peptides may
be a potential candidate for the novel treatment of patients
with gastric cancer. Nine GC patients with recurrent or
unresectable cancer are enrolled in the clinical trial. The
tumors were proved to overexpress HER-2/neu by immune-
histochemistry. Vaccinations with DCs pulsed with HER-
2 (p369) peptide were performed at 2-week intervals. DCs
administered intradermally in a single site at a supra-
clavicular location. In 3 of 9 patients, the tumor markers
(CEA or CA19-9) were decreased after vaccination. Two had
a tumor regression of more than 50%, and two presented a
mixed response. The vaccines can be applied safely without
significant side effects.

Due to a short lifespan of DCs, however, clinical applica-
tion of current DC vaccines has been limited. One of factors
threatening DC survival is antigen-specific CD8+ cytotoxic
T lymphocytes (CTLs) that acquire cytolytic activities after
activation by DCs presenting the relevant MHC-I: antigen
peptide complexes [29, 30].

The early removal of DCs at each of priming and boost-
ing stages would seriously limit the capacity of DCs to prime
and expand CTL immunity, respectively [31–33].

In the past, activation of AKT/protein kinase B (PKB),
a major effector of phosphatidylinositol 3-kinase (PI3K),
has been reported as a critical factor in both activation and
survival of DCs [34, 35]. Most recently, Kim [36] improved
the potency of a DC vaccine with a small interfering
RNA (siRNA) targeting phosphatase and tensin homologue
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CD34+
Clinical applications of DCs

Peptides,
DNA, RNA

GM-CSF/IL-4

GM-CSF/IL-4

Flt3-L, TNF-α

Immature
DCs

Monocytes

Antigen loading
(tumor lysates,

peptides, proteins,
nucleic acids,

TNF-α, IL-1, PGE2,
MCM, CD40L,

TLR-ligands

Mature
DCs

lymphocyte
expansion

or
reinfusion

Ex vivo

viruses)

stem cells

Figure 2: Circulating monocytes and hematopoietic (CD34+) stem cells are practicable sources of DCs for clinical applications. Following
incubation with growth factors to induce cell differentiation and to increase immunogenicity, DCs are incubated with the antigen (peptides,
proteins, nucleic acids, viral particles, or tumor lysates). Antigen-loaded DCs can then be reinjected into the patient or used for ex vivo
expansion of antitumor lymphocytes which will then be infused.

(PTEN), which is known to be a central negative regu-
lator of the PI3K/AKT signal transduction cascade [37].
Downregulation of PTEN in DCs resulted in AKT-dependent
maturation, which in turn caused a significant upregulation
of surface expression in costimulatory molecules and the
chemokine receptor, CCR7, leading to an increase of in vitro
T cell activation activity and in vivo migration to a draining
lymph node, respectively. Moreover, these PTEN siRNA-
transfected DCs (DC/siPTEN) acquired an increased survival
from the apoptotic death caused by GM-CSF deprivation
or antigen-specific CD8+ T cell killing. Most importantly,
DC/siPTEN generated more tumor antigen-specific CD8+ T

cells and stronger antitumor effects in vaccinated mice than
did control DCs (DC/siGFP).

In conclusion, these results indicate that manipulation
of the PI3K/AKT pathway via siRNA system could improve
the efficacy of a DC-based tumor vaccine, for example, in
gastric cancer therapy. Immunosuppressive cytokines such
as IL-10 produced by DCs (autocrine) and other regulatory
immune cells (paracrine) downregulate functional profiles of
DCs through specific cell surface receptors such as IL-10R. In
recent times, the same group demonstrated that by blocking
the immunosuppressive axis with small interfering RNA
targeting IL-10 receptor, it is possible to enhance dendritic
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cell-based vaccine potency providing the groundwork for
future clinical translation of siRNA-mediated to enhance
DC-based vaccine immunotherapy [38].

Most promising are also the data obtained by He and
colleagues [39] about the possibility of enhancing antitumor
immunity in vitro using granulocyte-macrophage colony
stimulating factor (GM-CSF) gene-modified DCs. They
demonstrated that after GM-CSF gene modification, DCs
can produce high level of GM-CSF, which tend to be more
maturated, and the capacity of activating the proliferation of
allogenic T lymphocytes is enhanced greatly. GM-CSF gene
modified DCs can induce specific CTL to target tumor cells
in vitro.

2.2. Therapies with Natural Killer (NK) Cells. NK cells pre-
vent the dissemination of metastatic tumors in mice and
in humans [40], and tumor infiltration by NK cells may
be associated with a better prognosis in squamous cell
lung, gastric and colorectal carcinoma [41]. The important
role of NK cells in host defence against cancer provides
opportunities to contrast the disease by manipulating the
NK cell “arms”; but, unfortunately, the achievement of NK
cell-based therapeutic breakthroughs has been hampered
by several factors: (a) poor and late learning of the mech-
anisms involved in activation of NK functional activity;
(b) incomplete definition of the distinct NK cell subsets
endowed with specific functions; (c) different mouse and
human NK cell biology; (d) the small number of NK
cells in peripheral blood; (e) the difficulties associated with
large-scale production of cytolytic NK cells in compliance
with good manufacturing practices (GMP); (f) the need to
activate the NK cells in order to induce NK-cells-mediated
killing; (g) the constraints imposed by autologous inhibitory
receptor-ligand interactions [42].

In 1982, Grimm demonstrated that IL-2 generated
lymphokine-activated killer (LAK) cells able to kill human
tumor cell lines and that this phenomenon was mainly medi-
ated by NK cells [43]. The first clinical study combining LAK
cells and IL-2 was initiated by SA Rosenberg in 25 patients
with advanced cancer. By the end of the 1990s, all published
phase II and phase III randomized trials showed a clinical
response rate of 15–20% [44]. High doses of recombinant IL-
2 were administered systemically to ensure survival and sus-
tained activation of infused LAK cells, but the high incidence
of severe adverse effects precluded further development of
these adoptive transfer-based therapies [45]. In addition,
since the IL-2 era, different clinical trials have assessed the
effects of systemic administration of other cytokines involved
in NK cell differentiation and activation (Table 1).

In regard to the gastric cancer, most recently Voskens
confirmed that large quantities of cytotoxic NK cells can
be expanded from PBMC in the presence of K562 cells
(expressing membrane-bound IL-15 and 4-1BBLigand) from
healthy individuals and interestingly from patients with
different solid tumors [61]. Ex vivo expansion tended to
alter the balance of NK cell receptor expression towards
those that activate and mediate cytotoxicity. This activity
resulted in cytotoxicity against various allogeneic tumor
targets and more importantly, against autologous-derived

gastric tumor targets. Blocking studies identified multiple
activating receptor-ligand interactions that would be pre-
dicted to mediate NK cell cytotoxicity. Moreover, these
activating receptor-ligand interactions were operative in
ADCC (antibody-dependent cellular cytotoxicity) as in an
autologous as in allogeneic setting.

Importantly, as a mean for prospect clinical translation,
GMP compliant cytolytic NK cells could efficiently be
expanded from lymphocyte-enriched cell fractions obtained
from PBMC by counter current elutriation.

This study unequivocally demonstrated that human NK
cells acquire cytolytic activity against autologous gastric
tumor cells after ex vivo expansion and suggested a therapeu-
tic potential for autologous expanded NK cells, both directly
and in combination with monoclonal antibodies in future
cell-based immunotherapy.

2.3. T-Cell-Based Antigastric Cancer Treatments. Evidence
that T cells can help to control tumor growth has been
provided by the analysis of tumor prevalence in immunode-
ficient mice and humans [14]. Furthermore, recent evidence
indicates that tumor infiltration by human T cells is a
powerful predictive biomarker of survival for ovarian and
colorectal cancers [82].

Therapeutic cancer vaccines are entering the clinical
medicine, but despite more than 60 years of research on this
field, there are currently no FDA-approved adoptive T cell
therapy protocols for cancer. However, the recent explosion
of knowledge in the fields of T cell and cancer biology
has enabled new approaches that might bring adoptive T
cell transfer into daily clinical practice. Recent knowledge
acquired from adoptive transfer in lymphodepleted hosts
[83], the ability to overcome barriers raised by Tregs [84],
and the use of improved culture systems [36] have not been
tested yet in randomized clinical trials.

There are different types of T cell-based anticancer ther-
apy approaches, using (a) cytotoxic T lymphocytes (CTL),
(b) tumor-infiltrating lymphocytes (TIL), or (c) engineered
T cells.

Improved CTLs cell culture technology has permitted
the first clinical tests for adoptive transfer of CTLs, and this
technique [85, 86] seems to result in substantial activity in
patients with melanoma; CTLs were used to treat patients
with metastatic melanoma, and 8 out of 20 patients had anti-
tumor immune responses [87]. These results were confirmed
in an independent trial in which engraftment of the CTLs,
as measured by an elevated frequency of circulating T cells
able to bind tetramers loaded with MART-1 peptides, was
detectable up to two weeks after T cell transfer in all patients
[88].

Recently, Kim [89] have shown the antitumor activity of
ex vivo expanded T cells against the human gastric cancer.
For this purpose, human peripheral blood mononuclear
cells were cultured with medium (+ IL-2) in anti-CD3
antibody-coated flasks for 5 days, followed by incubation
in medium with IL-2 for 9 days. The resulting populations
were mostly CD3+ T cells (97%) and comprised 1% CD3−

CD56+, 36% CD3+ CD56+, 11% CD4+, and 80% CD8+.
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This heterogeneous cell population was also called cytokine-
induced killer (CIK) cells. CIK cells strongly produced IFN-
γ, moderately TNF-α, but not IL-2 and IL-4. At an effector-
target cell ratio of 30 : 1, CIK cells destroyed 58% of MKN74
human gastric cancer cells, as measured by the 51Cr-release
assay. In addition, CIK cells at doses of 3 and 10 million
cells per mouse inhibited 58% and 78% of MKN74 tumor
growth in nude mouse xenograft assays, respectively. This
study suggests that CIK cells may be used as an adoptive
immunotherapy for gastric cancer patients.

The adoptive immunotherapy of gastric cancer with
CIK cells has been also reported in preclinical and clinical
studies [90, 91]. MHC-I restricted CTLs from GC patients
recognize tumor-associated antigen and react specifically
against self-tumor cells [91, 92]. One tumor-specific antigen,
MG7-antigen, shows great potential for predicting early
cancer as well as for inducing immune responses to gastric
cancer [93, 94]. Using HLA-A-matched allogeneic GC cells
to induce tumor-specific CTLs appears to be an alternative
immunotherapy option for gastric cancer [95].

Also, CIK cells in combination with chemotherapy have
shown benefits for patients with advanced gastric cancers
[96, 97]. The serum levels of the tumor markers were signifi-
cantly decreased, the host immune function was increased,
and the short-term curative effect, as well as the quality
of life, was improved in patients treated by chemotherapy
plus CIK cells compared to those in patients treated by
chemotherapy alone. CIK cells killed MGC-803 GC cells
by inducing apoptosis in the early stage and by inducing
necrosis in the late stage through downregulation of p53, c-
myc, and bcl-2, and upregulation of bax [98].

In summary, despite the introduction of immune cell-
based immunotherapy, the paucity of preclinical and clinical
studies limited the broad application of immunotherapy for
the treatment of patients with gastric cancer. Here, preclinical
evidence proved that CIK cell immunotherapy can be used in
GC patients.

Adoptive transfer therapy with TILs requires the isolation
of T cells from neoplastic biopsies or surgical tissue and the
selection of tumor-specific T cells ex vivo (Figure 3). The
adoptive transfer of TILs has been promising in preclinical
models [99], but clinical experiences were almost uniformly
disappointing [100, 101].

Technical difficulties in producing tumor-specific T cells
currently represent a barrier to randomized clinical trials.
Only 30%–40% of the biopsies yield satisfactory T cell popu-
lations, and the whole process requires about 6 weeks before
the T cells would be ready for infusion [102]. Furthermore,
nearly all clinical experiences with TILs have been done
in patients with melanoma, because of the easy surgical
availability of the tumor tissue. However, should technical
limitations of current tissue culture approaches be overcome,
recent studies indicate that the presence of TILs positively
correlate with patients survival in ovarian and colorectal
cancer [103, 104], thus prompting the use of this protocol
for other commonly encountered epithelial neoplasias.

Recently, Amedei [13] analyzed the functional properties
of the T cell response to different GC-associated antigen
peptides in patients with gastric adenocarcinoma. To this

purpose, they have cloned and characterized TILs of gastric
cancer. A T cell response specific to different tested peptides
was documented in 17 out of 20 patients, selected for their
HLA-A02 and/or -A24 alleles. Most of the cancer peptide-
specific TILs expressed a T helper 1 (Th1)/T cytotoxic 1
(Tc1) cytokine profile and cytotoxic activity against target
cells. Moreover, the effector functions of cancer peptide-
specific T cells obtained from the peripheral blood of
the same patients were also studied and the majority of
peripheral blood peptide-specific T cells also expressed the
Th1/Tc1 functional profile.

In conclusion, in most of patients with gastric adeno-
carcinoma, a specific type-1 T cell response to GC antigens
was detectable and would have the potential of hampering
tumor cell growth. However, in order to get tumor cell
killing in vivo, the activity and the number of cancer peptide-
specific Th1/Tc1 cells probably need to be enhanced by
vaccination with the appropriate cancer antigenic peptides
or by injection of the autologous tumor peptide-specific
T cells expanded in vitro. These studies have laid the
groundwork for a possible vaccination of GC patients with
specific peptides of tumor-associated antigens able to raise
an effective immune response to gastric cancer.

Genetic modification of T cells to improve antitumor
effects is an attractive strategy in many settings [105];
although there is little clinical experience with engineered T
cells for cancer therapy, it is notable that clinical trials to date
using cells engineered to express suicide molecules indicated
that the approach is safe.

Molmed and colleagues infused allogeneic-engineered
donor lymphocytes (HSV-TK lymphocytes) [106] into 8
patients with hematologic malignancies who had suffered
complications after receiving allogeneic bone marrow trans-
plants [107]. The lymphocytes survived up to a year, and
complete or partial tumor remission was achieved in five
patients, but tumor regression coincided with the onset of
GVHD.

Recently, investigators have developed suicide systems
consisting of fusion proteins containing a human FAS or cas-
pase death domain and a modified FKBP [108, 109]. These
approaches have the advantage that the suicide switches are
nonimmunogenic because they are based on endogenous
proteins. T cells expressing these modified chimeric proteins
are induced to undergo apoptosis when exposed to a drug
that dimerizes the modified FKBP.

A principal limitation of adoptive T cell therapy in some
tumors is their poor antigenicity; therefore, neither T cells
with high avidity for tumor-specific antigens, nor T cells
with the desired specificity remain in the patient following
chemotherapy. One strategy to overcome this limitation is
now being tested in clinical trials; this approach has been to
endow T cells with chimeric receptors that have antibody-
based external receptor structures and cytosolic domains that
encode signal transduction modules of the T cell receptor
[110].

Another purpose of engineered T cells is to enhance
survival of CTLs, because they have short-term persistence
in the host without antigen-specific T helper cells and/or
cytokine infusions. The Greenberg’s group had transduced
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Figure 3: Different schemes for adoptive transfer of autologous, vaccine-primed, in-vitro-expanded T cells. Patients are primed with tumor
vaccine followed by lymphocyte harvest. Autologous T cells are harvested from peripheral blood (I) or draining lymph nodes (II), undergo
polyclonal in vitro activation and expansion, and are reinfused after lymphodepleting chemotherapy. Antigen-specific immune function is
measured subsequent to the administration of booster vaccines. (III) TILs can be isolated from resected surgical samples and expanded in
vitro for adoptive transfer after lymphodepleting chemotherapy. Most adoptive transfer therapy approaches using TILs have involved the use
of IL-2 infusion following T cell transfer in order to select tumor-specific T cells.

human CTLs with chimeric GM-CSF–IL-2 receptors that
deliver an IL-2 signal when cells bind GM-CSF [111].
Stimulation of the CTLs with antigen caused GM-CSF
secretion and resulted in an autocrine growth loop such as
that of proliferating CTL clones in the absence of exogenous
cytokines. A related strategy to rejuvenate T cell function is
to engineer T cells to ectopically express CD28 [112] or the
catalytic subunit of telomerase [113].

Both these strategies could be used in the treatment of
gastric cancer, but currently no clinical trials based on one of
the two principles have been registered.

3. Monoclonal Antibodies (moAbs) Specific to
Molecular Target of Gastric Cancer

3.1. Epidermal Growth Factor Receptor. The most extensively
explored approach is the inhibition of EGFR. EGFR or
ERBB1 is a member of the ERBB transmembrane growth
factor receptor family, which initiates signal transduction by
activation of a receptor-associated tyrosine kinase (TK). The
ligands of the EGFR are epidermal growth factor (EGF) and
TGF-β. Binding of a ligand to the EGFR causes the activation
of the TK and of other effector signals, that are regulators of
intracellular and intercellular processes (apoptosis, prolifer-
ation, angiogenesis, and metastasis) [114].

EGFR is constitutively expressed in a number of tissues,
including the skin, gut, and kidney. This normal EGFR
expression can explain acneform skin rash and diarrhea
(and magnesium-wasting syndrome) which are the major
toxicities associated with anti-EGFR therapy [115, 116].

In esophagogastric cancers (EGCs), EGFR overexpres-
sion occurs in 30–90% of tumors and correlate with in-
creased invasion and a worse prognosis [62–64, 117]. In
general, EGFR overexpression is more common with SCC
than adenocarcinoma histology. In addition, it is now
well established that the mutational status of K-ras, an
oncogene downstream of the EGFR which is involved in
an intricate array of signal transduction pathways, dictates
responsiveness to anti-EGFR therapies in colorectal cancer
(CRC) and patients whose tumors were found to have K-
ras mutations derived no benefit from anti-EGFR antibodies
treatment [65–67].

In EGCs, relatively little is known about the incidence
of mutated K-ras status, much less its predictive value for
anti-EGFR therapy. In recent studies, 0 of 3824 and 2 of 23
patients (8.7%) [118] were found to have mutated K-ras.

Current anti-EGFR therapies that have been evaluated in
EGCs include oral TK inhibitors (TKIs: erlotinib, gefitinib)
and monoclonal antibodies (moAbs: cetuximab, panitu-
mumab, and matuzumab).
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Cetuximab (C225, Erbitux, Imclone Systems) is a par-
tially humanized murine IgG1 moAb that binds to the
EGFR, which blocks binding of ligand to the EGFR and
subsequent activation of the EGFR TK [119], as well
it stimulates EGFR internalization [68] and can initiate
immune-mediated mechanisms of cytotoxicity [antibody-
or complement-dependent and complement-dependent cell-
mediated cytotoxicity [69, 70]].

Cetuximab has been approved by the FDA (US Food
and Drug Administration) for the treatment of irinotecan-
refractory CRC, based on a phase III trial of cetuximab/
irinotecan that demonstrated a superior ORR and time-to-
progression (TTP) for the combination over irinotecan alone
[71].

Recently, cetuximab has also been approved by the
FDA in combination with concurrent radiotherapy for the
treatment of advanced head and neck squamous cell cancers
(HNSCCs) [72, 120]. Cetuximab has undergone more
extensive evaluation in EGCs than any other targeted agent.
In the locally advanced setting, six trials have been reported.
Four of these trials have combined cetuximab with radiation
and various chemotherapy regimens as preoperative therapy
prior to planned surgical resection [73–76]; a fifth trial
evaluated cetuximab alone with preoperative radiotherapy
[77], while the final study in gastric and GE junction
adenocarcinoma involved preoperative therapy with cetux-
imab/cisplatin/irinotecan, followed by surgery and adjuvant
chemo/radiotherapy with cetuximab/5-FU/leucovorin [78].

With the exception of the trial to be described further
below, all of these trials have been reported only in abstract
form. Where reported, pCR rates have ranged from 13% to
40% for preoperative chemo/radiotherapy trials. Toxicities
have generally been consistent with other combined modality
trials, except for the phase II evaluation of cetuximab with
cisplatin/irinotecan/radiation [79, 80, 121]

In a phase II trial, cetuximab was combined with
carboplatin/paclitaxel and concurrent radiation [74]. The
trial reported a clinical CR rate of 70% and a pCR rate of
27% in the 49 patients who underwent surgery. Survival data
were not reported. Toxicities on this trial included grade
3/4 anaphylaxis in 5% of patients, grade 3/4 esophagitis in
16% of patients, and grade 3 skin toxicity in 25%. Final
publication of these studies and careful analysis of toxicities
and survival data are eagerly awaited.

In the first-line metastatic setting, seven trials have eval-
uated combinations of cetuximab with different chemother-
apy regimens [81, 122–127] and all have reported encour-
aging ORRs of 40–69% and median OS of 9.5–17 months.
Toxicities have generally been consistent with the additive
toxicities of cetuximab and the respective chemotherapy
regimens. Grade 3/4 toxicities included neutropenia in 6–
46% of patients, diarrhea in 4–33% of patients, skin toxicity
in 6–24% of patients, and anaphylaxis to cetuximab in <5%
of patients.

The relationship between EGFR positivity and response
to cetuximab on these trials remains unclear, while the
trial with cetuximab and FOLFIRI [121] did not note
any relationship between absolute EGFR positivity and
benefit from cetuximab. In contrast, the trial of cetuximab

and FOLFOX [67] noted that EGFR-positive tumors were
associated with an ORR of 100%.

In addition, other four trials have evaluated cetuximab in
the second-line setting and beyond. Preliminary data from
these trials suggest that this is not a promising approach.
The Southwest Oncology Group (SWOG) performed an
evaluation of cetuximab as a second-line therapy in advanced
esophageal and GE junction adenocarcinoma. Preliminary
results for 55 evaluable patients revealed only 1 confirmed
PR (partial response) and 2 unconfirmed PRs; median
PFS was only 1.8 months [128]. Similarly disappointing
results were reported in two studies that attempted to
reverse chemotherapy resistance by incorporating cetuximab
therapy [129, 130].

Finally, a study evaluated second-line cetuximab/iri-
notecan in patients with progression on platinum-based
chemotherapy and reported an ORR of 6% and median PFS
of 3.2 months [131].

Matuzumab (EMD72000, Merck) is another humanized
IgG1 moAb against EGFR. In a phase I evaluation, 1 of 2
patients with esophageal SCC had a durable six-month PR
[132].

Another phase I evaluation combined matuzumab with
the ECX regimen (epirubicin/cisplatin/capecitabine) as a
first-line therapy for patients with EGFR-positive gastric and
GE junction adenocarcinoma [133]. Of 45 patients screened,
21 (47%) were found to have EGFR-positive tumors. The
ORR in 20 evaluable patients was 65% and the median
TTP was 5.2 months. Therapy was well tolerated and major
toxicity on this trial was grade 3 fatigue.

Lastly, panitumumab (ABX-EGF, Vectibix, Amgen) is a
fully humanized IgG2 moAb against EGFR that has been
approved by the FDA for the treatment of chemorefractory
EGFR-positive CRC, based on a phase III trial that demon-
strated improvement in ORR and PFS over best supportive
care [134].

A phase I evaluation of panitumumab in refractory solid
tumors demonstrated SD for seven months in 1 of 3 patients
with esophageal cancer [135].

Based on the promising studies described above, there
are many ongoing confirmatory cooperative group studies.
For example, based on the results of the phase II study
by Safran [74], the phase III Radiation Therapy Oncol-
ogy Group 04036 trial is currently comparing weekly cis-
platin/paclitaxel/radiation ± cetuximab as definitive therapy
in locally advanced esophageal cancer.

The REAL3 trial in the United Kingdom is random-
izing patients with advanced EGCs to the EOX (epiru-
bicin/oxaliplatin/capecitabine) regimen ± panitumumab,
while MATRIX EG, an European phase II randomized trial
of the ECX regimen ±matuzumab, has completed accrual.

Table 2 summarizes the results of trials involving anti-
EGFR antibody therapies analyzed.

3.2. HER2/ErbB2. Her-2/neu (ERBB2) is another member
of the ERBB TK receptor family. Peptide ligand binding to
the extracellular domains of these receptors leads to homo-
and heterodimerization of the receptors and subsequent
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Table 2: Major trials using anti-EGFR monoclonal antibodies.

Treatment Enrolled patients Disease stage Response rate
Time to

progression
Overall survival References

Cetuximab +
Cis/CPT/RT

5 EAC, 12 GEJAC Locally advanced 13% (2/15) NS NS [62]

Cetuximab +
Carbo/paclitaxel/RT

45 EAC, 3 GAC, 12 SCC Locally advanced 27% (13/49) NS NS [63]

Cetuximab +
Cis/docetaxel/RT

15 EAC/GEJAC, 13 SCC Locally advanced 32% (9/28) NS NS [64]

Cetuximab +
FOLFOX/RT

9 AC, 18 SCC Locally advanced 40% (4/10) NS NS [65]

Cetuximab/RT
20 EAC 11 GEJAC, 9

SCC
Locally advanced 36% (13/36) NS NS [66]

Cetuximab/Cis/CPT +
surgery +
Cetuximab/5-FU/LV/RT

20 GAC/GEJAC Locally advanced 0% (of 18) NS NS [67]

Cetuximab + FOLFIRI 4 GEJAC, 34 GAC
Metastatic
(EGFR +ve)

44% (of 34) 8 months 16 months [68]

Cetuximab + FUFIRI 15 GEJAC, 34 GAC Metastatic 42% (of 48) 8.5 months 16.6 months [69]

Cetuximab + FUFOX 25 GEJAC, 27 GAC Metastatic 65% (of 46) 7.6 months 9.5 months [70]

Cetuximab + 5-FU/Cis
verses 5-FU/Cis

32 SCC
30 SCC

Metastatic
19%
13%

5.7 months
3.6 months

9.5 months
5.5 months

[71]

Cetuximab + CI
5-FU/LV/Cis

35 GAC Metastatic 69% 11 months 14.5 months [72]

Cetuximab +
Cis/docetaxel

8 GEJAC, 40 GAC
Unresectable/meta
static

41% (of 42) NS NS [73]

Cetuximab +
oxaliplatin/CPT

51 GAC Metastatic 63% (of 35) 6.2 months 9.5 months [74]

Cetuximab 55 EAC/GEJAC
Metastatic
(2nd-line)

2% 1.8 months 4 months [75]

Cetuximab + Cis/CPT 1 EAC, 7 GEJAC, 1 SCC
Metastatic
(PD on Cis/CPT)

11% 1.3 months NS [76]

Cetuximab + docetaxel 38 NS
Metastatic
(PD on docetaxel)

6% (of 35) 2.1 months 5.2 months [77]

Cetuximab + CPT
19 EAC/GEJAC, 8 GAC,

4 SCC
Metastatic
(PD on platinum)

6% 3.2 months NS [78]

Matuzumab 2 SCC Metastatic (phase I) 1 of 2 patients with 6-month partial response [79]

Matuzumab + ECX 5 EAC, 7 GEJAC, 9 GAC Metastatic (phase I) 65% (of 20) 5.2 months NS [80]

Panitumumab 3 NS Metastatic (phase I) 1 of 3 patients with 7-month stable disease [81]

5-FU: 5-fluorouracil; EAC: esophageal adenocarcinoma; Carbo: carboplatin; CI: continuous infusion; Cis: cisplatin; CPT: irinotecan; ECX: epiru-
bicin/cisplatin/capecitabine; FOLFIRI: biweekly bolus 5-FU/leucovorin, irinotecan, infusional 5-FU; FUFIRI: weekly irinotecan/leucovorin/infusional; 5-
FUFUFOX: weekly oxaliplatin/leucovorin/infusional 5-FU; LV: leucovorin; GAC: gastric adenocarcinoma; GEJAC: gastroesophageal junction adenocarci-
noma; N/A: not applicable; NS: not stated; ORR: objective response rate; OS: overall survival; pCR: pathologic complete response; PD: progressive disease;
RT: radiation therapy; SCC: squamous cell carcinoma; TTP: time-to-progression.

tyrosine autophosphorylation. At least nine different homo-
and heterodimers of the ERBB proteins exist, with their for-
mation displaying a distinct hierarchy. In this network, Her-
2/neu plays a major coordinating role since each receptor
with a specific ligand appears to prefer Her-2/neu as its
heterodimeric partner. This preference is further biased by
overexpression of Her-2/neu, as seen in many types of human
cancer cells, particularly breast cancer [136].

In EGCs, Her-2/neu overexpression has been variably
demonstrated in esophageal SCC (mean 23%, range 0–52%)
and GE junction adenocarcinoma (mean 22%, range 0–43%)
[137, 138]. In esophageal SCC, Her-2/neu overexpression has

been correlated with extramural invasion and poor response
to neo-adjuvant chemotherapy [139]. In gastric and GE
junction adenocarcinoma, some studies have demonstrated
a correlation between Her-2 amplification with increasing of
invasion, distant organ metastasis, and overall poor survival
[140]

The anti-Her2/neu moAb therapy that have been eval-
uated in EGCs is Trastuzumab [Herceptin, Genentech], a
humanized IgG1 moAb against the Her-2/neu receptor.

Trastuzumab can exert its effects by several mecha-
nisms, including preventing Her-2 receptor dimerization,
increasing destruction of the receptor, inhibiting shedding of
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the extracellular domain, and inducing antibody-dependent
cytotoxicity [141]. Based on several trial studies, it has
been approved by the FDA for use in combination with
chemotherapy as adjuvant therapy for Her-2/neu- and node-
positive breast cancer [142–146].

Trastuzumab is generally very well tolerated, with the
exception of rare cardiac dysfunction, which is postulated
to occur because Her-2 signaling is important for cardiac
development [147, 148].

In the locally advanced setting, the use of trastuzumab
produced encouraging results. In a phase I/II trial, in-
creasing doses of trastuzumab were combined with cisplat-
in/paclitaxel and radiation for patients whose tumors were
2 + or 3 + Her-2/ [149].

Fourteen patients [74%] had either 3 + overexpression;
of these, 8 (57%) achieved a clinical CR, 6 subsequently
underwent surgery, and 3 were found to have achieved a pCR.

Therefore, the pCR rate was 16% for all patients enrolled
and was 43% for patients who went to surgery.

The median OS was 24 months. Toxicities were compa-
rable to other preoperative chemo/radiation trials and there
was no cardiac toxicity.

In the metastatic setting, results of the phase III ToGA
trial of 5-FU or capecitabine and cisplatin ± trastuzumab
were recently reported [150]. This study enrolled patients
with gastric or GE junction adenocarcinoma that were Her-
2/neu-positive, and of tumors from 3807 patients, 22.1%
were found to be Her-2/neu-positive.

Five hundred and ninety-four patients were randomized.
There was a statistically significant increase in ORR (47.3%
versus 34.5%), median PFS (6.7 versus 5.5 months) and
median OS (13.8 versus 11.1 months) in favor of the
trastuzumab-containing arm. There was no unexpected tox-
icity in the trastuzumab-containing arm, including symp-
tomatic heart failure.

The ToGA trial represents the first positive phase III
evaluation of a targeted therapy in EGCs. It indicates that
trastuzumab is a new option for a subset of patients with
gastric and GE junction adenocarcinoma and suggests that
such patients should now be routinely tested for Her-2/neu
expression.

3.3. Vascular Endothelial Growth Factor. Therapies directed
against VEGF are the focus of major ongoing research in solid
tumor malignancies. Of the identified angiogenic factors,
VEGF appears the most potent and essential as regulator
of angiogenesis (as normal as pathologic). VEGF exerts
its angiogenic effects by binding to several high-affinity
transmembrane receptors, most notably VEGF receptors
(VEGFR) types 1 (flt-1) and 2 (KDR, flk-1) [151].

Increased VEGF expression has been measured in most
human tumors [152] and in detail, in esophageal cancer,
VEGF is overexpressed in 30–60% of patients and there
is a correlation between high levels of VEGF expression,
advanced stage and poor survival [153–157]. Studies in SCCs
have indicated that expression of VEGF in tumors correlates
with more advanced tumor stage, the presence of nodal and
distant metastases, and a poorer survival outcome [155, 158].

Increased VEGF expression on tumors and increased
serum VEGF levels have been correlated with worse prog-
noses also in gastric cancer [159, 160]

As anti-VEGF therapies, there are the multitarget TKIs,
sunitinib and sorafenib, and most importantly the moAb
bevacizumab (Avastin, Genentech), a humanized IgG1 mon-
oclonal antibody against VEGF, investigated in different solid
tumors.

The addition of bevacizumab to chemotherapy has been
shown in several phase III clinical trials to improve the ORR
and TTP in patients with CRC [161] NSCLC [162] and breast
cancer [163]; on the basis of these studies, bevacizumab has
been approved for the treatment of these cancers.

In addition to direct antiangiogenic effects, it has been
postulated that bevacizumab leads to decreases in interstitial
fluid pressures and increases chemotherapy drug delivery
[164, 165].

About the side effects, in the phase III evaluation in
advanced CRC, bevacizumab was noted to increase the
incidence of grade 3 hypertension (11.0% versus 2.3%)
compared to chemotherapy alone and colonic perforation
noted in 1.5% of patients [161]. In the phase III evaluation
in NSCLC, treatment with bevacizumab plus chemotherapy
also led to an increased incidence of grade 3/4 proteinuria
(3.1% versus 0%) and bleeding (4.4% versus 0.7%) com-
pared to chemotherapy alone [162].

A considerable number of encouraging studies has
been reported in the metastatic setting; for example, in a
multicenter phase II evaluation led by MSKCC, bevacizumab
and cisplatin/irinotecan were studied as first-line therapy in
47 patients with advanced gastric and GE junction adeno-
carcinoma [10]. The addition of bevacizumab significantly
improved the TTP (8.3 months; 95% CI, 5.5 to 9.9 months)
and OS (12.3 months; 95% CI, 11.3 to 17.2 months),
compared to a historical TTP of 5 months. Toxicities that
could have been related to bevacizumab included a 6%
incidence of gastric perforation and a 2% incidence of
myocardial infarction. Grade 3/4 thromboembolic events
were observed in 25.5% of patients [similar to the 30%
incidence observed using preoperative cisplatin/irinotecan
therapy] [166].

Based on the promising results of this study, Kelsen
completed a second evaluation of bevacizumab. In a study of
44 treatment-naı̈ve patients with advanced esophagogastric
adenocarcinoma, bevacizumab was combined with a mod-
ified regimen of docetaxel/cisplatin/fluorouracil (mDCF)
[167]. Of 39 patients with measurable disease, the ORR was
67%. Median PFS was 12 months and median OS was 16.2
months. Therapy appeared to be more tolerable than the
parent DCF regimen and included febrile neutropenia in 4%
of patients perforation and bleeding in 1 patient each (2%)
and grade 3/4 thromboembolism in 31% of patients.

Similarly high ORRs and toxicities were obtained in other
evaluations of bevacizumab with different chemotherapy
regimens [168, 169].

In the second-line setting, one evaluation of beva-
cizumab and docetaxel in 26 patients has been reported
[170]. The ORR was 24% in 17 evaluable patients, which
compares favorably to the ORR of 17% reported in two
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prior phase II evaluations of docetaxel in chemotherapy-
naı̈ve EGC patients [171, 172]. Grade 3/4 toxicities on this
trial included gastrointestinal bleeding (12%) and arterial
thromboses (8%).

Actually a confirmatory international phase III trial of
capecitabine/cisplatin ± bevacizumab in advanced gastric
cancer is underway. In the United Kingdom, the ongo-
ing Medical Research Council Adjuvant Gastric Infusional
Chemotherapy (MAGIC)-B trial randomizes patients with
resectable gastric and GE junction adenocarcinoma to peri-
operative ECX chemotherapy ± bevacizumab, building on
the positive results for perioperative adjuvant chemotherapy
observed in the original MAGIC trial [3].

4. Conclusion

Despite advances in clinical diagnostics, surgical techniques,
and the improvement of chemo- and radiotherapy regimens,
the prognosis of gastric cancer remains poor and the need
for novel treatment options, such as immunotherapy, is very
critical.

In this paper, we have reported the different immun-
otherapy strategies used against cancer, some of which are
exploited in clinical trials with good results in terms of
patient survival.

As new therapeutic strategies in the treatment of gastric
cancer, we analyzed the immunotherapeutic approach based
as on using of cellular component of the immune response
(innate and acquired) as on usage of monoclonal antibody
versus targets of gastric cancer.

In relation to cells of innate immunity, we observed that
antitumor vaccination therapy with DCs pulsed with HER-
2/neu-peptides may represent a potential candidate for the
novel treatment of patients with gastric cancer. Accordingly
in 33% of patients treated with this approach, the tumor
markers were decreased after vaccination and 22% had a
tumor regression of more than 50% with no significant side
effects [28].

Moreover, the recent results about the enhancing of the
antitumor immunity by (GM-CSF) gene-modified DCs [39]
and blocking the immunosuppressive axis with small inter-
fering RNA targeting IL-10 receptor [38] give hope for the
immediate future in a more effective of GC immunotherapy
DC-based.

Voskens [61] recently demonstrated that human NK cells
acquire cytolytic activity against autologous gastric tumor
cells after ex vivo expansion and suggested a therapeutic
potential for autologous expanded NK cells, as directly as
in combination with monoclonal antibodies in future cell-
based immunotherapy.

However, using T-lymphocytes in GC immunotherapy
lately, Kim [89] demonstrated the relevance of antitumor
activity against the human GC of ex vivo expanded T cells,
called cytokine-induced killer (CIK) cells. At an effector-
target cell ratio of 30 : 1, CIK cells were able to destroy 58%
of MKN74 human gastric cancer cells, suggesting that CIK
cells might be used as an adoptive immunotherapy for GC
patients.

Considering the use of moAbs specific for molecular
targets of GC, the most extensively explored approach is
the inhibition of EGFR. Current anti-EGFR therapies that
have been evaluated in EGCs include the moAbs: cetuximab,
panitumumab, and matuzumab, that have been used, either
alone or in combination with chemotherapy in several
clinical trials and the results obtained are quite good [74, 78,
123]. This type of therapy was well tolerated with little side
effects.

Other moAbs that have been evaluated as therapy for
EGCs are trastuzumab, a humanized IgG1 moAb against,
the Her-2/neu receptor, and bevacizumab, a humanized IgG1
monoclonal antibody against VEGF. In the literature, there
are several clinical trials (some in phase III) that use these two
monoclonal antibodies in the EGC treatment either alone or
with chemotherapy and good results were obtained in the
survival of patients enrolled.

Currently, the major challenge in the field is to conduct
randomized clinical trials demonstrating sufficient clinical
benefits to justify the logistics and costs of customized
cellular therapies. In many clinical trials, patients are enrolled
at an advanced stage of gastric cancer, and this aspect could
determine an unfavourable outcome; it would be interesting
to plan clinical trials in the early stage of cancer because
it would be possible that gastric cancer immunotherapeutic
approaches confer a survival advantage when applied earlier
during the course of the disease, such as in the adjuvant
setting.

The big hurdle to make immunotherapy approach suc-
cessful for gastric cancer remains the immune evasion
strategies set up by the tumor resulting in avoidance of both
innate and adaptive immunity.

Investigations during the past few years have provided
novel insights into the cellular and molecular mechanisms
involved in the bidirectional cross-talk between tumor cells
and the immune system. Understanding this functional dia-
logue and the hierarchical status of different tumor-immune
escape mechanisms at different stages of tumor progression
will guide the design of novel therapeutic strategies aiming
to destroy the “tumor fortress.”

Thus, it will be of particular interest to investigate the
kinetics of the interactions between different inhibitory
molecules and endogenous factors that influence the expan-
sion and trafficking of Tregs and tolerogenic DCs within
tumor-draining lymph nodes and the tumor surroundings.

On the basis of clinical and experimental evidence,
it is reasonable to conclude that, successful therapy for
gastric cancer must involve a combined approach, which
should involve systemic chemotherapy and transplantation
to reduce the burden or to eliminate immune suppres-
sive cells, together with tailor-made immunotherapies cus-
tomized to each single patient.
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