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Abstract: Dengue fever, caused by any of four dengue viruses (DENV1-4), is a major global burden.
Currently, there is no effective vaccine that prevents infection in dengue naïve populations. We tested
the ability of two novel adjuvants (Advax-PEI and Advax-2), using aluminum hydroxide (alum) as
control, to enhance the immunogenicity of formalin- or psoralen-inactivated (PIV or PsIV) DENV2
vaccines in mice. Mice were vaccinated on days 0 and 30, and serum samples were collected on days
30, 60, 90, and 101. Neutralizing antibodies were determined by microneutralization (MN) assays,
and the geometric mean 50% MN (MN50) titers were calculated. For the PIV groups, after one dose
MN50 titers were higher in the novel adjuvant groups compared to the alum control, while MN50

titers were comparable between the adjuvant groups after the second dose. For the PsIV groups, both
novel adjuvants induced higher MN50 titers than the alum control after the second dose. Spleen cells
were collected on days 45 and 101 for enzyme-linked immunospot (ELISPOT) for IFNγ and IL4. Both
PIV and PsIV groups elicited different degrees of IFNγ and IL4 responses. Overall, Advax-2 gave
the best responses just ahead of Advax-PEI. Given Advax-2’s extensive human experience in other
vaccine applications, it will be pursued for further development.

Keywords: dengue virus; formalin inactivation; psoralen inactivation; dengue vaccine; polysaccharide-
based adjuvants; Advax™ adjuvants

1. Introduction

Dengue fever is regarded globally as the most important arthropod-borne viral disease.
Dengue virus infection can cause debilitating dengue fever and the more severe dengue
fever, previously known as dengue hemorrhagic fever. The estimated population living
in areas at risk for dengue infection is two billion people, and 390 million infections
occur annually, primarily in tropical and subtropical climes [1]. Dengue fever, transmitted
primarily by Aedes mosquitoes, is caused by any of the four serotypes of dengue virus
(DENV1-4) and is one of the fastest growing global health concerns and a major infectious
disease threat to U.S. military personnel deployed to endemic areas [2]. The importance
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of dengue to the U.S. military is highlighted by the fact that it is ranked third on the 2019
Global Ranked List of Infectious Disease Threats of U.S. Military Importance [3]. The
development of an effective vaccine to prevent dengue fever is a priority for both the U.S.
Department of Defense (DoD) and the World Health Organization (WHO).

Despite nearly sixty years of sustained effort, an effective dengue vaccine for dengue
naïve populations, including deployed U.S. military personnel, has still not been developed.
This is primarily due to the need for balanced tetravalent immunity to all four dengue
serotypes [4,5]. Dengue has distinct epidemiological patterns associated with four closely
related serotypes of the virus. These serotypes can co-circulate within an endemic region,
and thus many countries are hyper-endemic for all four serotypes [6]. As an RNA flavivirus,
dengue virus population does not consist of a single genotype but is an ensemble of related
mutants and recombinant viral genomes, named quasispecies. The high mutation rates of
RNA viruses often cause the development of resistance to antiviral drugs and antibodies
elicited by vaccines, making it very difficult for therapeutics and vaccines to work effec-
tively [7]. The difficulty of DENV vaccine development is compounded by the presence of
four serotypes and the phenomenon of Antibody-Dependent Enhancement (ADE) [4,5].
Each DENV serotype is sufficiently different, such that there is no cross-protection be-
tween serotypes (only transient cross-neutralizing antibodies), and epidemics caused by
multiple serotypes (hyper-endemicity) can result. ADE occurs when antibodies from a
primary infection bind but do not neutralize the virus during a secondary infection, and
the virus-antibody complex gains entry into target cells via the Fc receptor, which predis-
poses an individual to an enhanced severity of disease upon re-infection with a different
serotype [4,5]. Thus, it is essential that a successful DENV vaccine induce an adequate and
equal level of protection against all four serotypes simultaneously to preven ADE.

The first licensed dengue vaccine (Dengvaxia®) (Sanofi Pasteur, Lyon, France) was
approved in Mexico on 9 December 2015 and is based on a live viral vector that needs to be
administered three times over 12 months. Due to its less than desirable immunogenicity
and efficacy, the U.S. Food and Drug Administration (FDA) has only approved this vaccine
“for use in individuals 9–16 years of age with laboratory-confirmed previous dengue
infection and living in endemic areas” (FDA letter 1 May 2019). In that letter, it also
listed limitations of use such as “Dengvaxia® is not approved for use in individuals
not previously infected by any dengue virus serotype or for whom this information is
unknown. Those not previously infected are at increased risk for severe dengue disease
when vaccinated and subsequently infected with dengue virus.” Therefore, this vaccine
is not suitable for U.S. military or general traveler populations. It is thereby imperative
to continue exploring alternative dengue vaccine candidates, ideally based on inactivated
platforms that do not suffer from the same variability and long lead times before protection
is achieved as is seen with live vaccines [4,5]. Past experience with live attenuated viruses
and the suboptimal results from Sanofi-Pasteur’s Dengvaxia® vaccine clinical trials suggest
that the next generation dengue vaccines will need to be based on non-replicating virus
platforms such as inactivated viruses. In the case of live virus replicating vaccines, striking
a balance between immunogenicity and attenuation of each DENV serotype, and attaining
uniformity of immune responses to four serotypes in a mixed tetravalent formulation,
have proven difficult. Purified inactivated viruses (PIVs) are attractive vaccine candidates
because they are often safer than live virus vaccines and are generally stable and easy to
maintain [4,5]. However, inactivated dengue virus vaccine candidates have shortcomings
including short-lived antibody responses and a lack of cellular immune responses [4].
One way to potentially overcome some of these shortcomings is through the use of novel
adjuvants that could enhance the magnitude and duration of the immune response to
the inactivated vaccines. Select adjuvants may also be able to reduce any risk of ADE by
reshaping the immune response to the virus.

Purified inactivated dengue vaccine candidates (PIV) have been developed using
formalin for inactivation and have been tested using novel adjuvants and alum in more
than 200 human subjects as well as a large number of non-human primates (NHPs) [8–12].
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However, formalin inactivation is known to damage the antigenic structure of viruses. As
a possible alternative, inactivated dengue vaccine candidates have also been developed
using inactivation methods that work at the nucleic acid level (photo-inactivation in the
presence of a psoralen compound) rather than protein level, thereby leaving the antigenic
structure of the virus in its native form [13]. These psoralen-inactivated dengue vaccine
(PsIV) candidates elicited high levels of virus neutralizing antibodies in vaccinated mice
and NHPs [13,14]. In addition, PsIV-induced T-cell responses have been shown to be
equivalent to a live dengue virus vaccine candidate [13].

The testing of adjuvants that may enhance the immunogenicity of inactivated dengue
vaccine candidates is important to advance dengue vaccine efforts. In the selection of
adjuvants that are suitable for a human vaccine, the vaccine maker needs to consider at
least six major elements, such as intellectual property (public domain), efficacy, safety,
ease of use, ease of manufacture, and cost [15]. Taking into consideration these elements,
we identified two novel polysaccharide-based adjuvants to test, Advax-2 and Advax-PEI,
developed by Vaxine Pty Ltd. (Adelaide, Australia). Advax™ is based on nanoparticles of
delta inulin, which is a natural plant-derived polysaccharide. This polysaccharide-based
Advax can be formulated with additional toll-like receptor (TLR) ligands to produce potent
combination adjuvant formulations. Two Advax derivatives, Advax-2, containing a potent
human and mouse TLR9 agonist CpG55.2, and Advax-PEI, with surface modification to
induce antigen binding to the delta inulin surface, were used in this study. Advax-2 formu-
lations have demonstrated faster induction of protective immunity, induction of broadly
cross-neutralizing antibodies, and long-lasting memory CD4 and CD8 T-cell responses as
well as a favorable safety profile in clinical trials of COVID-19, influenza, hepatitis B, and
allergy vaccines involving over 20,000 human subjects to date and is contained in a now
licensed COVID-19 vaccine [16–18]. Another potential benefit of Advax-2 is that it has been
shown to prevent vaccine-enhanced disease in several different viral disease models, pre-
venting SARS vaccine-associated eosinophilic pneumonitis in a SARS coronavirus disease
model [19], and also preventing Japanese encephalitis (JE) vaccine antibody-dependent
enhanced cellular infection by DEN1 and DEN2 in an in vitro dengue ADE model [20]. No-
tably, ADE was apparent in both cases when mice were immunized with the same antigens
without Advax-2 or formulated with alum adjuvant, confirming that the prevention of
ADE in both models was Advax-2 adjuvant dependent.

In this study, we tested these two novel adjuvants with either PIV or PsIV DENV2
monovalent vaccines in mice. We chose DENV2 for this proof-of-concept study due to
availability of DENV2 PIV from our coauthors at WRAIR and DENV2 PsIV from our
team at NMRC. Mice have traditionally been used as a first screen for DENV vaccine
candidates. As mice are not an ideal model for dengue vaccines, we typically only use
mice for the initial screening to down-select lead candidates for confirmatory testing in
non-human primates (NHP). Therefore, this study used monovalent DENV2 to test the
different adjuvants, although the plan will be to ultimately test a tetravalent vaccine in
NHP. Due to the inability to quantitate the inactivated vaccines using the same units of
measurement, this study was not designed to be an exact head-to-head comparison of the
PIV and PsIV products but was meant to determine the best adjuvant for each vaccine
candidate. The immunogenicity results for both B cell and T-cell responses presented here
are intended to inform the down-selection of candidate vaccine-adjuvant combinations for
ongoing development.

2. Materials and Methods
2.1. Chemical Inactivation of DENV2 Particles
2.1.1. DENV2 Inactivation Using Formalin

DENV2 PIV (non-GMP Lot 1700; manufactured by WRAIR PBF; 18 µg/mL frozen
stock) was obtained from our coauthors at WRAIR. DENV2 (strain S16803) was sucrose gra-
dient purified and inactivated with formalin using a previously published procedure [8,21].
Briefly, DENV2 viral fluids were propagated in Vero cells, harvested, clarified, and purified
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using an established sucrose gradient methodology. The purified material was inactivated
using formalin (pH 7.4) at a final concentration of 0.02%, for 10 days at 22 ◦C. Residual
impurities, such as formalin, were removed from the final vaccine preparation using a
tangential flow filtration column.

2.1.2. DENV2 Inactivation Using Psoralen

DENV2 PsIV has been previously prepared by our team and used in published
mouse and NHP studies [12]. DENV2 (strain Philippines 2-012-84) was purified using
Capto DeVirS chromatography resin and was then inactivated using a psoralen derivative
4′-aminomethyl-4,5′,8-trimethylpsoralen (AMT) (Cayman Chemical, Ann Arbor, MI, USA)
following a previously published paper with minor modification [13]. Briefly, AMT was
added to purified virus to a final concentration of 50 µg of AMT/mL of virus. The mix-
ture was then exposed to UV irradiation (365 nm) at 500 µW/cm2, for 40 min. Psoralen
inactivated DENV2 particles (DENV2 PsIV) were then further purified using Capto Core
700 column, as described previously [14]. DENV2 PsIV particles were collected in the
void volume of the column (because molecules larger than 700 K molecular weight were
excluded from entering the Capto Core 700 beads) and pooled together. The stabilizing
agent FTA (1% recombinant human serum albumin, 15% trehalose, and 2% pluronic F-127)
was added to DENV2 PsIV, which was then stored as 1 mL aliquots at −80 ◦C.

2.2. Quantitation of DENV2 PsIV and PIV

DENV2 PsIV particles were quantitated as particles/mL using Virocyt 3100 (Sartorius,
Germany) according to the manufacturer’s protocol. DENV2 PsIV was prepared as the
stock at 3.4 × 108 particles/mL and then formulated as 105 virus particles per dose with
each adjuvant for evaluation in mice. WRAIR DENV2 PIV non-GMP Lot-1700 was used at
350 ng dose by diluting from the 18 µg/mL frozen stock. The aim was to select a suboptimal
dose of each antigen based on recent studies [14,22] so the impact of the different adjuvants
could be more easily seen.

2.3. Preparation of Vaccine-Adjuvant Formulations

Advax-PEI and Advax-2 adjuvants were supplied as 50 mg/mL of suspensions of
particles of delta inulin in an aqueous form (Vaxine). Advax adjuvants were administered
at 1 mg/dose in mice. Advax-PEI was delta inulin alone, while Advax-2 was delta inulin
plus CpG55.2 oligonucleotide. Alhydrogel® adjuvant 2%, an aluminum hydroxide wet gel
suspension (Invitrogen, Brenntag Biosector, Ballerup, Denmark) (referred to as alum), was
added to the antigen at 1:9 ratio (alum:antigen) to prepare the alum adjuvanted vaccine
doses. All vaccine-adjuvant formulations were prepared by gentle mixing immediately
prior to each immunization.

2.4. Animals and Vaccine Administration

The animal protocol #19-IDD-10 for this mouse study was reviewed and approved
by the WRAIR/NMRC Institutional Animal Care and Use Committee (IACUC) in com-
pliance with all applicable federal regulations governing the protection of animals in
research. Housing and experimental use of the animals were performed in strict accor-
dance with all applicable federal regulations governing the protection of animals and
research. Seventy BALB/c mice (6–8 weeks old, female) (Charles River Laboratories,
Wilmington, MA, USA) were distributed into seven groups of 10 mice each. Groups of
10 mice were immunized with different vaccine-adjuvant formulations, as shown in Table 1.
Mice were vaccinated with formalin-inactivated DENV2 (PIVD2) (350 ng per dose) or
psoralen-inactivated DENV2 (PsIVD2) (105 inactive virus particles per dose) mixed with
adjuvant in a final volume of 50 µL intramuscularly on days 0 and 30 in alternate thighs. An
adjuvant control group was injected with alum only. As shown in Table 2, five mice from
each group were used for serum collections on days 0, 30, 60, 90, and 101 to monitor the
longevity of neutralizing antibodies. The other five mice from each group were euthanized
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on day 45 for the collection of spleen cells to measure T-cell responses. The remaining five
mice from each group were injected with a third dose of vaccine-adjuvant formulations
on day 90 to enable measurement of T-cell responses 11 days after boosting, i.e., day 101,
as T-cell responses usually peak approximately two weeks after immunization. These
boosted mice were euthanized on day 101, and their spleens were harvested to measure
T-cell responses.

Table 1. Vaccination groups for immunogenicity study in mice. Two doses of the vaccine-adjuvant
formulations were administered to all animals intramuscularly on day 0 and day 30.

Group Vaccine-Adjuvant Formation Number of Mice

1 PIVD2 + Alum 10

2 PsIVD2 + Alum 10

3 PIVD2 + Advax-PEI 10

4 PIVD2 + Adxax-2 10

5 PsIVD2 + Advax-PEI 10

6 PsIVD2 + Adxax-2 10

7 Alum 10
PIVD2 = Purified-inactivated vaccine DENV2; PsIVD2 = Psoralen-inactivated DENV2; Advax-PEI = Delta inulin;
Advax-2 = Delta inulin + CpG55.2 oligonucleotide.

Table 2. Schedule of procedures: Immunization regimen and sample harvest.

Procedure
Day of Study

0 30 45 60 90 101

Vaccination (n = 10) X X X

Bleeding (n = 10) X X X X X

Spleen harvest (n = 5) X X

2.5. Microneutralization Tests to Measure Neutralizing Antibody Responses

Individual serum samples from each group for each time point were tested for the pres-
ence of anti-DENV2 neutralizing antibodies using a high throughput microneutralization
(MN) test with Vero cells, as previously described [23]. Briefly, two-fold serial dilutions of
serum samples were incubated with two hundred Tissue Culture Infectious Dose (TCID5)
of DENV2 in triplicate for 60 min in a 96-well flat bottom microtiter plate. Vero 81 cells
(2 × 104 per well) were then added to the microtiter plate and incubated at 37 ◦C for
4–5 days. Cells were fixed and DENV2-specific antigen was measured using rabbit anti-
DENV polyclonal antibody and a peroxidase labeled anti-rabbit IgG secondary antibodies
in an ELISA format. The highest reciprocal serum dilution that resulted in >50% reduction
in absorbance compared to a virus control (lacking serum) was determined as the 50% MN
titer (expressed as MN50 titers). The geometric mean MN50 titers were determined for each
group for all time points. The geometric mean is used here because it deals with outliers
better and is usually used with antibody titers. Seropositivity was defined as a titer ≥ 1:20.
A one-way ANOVA with Dunnett’s post hoc test was performed using GraphPad Prism 9
to test for differences in neutralizing antibody titers between the alum group and the other
adjuvant groups.

2.6. ELISPOT Assay to Measure T-Cell IFNγ and IL4 Responses

Five mice from each group were used for collection of spleen cells on days 45 and
101. ELISPOT assays for IFNγ and IL4 were performed on spleen cells for each group.
T-cell IFNγ responses were measured as described previously [23,24]. Briefly, frozen spleen
cells were thawed, washed in RPMI 1640 media supplemented with 10% fetal bovine
serum (Hyclone, Logan, Utah) and 1% penicillin-streptomycin (Corning), and placed in



Microorganisms 2022, 10, 1034 6 of 16

a 37 ◦C 5% CO2 incubator overnight for viability recovery. Cells were then plated in
ELISPOT plates (MAIPSWU10, Millipore) pre-coated with anti-IFNγ monoclonal antibody
or anti-IL4 (kit #3321M-2H or 3421M-2A, Mabtech AB, Stockholm, Sweden) for mock-
and antigen-stimulated cultures (1 × 105 cells per well) and for positive control wells
(3.3 × 104 cells per well). CPrME peptide pools comprised of 15–20-mer peptides over-
lapping by 5–11 amino acids from prM (synthesized by Gen-Script USA Inc., Piscataway,
NJ, USA) and C/E proteins (BEI Resources) corresponding to DENV2 were used as anti-
gens to stimulate spleen cells at a final concentration of 1 µg/mL per peptide. Cultures
treated with diluted solvent (dimethyl sulfoxide) only were used as negative controls
(mock control). Positive controls were treated with the mitogen concanavalin A (Sigma-
Aldrich) at 2 µg/mL final concentration. Depending on the number of cells recovered after
thawing, samples were run in duplicate or triplicate. After a 24-h incubation, the plates
were washed and ELISPOT was developed using a mouse IFNγ ELISPOT kit (#3321M-2H,
Mabtech AB, Stockholm, Sweden) or mouse IL4 ELISPOT kit (Mabtech #3311-2A) accord-
ing to the manufacturer’s instructions. The spots were counted on an automated spot
counter (AID ELISPOT Reader, Autoimmun Diagnostika GmbH, Straßberg, Germany). The
spots were then normalized based on input cells per well and presented as spot forming
units (SFUs) per 106 cells. Data were presented as antigen-specific SFUs by subtracting
antigen-stimulated SFUs against mock SFUs. Group means between responses from mock
and CPrME-stimulated cells were compared using Mann–Whitney unpaired 2-tailed tests.
Group means between adjuvants were compared using Kruskal–Wallis tests.

2.7. ELISA to Measure the Mouse Immunoglobulin Isotypes

Individual serum samples from each group on day 101 were tested for the presence
of different anti-DENV2 IgG isotypes using an Ig Isotyping Mouse Uncoated ELISA kit
(ThermoFisher, Waltham, MA, USA). Microplates were coated for 16 h at 4 ◦C with dengue
antigen or negative (uninfected) control antigen (both were derived from Vero cell culture)
diluted in phosphate-buffered saline (PBS). Microplates were then blocked with 5% skim
milk in PBS for 30 min at room temperature. Mouse sera diluted 1:100 in PBS with 5% skim
milk were then added to the plate, incubated for 1 h at 37 ◦C, and washed six times with
0.1% Tween-20 in PBS using a microplate washer (BioTek, Winooski, VT, USA). Purified
rat anti-mouse Ig monoclonal antibodies (IgG1, IgG2a, IgG2b, and IgG3) diluted 1:250 in
PBS with skim milk were added to the plate and incubated for 1 h at 37 ◦C. The plates
were washed, and peroxidase-conjugated goat anti-rat IgG (ThermalFisher, Waltham, MA,
USA) at 1:10,000 dilution was added. After 1 h of incubation at 37 ◦C, the plates were
washed and tetramethylbenzidine (TMB) substrate solution was added and incubated at
room temperature. One molar of formic acid was added after 10 min to stop the reaction.
Optical density at 450 nm (OD450) was measured using a plate reader (Molecular Devices,
Sunnyvale, CA, USA). The OD450 value for each mouse serum was calculated by subtracting
the OD450 value for negative control antigen from the OD450 value for dengue antigen. The
cutoff value was set as the mean of five PBS group controls plus three standard deviations
(SDs). Groups between IgG2a and other IgG isotypes were compared using One-Way
ANOVA with Dunnett test.

3. Results
3.1. Characterization of DENV2 PsIV Vaccine Antigen

Highly purified DENV2 PsIV was prepared by AMT/UVA inactivation of Capto
DeVirS column purified DENV2 followed by a final purification using Capto Core 700 col-
umn, as described previously [14]. Briefly, cell culture supernatant containing DENV2 was
clarified and desalted using a 50 KDa MWCO filter and then purified on a DeVirS column.
Figure 1 illustrates the typical DeVirS column-based initial purification of DENV2. Psoralen
derivative AMT was then added to the column-purified DENV2 and irradiated with UVA
light to obtain DENV PsIV2, as described in the Materials and Methods section. A final
purification of DENV2 PsIV was achieved using a Capto Core 700 column, as illustrated
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in Figure 2. Fractions containing purified DENV2 PsIV particles were then pooled, mixed
with the stabilizer (FTA), filtered through a 0.2 µm filter, and stored at −80 ◦C. Purified
DENV2 PsIV was characterized by Western blot analysis using the anti-flavivirus mono-
clonal antibody 4G2 to confirm the presence of DENV envelope antigen (Figure S1), and the
purity of the DENV2 PsIV vaccine was confirmed by silver staining after gel electrophoresis
(Figure S2).
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3.2. Neutralizing Antibody Responses

Mice were vaccinated on days 0 and 30 for measurement of antibody responses and
then on day 90 to help measure T-cell responses. The doses used for both the PIV and PsIV
vaccines were chosen with an aim to be suboptimal such that immune response differences
between adjuvants could be measured. Sera were collected on days 30, 60, 90, and 101 and
used to determine neutralizing antibodies by the MN assay.

For the PIV groups, after one vaccination, the geometric mean MN50 titers in the
Advax-PEI and Advax-2 groups were higher than that in the alum group, with the Advax-2
group titers being significantly higher than the alum group titers (p = 0.04). Peak geometric
mean MN50 titers for the PIV groups were observed on day 60 and were highest in the
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Advax-2 group. Geometric mean MN50 titers also look the same for alum and Advax-PEI
on days 60 and 90. The only significant difference between the novel adjuvant groups and
the alum group was observed on day 30 (Figure 3).
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Each dot represents the DENV-2 MN50 titer for an individual mouse. The geometric mean titer for
each group is represented by a solid horizontal line. The dotted horizontal line represents the limit of
detection for the assay. * indicates significantly (p < 0.05) different titers compared to the alum group.

In the PsIV groups, both the Advax-PEI and Advax-2 groups had higher MN50 titers
than the PBS control group on day 101, and trended higher than the alum control group on
day 101, although this difference did not reach statistical significance (Figure 4).

Results were also analyzed by the frequency of animals in each group that had a posi-
tive MN50 titer at each time point, whereby positivity was defined as an MN50 titer ≥ 1:20.
All animals in all groups seroconverted after the first PIV dose. Although, on average,
MN50 titers waned by about half between days 60 and 90, 100% of animals in all PIV groups
remained seropositive on day 101 (Figure 5). In the Advax-2 group, 2/5 (40%) mice had
positive MN50 titers on day 30 (after the first PsIV dose) compared to 1/5 (20%) in the
Advax-PEI group and none in the alum group. By day 60 (after the second PsIV dose),
3/5 (60%) of mice in the Advax-PEI group had become seropositive, and this increased to
4/5 mice (80%) on day 90 and 5/5 (100%) on day 101. In the Advax-2 group, there was
more variability with 2/5 (40%) seropositive on day 90 and 5/5 (100%) seropositive on day
101. For the alum group, only 1/5 (20%) of the mice were seropositive after the second dose
and only 3/5 (60%) were seropositive after the third dose (Figure 5).
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3.3. ELISPOT Assays for Measurement of Cell-Mediated Immunogenicity

Five mice from each group were used for the collection of spleen cells on days 45
and 101. For some groups only a subset of mice was analyzed due to cell viability issues.
ELISPOT assays for IFNγ and IL4 were performed on spleen cells from mice in each group.
A threshold of 50 SFUs/106 cells was used to score a positive ELISPOT response. Significant
IL4 responses compared to background were only seen on day 45 and were restricted to
just the alum-adjuvanted PIV and Advax-2 adjuvanted PsIV groups (Figure 6). Significant
IFNγ responses were seen in all the adjuvanted PIV groups at both days 45 and day 101,
but with the highest overall responses in the Advax-2 adjuvanted group. For PsIV groups,
significant IFNγ responses were only seen in the Advax-2 group.
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Figure 6. IFNγ and IL4 T-cell responses on days 45 and 101. Antigen specific spot forming units
(SFUs) of IFNγ (a–d) or IL4 (e–h) producing cells per 106 spleen cells by group and day. Group
means between responses from mock and CPrME peptide pool-stimulated cells were compared
using Mann–Whitney unpaired 2-tailed tests. Group means between adjuvants were compared
using Kruskal–Wallis tests. Only statistically significant differences between groups are marked,
and p-values were shown. The p-values marked in red indicate the differences between different
adjuvant groups.
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The IFNγ to IL4 ratios are shown in Figure S3. For PIV there was a high IFNγ to
IL4 ratio for Advax-PEI (day 45) and Advax-2 (both day 45 and day 101) and a low ratio
for Alum (day 101), which is consistent with alum having a strong Th2 bias whereas by
comparison Advax-2 induced a mixed Th1 and Th2 response.

3.4. Immunoglobulin G Isotypes

In order to determine the distribution of IgG isotypes in vaccinated mice, serum from
individual mice collected on day 101 was diluted and tested with an IgG isotyping kit. For
mice that received the PIV vaccine with either alum or Advax-PEI, the levels of IgG1 and
IgG2a were significantly higher than the levels of IgG2b and IgG3. Additionally, the IgG1
levels of the mice receiving the PIV with either alum or Advax-PEI were much higher than
the mice with Advax-2. In mice that received either the PIV or PsIV vaccine with Advax-2,
IgG2a was the predominant isotype detected, with IgG1, IgG2b, and IgG3 detected at
significantly lower levels (Figure 7).
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Figure 7. Immunoglobulin G (IgG) isotyping of PIV and PsIV vaccines in mouse serum samples on
day 101. Specific IgGs against dengue antigen were tested. There were five mice in each group. The
average OD at 450 nm of each group is represented by the height of the column, and the standard
deviation is shown as an error bar. IgG1 between different adjuvants and groups between IgG2a
and other IgG isotypes were compared using One-Way ANOVA with Dunnett test. Only statistically
significant difference between groups were marked, and p-values were shown.
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4. Discussion

In this study, we tested two novel adjuvants to see if they could enhance the immuno-
genicity of two different types of inactivated dengue vaccines in mice, one where formalin
was used for inactivation with an effect on both proteins and nucleic acids and the other,
psoralen, which inactivates at the nucleic acid level. Our goal was to use the data from
this mouse study to select the most immunogenic adjuvant for each inactivated vaccine
candidate to move forward to a NHP study. Neutralizing antibodies were the primary
criteria used for down selection, while T-cell responses were also considered.

Previous mouse studies with the dengue PIV vaccine using alum as the adjuvant
demonstrated that while it could elicit high-titer virus neutralizing antibodies, it was not
effective at eliciting cell-mediated immune responses, and the neutralizing antibody titers
waned quickly over time [22]. Therefore, we tested two novel adjuvants (Advax-PEI and
Advax-2) to see if they could further boost the antibody titer and durability of the dengue
PIV response. For the PIV groups, MN50 titers were the same across the board, with the
exception at day 30 where Advax-2 was significantly higher than alum after the first vaccine
dose. There was a high rate of seropositivity in all groups, which was maintained out to
day 101, even though some waning of the titers was observed after their peak on day 60.
While we were aiming to use a suboptimal dose of PIV, it is possible that the dose used
was too high and the neutralizing antibody responses were saturated after the second dose.
This phenomenon could explain why large differences in MN titers between the adjuvant
groups were only observed after the first dose.

For the PsIV vaccine, we were also aiming for a suboptimal dose to better see the
effect of the adjuvants. Unfortunately, the dose used was likely too low based on the lower
geometric mean of MN50 titers generated by the PsIV vaccine. Although the PsIV dose
used (105 particles per dose) turned out to be too low, it provided an opportunity to assess
the dose-sparing effects of the adjuvants with this antigen. Even at this low dose, only
PsIV formulated with Advax-PEI and Advax-2 induced detectable neutralizing antibody
titers in some animals at day 90 and in 100% of animals at day 101. By contrast, 0 of 5 mice
in the alum group had detectable antibodies at day 90, and only 3 of 5 mice at day 101.
Notably, on day 101 of the current study, all mice in the Advax-PEI and Advax-2 groups
remained seropositive.

In a previous mouse study, both the monovalent and tetravalent DENV PsIVs elicited
good neutralizing antibody responses that persisted out to eight weeks after administration
of the second dose at the higher dose tested (106 particles per dose), while a poor antibody
response was observed at the lower dose tested (104 particles per dose) [14]. In the previous
study, a lower dose (104 particles) of alum-adjuvanted DENV2 PsIV elicited MN50 titers of
600 at day 60 (30 days after second immunization) [12]. This is a 10-fold lower dose than
what was used in this study, yet higher MN50 titers were observed. It was surprising that no
detectable neutralization was observed at the same time point (day 60) for alum-adjuvanted
DENV2 PsIV in this study. However, in this study we used intramuscular immunization,
whereas the previous one used intradermal immunization. We used intramuscular immu-
nization in this study because it was recommended by our coauthors at WRAIR. Only five
mice per group were used for serology because we sacrificed a further five mice per group
to determine T-cell responses. Poor immune response at the lower dose tested in this study
may be due to stability issues of the purified vaccine over time. Although we have added
stabilizers to the purified vaccines prior to freezing them, a thorough stability study of the
highly-purified DENV PsIVs over long periods of storage and number of freeze-thaw cycles
has not been performed yet. In our previous study, we utilized freshly prepared DENV PsIV
vaccines (within 1 week of preparation). Therefore, a thorough stability study of highly
purified DENV PsIV vaccines using various excipients as well as under different storage
conditions over a long period of storage and number of freeze-thaw cycles is warranted.

A subset of mice from each group was used for collection of spleen cells for T-cell
ELISPOT assays for IFNγ and IL4 on days 45 and 101. Advax-2 typically induces IFNγ

(a marker of Th1 immunity) and either stimulates or suppresses IL4 (a marker of Th2
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immunity) [25]. For the PIV vaccine, only IFNγ ELISPOT were seen in the Advax-2
adjuvanted PIV mice, indicating a Th1 dominant response. By contrast, alum-adjuvanted
PIV induced an IL4 response, consistent with alum’s known Th2 bias. However, for the PsIV
vaccine, Advax-2-vaccinated mice showed both IFNγ and IL4 ELISPOT responses. Notably,
when formulated with either PIV or PsIV vaccine, Advax-2 induced an IgG2a dominant
isotype response, with IgG2a isotype switching being a marker of a Th1 response [26].
Hence, Advax-2-adjuvanted PIV or PsIV vaccines elicited high neutralizing antibody
titers and Th1 dominant T-cell responses, as indicated by increased IFNγ and IgG2a
production. This all supports Advax-2′s suitability for use as an adjuvant in dengue vaccine
development. While the mechanism of Advax adjuvants enhancing Th1 immune responses
remains to be fully elucidated, labelled-Advax adjuvant particles are known to be avidly
phagocytosed by macrophages and dendritic cells, resulting in upregulation of MHC and
costimulatory molecules on these cells [27]. In response, there is a major expansion of
antigen-specific IFN-γ secreting CD4 and CD8 T-cells consistent with Advax adjuvant,
providing a strong Th1 stimulus, although memory T-cells secreting Th2 cytokines are also
expanded [28]. Advax has been described as an adjuvant of adjuvants, which explains
its ability to enhance the activity of co-administered traditional adjuvants such as TLR9
agonist CpG oligonucleotides, the second component in Advax-2 [29]. A CMV vaccine
study of Advax adjuvants in monkeys showed Advax adjuvants induced strong antibody
and memory CD4 and CD8 T-cells in the absence of activation of inflammatory gene
pathways [30]. Hence, Advax adjuvants utilize non-inflammatory mechanisms to enhance
memory T-cell generation and induction of affinity-matured plasmablasts and memory B
cells [31].

The limitations of the current study were the relatively small number of mice in each
group, which limited statistical comparisons. In addition, the PsIV dose was too low,
whereas the dose of PIV was too high, limiting our ability to make robust comparisons.
The study also lacked challenge data (usually performed in the NHPs, but not in mice) to
see how the observed immune responses might translate into protection. Nevertheless,
despite these limitations, this study provides useful information on the effects of the novel
adjuvants with the two inactivated dengue virus vaccine platforms, allowing selection of
a lead vaccine-adjuvant formulation for further development. Historically, non-human
primates such as rhesus or cynomolgus macaques have been used to measure dengue
vaccine efficacy, which is our next step. Our long-term goal is to develop a rapid acting, safe
and well tolerated prophylactic vaccine platform to protect military and civilian personnel
against dengue fever. Ideally, the vaccine should induce protective immunity with a
short dosing schedule and should provide protection in individuals who have never been
exposed to the dengue virus before. In addition to dengue virus, other medically important
flaviviruses can cause severe disease. This inactivated vaccine-adjuvant platform could
be expandable and allow the additional flavivirus antigens to further broaden flavivirus
coverage provided by a single vaccine platform. GlaxoSmithKline plc (GSK) deprioritized
development of the formalin-inactivated dengue PIV vaccine with our collaborators at
WRAIR in 2018 because of lack of a durable immune response and ADE concerns; thus, one
of the risk mitigations was to explore new adjuvants to circumvent these issues and allow
the dengue PIV and PsIV vaccine development to continue. Because psoralen-inactivation
of dengue virus occurs at the nucleic acid level, leaving the structural proteins intact,
we believe it is an ideal candidate for formulating a tetravalent PsIV DENV vaccine for
evaluation in NHP challenge mode. An effective tetravalent DENV vaccine consisting of an
optimized ratio of different monovalent PsIV antigens should elicit uniform neutralizing
antibody responses against all four serotypes to reduce ADE concerns. In addition, Advax-2
adjuvant itself may help to reduce the risk of ADE based on recent data where it modified
the function of JEV vaccine-induced antibodies such that they no longer enhanced DENV1
or DENV2 virus uptake in an in vitro dengue ADE reporter cell assay [20], although
any ability of our adjuvanted dengue vaccine to reduce potential ADE effects remains to
be investigated.
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5. Conclusions

Successful dengue inactivated vaccines are likely to be highly dependent on identifica-
tion of suitable adjuvants. We tested two novel adjuvants against alum for their ability to
increase the immunogenicity of inactivated dengue antigens. For the PIV groups, after one
dose, MN50 titers were higher in the Advax adjuvant groups compared to the alum control,
while titers were comparable between the adjuvant groups after the second dose. For the
PsIV groups, both Advax adjuvants induced higher MN50 titers than the alum control after
the second dose. Overall, Advax-2 responses were at least as good if not fractionally supe-
rior to Advax-PEI, with the biggest distinction being that Advax-2 already has extensive
human clinical data and is included in a now-licensed COVID-19 vaccine; therefore, the
Advax-2 formulation will be pursued for further development of the dengue vaccine. The
NIH is supporting development of Advax adjuvants, including Advax-2, across a range of
indications including influenza, COVID-19, and HIV vaccines, and Advax-2 adjuvant is
already available as a GMP product and has been shown to be safe and highly effective in
humans, thereby providing confidence of availability and regulatory acceptance for use in
an inactivated dengue vaccine. The lead candidate vaccine formulations are currently being
tested in NHP studies, with follow-on studies planned to be conducted to test tetravalent
dengue vaccine formulations in investigational new drug (IND)-enabling safety studies to
facilitate a future Phase I clinical trial.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10051034/s1. Figure S1. Western blot analysis of
Capto Core 700 column fractions run on Novex 4–12% Tris-Glycine SDS gel. Primary antibody is 4G2
anti-flavivirus monoclonal antibody specific for envelope protein (as indicated by arrow). Capto Core
fractions 2 to 4 containing purified DENV-2 PsIV were pooled together and stored at −80 ◦C (after
adding the stabilizers). Figure S2. Silver Stain of Capto Core 700 column fractions run on Novex
4−12% Tris-Gylcine native gel. Fractions 2 to 4 contain highly purified DENV-2 PsIV. Figure S3. Log
2 ratio of IFNγ and IL4 for data in Figure 6 is shown for responses to D2CPrME. Ratio for responses
to Mock is not shown.
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