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Cyanobacteria are among the most abundant photosynthetic organisms in the oceans; viruses
infecting cyanobacteria (cyanophages) can alter cyanobacterial populations, and therefore affect the
local food web and global biochemical cycles. These phages carry auxiliary metabolic genes (AMGs),
which rewire various metabolic pathways in the infected host cell, resulting in increased phage
fitness. Coping with stress resulting from photodamage appears to be a central necessity of
cyanophages, yet the overall mechanism is poorly understood. Here we report a novel, widespread
cyanophage AMG, encoding a fatty acid desaturase (FAD), found in two genotypes with distinct
geographical distribution. FADs are capable of modulating the fluidity of the host’s membrane, a
fundamental stress response in living cells. We show that both viral FAD (vFAD) families are Δ9 lipid
desaturases, catalyzing the desaturation at carbon 9 in C16 fatty acid chains. In addition, we present a
comprehensive fatty acid profiling for marine cyanobacteria, which suggests a unique desaturation
pathway of medium- to long-chain fatty acids no longer than C16, in accordance with the vFAD
activity. Our findings suggest that cyanophages are capable of fiddling with the infected host’s
membranes, possibly leading to increased photoprotection and potentially enhancing viral-encoded
photosynthetic proteins, resulting in a new viral metabolic network.
The ISME Journal (2018) 12, 343–355; doi:10.1038/ismej.2017.159; published online 13 October 2017

Introduction

Viruses are the most abundant entity in the oceans,
yet the vast majority remains uncultured (Suttle,
2005; Huang et al., 2010; Hurwitz and Sullivan,
2013; Brum et al., 2015). Cells lysed by viruses
contribute to energy and nutrient flux in the oceans,
while infected cells could also affect global biogeo-
chemical cycles (Fuhrman, 1999; Wilhelm and
Suttle, 1999; Hurwitz et al., 2013; Lisle and
Robbins, 2016; Roux et al., 2016). Viruses carry in
their genomes a wide variety of auxiliary metabolic
genes (AMGs), capable of complementing or redir-
ecting the infected host metabolism resulting in
increased viral fitness (Breitbart et al., 2007).
Cyanophages, phages infecting marine cyanobac-
teria, display a broad array of AMGs, including
photosynthetic light reaction components (Mann
et al., 2003; Lindell et al., 2004; Millard et al.,
2004, 2009; Zeidner et al., 2005; Sullivan et al., 2006,

2010; Sharon et al., 2009, 2011; Zheng et al., 2013).
Photosystem-I (PSI) genes in cyanophages (viral PSI
(vPSI)) are found in two main genotypes, arranged in
cassettes of seven (psaJF, C, A, B, K, E and D) and
four (psaD, C, A and B) genes, dubbed vPSI-7 and
vPSI-4, respectively (Sharon et al., 2009; Beja et al.,
2012; Roitman et al., 2015; Fridman et al., 2017).
Since there are no cultured representatives of vPSI-4
phages, little is known regarding their potential
influence on the infected host metabolic capacities.

Several AMGs are potentially involved in photo-
protection of the infected cyanobacterial cell. For
example, high light-inducible proteins enable the
dissipation of excess light energy and the correct
functioning of the photosynthetic light reactions
(Havaux et al., 2003), and are widely found in
cyanophages (Lindell et al., 2004; Millard et al.,
2004; Sullivan et al., 2005). Photosystem II (PSII)
reaction center protein D1 (encoded by the psbA
gene) was shown to be constantly damaged during
photosynthetic activity and must be repaired and de
novo synthesized to maintain active photosynthesis
(Adir et al., 2003). The viral psbA gene is expressed
upon infection (Lindell et al., 2005, 2007; Clokie
et al., 2006) and it was suggested to increase phage
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fitness (Bragg and Chisholm, 2008; Hellweger, 2009).
In addition, many cyanophages carry genes for a
plastoquinol terminal reductase, potentially
involved in photoprotection of PSII (Weigele et al.,
2007; Millard et al., 2009; Sullivan et al., 2010).
Based on the accumulating data in cyanophage AMG
repertoire, it appears that photoprotection of the cell
is a central need of the infected cell, the ‘virocell’
(Forterre, 2013) metabolism.

Another, rather unexplored mechanism for coping
with photoinhibition in cyanobacteria includes the
desaturation of the membranes lipids. Unsaturated
fatty acids are critical for growth and for coping with
stress in cyanobacterial cells, including photoinhibi-
tion, cold adaptation and osmotic stress (Sato and
Murata, 1981; Huflejt et al., 1990; Wada et al., 1990,
1992; Tasaka et al., 1996; Gombos et al., 1997).
Membrane fluidity affects the assembly and perfor-
mance of membrane proteins, including the de novo
synthesis and activation of D1, leading to a higher
recovery rate of PSII activity, and therefore reducing
photoinhibition (Gombos et al., 1997). In cyanobac-
teria, lipid desaturation is performed on fatty acid
residues esterified to a glycerolipid by membrane-
bound acyl-lipid front-end desaturases (Des pro-
teins), associated with cytoplasmic and thylakoid
membranes. Molecular oxygen and an electron
donor (ferredoxin) are required for fatty acid desa-
turase (FAs) activity (Sato and Murata, 1981; Wada
et al., 1993; Shanklin and Cahoon, 1998). Four des
genes can be found in cyanobacteria, encoding for
DesA, DesB, DesC and DesD FADs proteins, catalyz-
ing the desaturation at carbon Δ12, Δ15, Δ9 and Δ6
(counting from the carboxy group), respectively
(Wada et al., 1990; Reddy et al., 1993; Sakamoto
et al., 1994a, b). Cyanobacteria have been classified
into four groups based on their fatty acid composi-
tion, depending on the length of their fatty acids
(mainly C16 or C18), the amount of the double bonds
(zero to four per fatty acid chain) and the sn position
of the desaturated fatty acid (sn-1 and/or sn-2 at the
glycerol backbone) (Wada and Murata, 1998). How-
ever, marine unicellular cyanobacteria, namely
Synechococcus and Prochlorococcus, do not fit into
any of the four classic groups based on their FAD
composition, carrying only desC and desA genes
(Chi et al., 2008). DesC performs the first desatura-
tion of fatty acids at position Δ9 and is present in all
cyanobacterial strains (Wada and Murata, 1998; Chi
et al., 2008). DesC is constitutively expressed (Los
et al., 1997; Kis et al., 1998), has the most significant
effect on the fluidity of the membrane (Bossie and
Martin, 1989; Los et al., 1997) and can respond to
environmental changes (for example, temperature)
within hours and without de novo synthesis of fatty
acids (Sato and Murata, 1981). These monounsatu-
rated fatty acids are essential for growth. Conse-
quently, desC-knockout mutants must be
supplemented with unsaturated fatty acids to sur-
vive (Resnick and Mortimer, 1966; Tasaka et al.,
1996).

Here, we report the identification and character-
ization of two novel and widespread cyanophage-
encoded FAD (vFAD) families. The vFADs were
expressed using a heterologous yeast system and
were identified as DesC-like FADs, catalyzing the
desaturation at carbon Δ9 in C16 fatty acid chains. In
addition, we performed a comprehensive fatty acid
analysis of marine picocyanobacteria, including
Prochlorococcus and Synechococcus strains, and
found their lipid composition to be different from
other cyanobacteria. Our results suggest that marine
cyanobacteria have a rare pathway for fatty acid
desaturation, and phages desaturases are well suited
to fit in.

Results and discussion

To enrich our knowledge regarding uncultured
cyanophages carrying photosynthetic genes, we
conducted a metagenomic survey in a reassembled
database (Philosof et al., 2017) of the microbiome
(Sunagawa et al., 2015) and virome (Brum et al.,
2015) data sets from the Tara Oceans expedition, a
comprehensive sampling project of oceanic micro-
bial diversity. Using the sequence of a viral PSI psaD
gene as query for TBLASTX, we identified a 64 kbp
contig containing a vPSI-4 cassette in the assembly of
station 70 (South Atlantic Ocean). The contig was
extended up to 94 kbp with recruitment of reads
from the same station. This contig is predicted
to have originated from a cyanophage of the
Myoviridae family (T4-like phages), based on RegA
(Supplementary Figure 1a) and Transaldolase
(Supplementary Figure 1b) maximum-likelihood
phylogenetic protein trees, and the presence of three
transfer RNA genes (Figure 1 and Supplementary
Table 1) widely found among cyanomyophages
(Enav et al., 2012). The contig contains structural
and DNA replication genes resembling those of
cyanomyophages, along with various AMGs com-
mon in cyanophages, such as talC (Sullivan et al.,
2005; Ignacio-Espinoza and Sullivan, 2012), peptide
deformylase (Sharon et al., 2011), psbA and psbD
(Mann et al., 2003; Lindell et al., 2005), ferredoxin
(Sullivan et al., 2005; Ignacio-Espinoza and Sullivan,
2012), phoH (Goldsmith et al., 2011), among
others (Figure 1, Supplementary Figure 2 and
Supplementary Table 1). Surprisingly, we also
identified a gene coding for a putative vFAD, this
being the first report of a cyanophage potentially
interfering with fatty acid metabolism in the infected
host cell. Using the identified vFAD gene sequence
as bait, we were able to retrieve 139 contigs
containing vFADs among various viral genes
(Supplementary File 1) from publicly available
metagenomic data sets (Supplementary Table 2)
using the same strategy applied to vPSI-4 genes.
The viral origin of the contigs was confirmed by the
VirFinder Software (Ren et al., 2017)
(Supplementary Table 3). With the exception of 11
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contigs encoding solely for a partial DesC (which
were not used in further analysis), all contigs were
identified as belonging to cyanomyophages based on
similarity of the various open reading frames to
cultured cyanomyophage isolates using BLAST
(Supplementary Table 3).

The vFAD gene encodes for a putative acyl-lipid
desaturase, a membrane-bound enzyme that cata-
lyzes the front-end desaturation of fatty acids
esterified to glycerolipids. The protein is homolo-
gous to membrane-bound DesC Δ9 front-end desa-
turases found in cyanobacteria (and plants)
(Figure 2). Moreover, it contains the three character-
istic histidine motifs of DesC-like desaturases, two
HXXXHH and a HXXXXH, potential ligands of di-
iron center in the active site of the enzyme (Wada
and Murata, 1998). Δ9 desaturases from cyanobac-
teria have been classified phylogenetically into six
clades (Chi et al., 2008). Clades Δ9-3 and Δ9-4
(colored in green and blue, respectively, in Figure 2)
are composed solely of marine picocyanobacteria,
whereas the remaining four clades (shaded in gray in
Figure 2) include marine and freshwater cyanobac-
teria, as well as eukaryotic algae. Interestingly, the
estuarine Synechococcus CB0101 (Marsan et al.,
2014) carries three genes encoding for DesC proteins,
one of them clustering separately from the pre-
viously described (CB0101_III in Figure 2). Using
this protein sequence as a bait, we recruited three
new contigs from three Tara Oceans marine stations
(137 and 138 in the North Pacific Ocean, and 141 in
the North Atlantic Ocean), carrying a similar desa-
turase (Supplementary File 3). These contigs seem to
originate from picocyanobacteria (Supplementary
Table 4) and cluster together in a monophyletic

group. Moreover, the four encoded proteins share
unique motifs in their histidine boxes
(Supplementary File 4), thus unveiling a seventh
clade of cyanobacterial Δ9 proteins (shaded in pink
in Figure 2). Other Synechococcus and Prochloro-
coccus strains (mainly low light adapted, classified
as clade IV) have two types of DesC and these
proteins cluster separately into two different
branches in the DesC phylogenetic tree (Figure 2),
indicating a possible specialization for each type.
Since the marine picocyanobacterial FAD-specific
activity is yet unknown, we will refer to them as Δ9-3
and Δ9-4, according to the classification given by Chi
et al. (2008). However, some Prochlorococcus strains
carry a single desC gene corresponding to Δ9-4
(shaded blue and marked with an asterisk in
Figure 2), whereas some Synechococcus strains
contain only one desC Δ9-3 gene (shaded green
and marked with an asterisk in Figure 2). Accord-
ingly, cyanophage-encoded vFADs can be found in
two genotypes, forming monophyletic branches in
the phylogenetic tree. These groups correspond to
the unicellular marine picocyanobacterial types,
although they share o70% identity on the protein
level and have distinct H-box motifs (Supplementary
File 4), thus we decided to denominate them vFAD-I
(Figure 2, shaded gold) and vFAD-II (Figure 2,
shaded purple). We retrieved more vFAD-I contigs
than vFAD-II from the metagenomic data sets
analyzed; however, the first vFAD discovered, found
in the 94 kbp contig, clusters within family II
(marked with a black arrow in Figure 2). vFAD
families show distinct biogeography (Figure 3a).
vFAD-Is are widespread in the oceans (Figure 3a,
golden dots), being found all along the Pacific and
Atlantic Oceans, the Indian Ocean and the Mediter-
ranean and Red Seas. In contrast, vFAD-IIs are
present only in the Southern Pacific and Southern
Atlantic Oceans, as well as in the Indian Ocean
(Figure 3a, purple dots). Interestingly, the geographi-
cal distribution and abundance of vFAD-II resembles
the data found for uncultured phages carrying the
vPSI-4 gene cassette (Roitman et al., 2015), which is
also found in the 94 kbp contig (Figure 1). To
estimate the vFAD relative abundance, we mapped
the raw reads from the Tara Ocean metagenomes
corresponding to bacterial, giant viruses and viral
fractions to the viral desC genes. Based on the
recruitments for desC genes of each family, we found
that vFAD-I was 46 times more abundant than vFAD-
II. The relative abundance of cyanomyophages
carrying vFADs of family I among cyanomyophages
in positive stations (Figure 3) was estimated to be up
to 34% with an average of 7%; vFADs of family II
were estimated to be present in up to 3.5% of total
cyanomyophages, with an average of 0.1%
(Supplementary Table 5). It is worth noting that
vFADs were found in all three size fractions, in
accordance with Philosof et al. (2017) findings that
cyanophages can be widely found in bacterial
fractions, probably due to ongoing infections during

Figure 1 The 94 kbp contig genomic map. Gray arrows represent
hypothetical and conserved hypothetical proteins. Orange arrows
are virion structural and packaging genes. Yellow arrows stand for
genes encoding DNA replication and metabolism modification
proteins. AMGs are depicted in pink, whereas AMGs related to
photosynthesis are colored in green. The FAD gene is colored in
purple. Genes encoding proteins used in phylogenetic trees in
Supplementary Figure S1 (regA, talC) and Figure 2 (desC) are
contoured in black. Three transfer RNA genes are marked with a
single transfer RNA icon. A detailed figure and list of open reading
frames can be found in Supplementary Figure 2 and
Supplementary Table 1, respectively. Open reading frames and
DNA sequences can be found in Supplementary File 2.
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Figure 2 Maximum-likelihood phylogenetic tree of DesC. Viral FADs classified as families I and II are shaded in gold and purple,
respectively. Picocyanobacterial desaturases are shaded in green and blue for Δ9-3 and Δ9-4 groups, respectively. DesC sequences
corresponding to groups Δ9-1, Δ9-2, Δ9-5 and Δ9-6 (Chi et al., 2008) are shaded in grey. Cyanobacterial newly proposed Δ9-7 group is
shaded in pink. Black and gray arrows indicate the sequences chosen for expression in yeast. Stars indicate picocyanobacterial strains
carrying only one desC gene. The scale bar indicates the average number of amino-acid substitutions per site. Circles represent bootstrap
values 40.9.
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sampling (Supplementary Figure 3). To identify
possible hosts for the vFAD-carrying phages,
the abundance of marine Synechococcus and Pro-
chlorococcus was evaluated by mapping sequences
of the taxonomical marker petB reported in
Farrant et al. (2016), corresponding to 49 different
‘ecologically significant taxonomic units’, on the
same samples used to estimate the abundance of
vFADs. We found that the abundance of the viral
desC genes of vFAD-I was highly correlated
(R2 = 0.91, Po0.001) to the abundance of petB
originating from Prochlorococcus low light clade I
(ecologically significant taxonomic unit LLIA) in the
North Atlantic Ocean (Supplementary Figure 4).
Owing to the low number of samples positive for
vFAD-II, we could not detect any significant correla-
tion. Interestingly, the majority of the reads (490%)
for vFAD-II originate from the giant virus fraction
(0.45–0.8 μm) (Supplementary Figure 3), which
could include whole Prochlorococcus cells. This

suggests Prochlorococcus as the possible host for
these phages.

To confirm the vFAD activity, we expressed
the viral genes in a heterologous system using the
Saccharomyces cerevisiae strains INVSc2 and
the FAD mutant Ole1 (Stukey et al., 1990). While
the INVSc2 strain contains monounsaturated (at
position Δ9) and saturated long-chain C16 and C18
fatty acids (Supplementary Figure 5), the Ole1
mutant strain features only saturated fatty acids
(Figure 4a) and has to be supplemented with
unsaturated fatty acids for normal growth. The lipid
profile of INVSc2 cells expressing vFADs could not
be distinguished from cells transformed with an
empty vector, suggesting for a possible Δ9 desatura-
tion activity (data not shown). This was confirmed
by lipid profiles of Ole1 mutant strains expressing
vFADs; both vFADs show Δ9 desaturase activity,
acting specifically on C16 chains of lipids in yeast
(Figures 4b and c). No activity of vFADs on C14 fatty

Figure 3 (a) Map of Tara Oceans stations analyzed in this project. Gold dots represent stations positive for vFAD-I reads; purple dots
mark stations positive for vFAD-II reads. Gray dots stand for stations where no reads for vFADs were found. Latitudes are marked at the left
of the map. Oceanic regions are delimited according to the Tara Oceans Expedition labeling. (b) Relative abundance of vFADs from
families I and II (depicted in gold and purple, respectively), presented in reads per kilobase per million (RPKM), was measured using the
Tara Oceans metagenomes corresponding to bacterial, giant virus and viral fractions. Box plots were created using a median, 25th
percentile, 75th percentile, minimum, maximum and outliers depicted. Whenever the amount of samples was less than five per region per
fraction, individual dots are presented.
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acid chains was detected, even when yeast cultures
were supplemented with 0.01% myristic acid (data
not shown). Marine picocyanobacteria show a
potentially unique pathway for acyl-lipid desatura-
tion among cyanobacteria, containing only desC and
desA genes for desaturation of carbons Δ9 and Δ12,
respectively (Chi et al., 2008), yet their lipid profiles
were scarcely determined. Previous work showed
fatty acid profiles of two Prochlorococcus strains,
Med4 and MIT9313 (Biller et al., 2014). To increase
our understanding of marine picocyanobacterial
fatty acids, we performed a fatty acid profiling of
eight cyanobacterial strains, including both Syne-
chococcus and Prochlorococcus corresponding to
the three main picocyanobacterial FAD genotypes.
We analyzed strains carrying two desaturases, types
Δ9-3 and Δ9-4, Synechococcus WH7803 and
WH7805 and Prochlorococcus MIT9313; strains
carrying only a Δ9-4, Prochlorococcus Med4 (axenic
and non-axenic cultures) and NATL2A; and strains
carrying only a Δ9-3, Synechococcus WH8109 and
WH8102 (Figures 5a and b and Supplementary
Figure 6). We also analyzed Prochlorococcus
MIT9312, whose genome is not sequenced yet, and
therefore its genotype is unknown, although based
on its phylogeny (high light adapted, clade II) we

hypothesize it might carry a Δ9-4 (Supplementary
Figure 6). All marine picocyanobacterial strains
show a distinct fatty acid profile, containing a large
amount of C14 fatty acids chains compared with
freshwater cyanobacteria (Supplementary Figure 6)
(Lang et al., 2011). Interestingly, we could not detect
C18:0 fatty acids in any of our cultures and only
three strains (Synechococcus WH8109 and WH7805,
and 2/5 cultures for Prochlorococcus MED4) showed
C18:1 fatty acids. This is in contrast to previous
reports, where these fatty acids could add up to 10%
of the total fatty acid content of the cells (Biller et al.,
2014). Those cultures were all non-axenic, meaning
that the C18:1 could have originated from other
organisms in the media, although based on Biller
et al. (2014) results, who worked with axenic Med4
cultures, this fatty acid could be of picocyanobacter-
ial origin. We speculate that the different growth
conditions of the cultures used in the studies had
affected their fatty acids composition, leading to the
synthesis/absence of C18:0 and C18:1 (light inten-
sity, culture volume, stirring, etc.). This suggestion is
supported by the complete absence of C18:1 fatty
acids in our axenic cultures while Biller et al. (2014)
detected those fatty acids to be up to 10% of the total
fatty acids of the same strains (Med4 and MIT9313).
We speculate that long fatty acids are not needed
under our culturing conditions (see Materials and
methods). In addition, previous studies reported
C14:0, C16:0 and C16:1 (n-7) to be the most abundant
fatty acids in marine phytoplankton (Wakeham and
Canuel, 1988) and in marine picocyanobacterial
strains (Biller et al., 2014), supporting our results.
Although we analyzed strains belonging to three
different genotypes regarding the desC gene content,
we do not see a distinct desaturation pattern among
the picocyanobacterial genotypes, thus we cannot
determine a specific activity for Δ9-3 and Δ9-4
cyanobacterial desaturases. However, the fatty acid
profiles of the marine picocyanobacteria hint to an
unusual substrate specificity of those desaturases
(Figure 5c). Picocyanobacterial fatty acid profiles
display desaturation at the Δ9 carbon for C14 (n-5)
and C16 (n-7) but not in C18 fatty acid chains (n-9)
(Figure 5a). In some strains, monounsaturated C18:1
(n-7) could be detected, containing the double bond
at position Δ11, thus being the result from elongation
of monounsaturated C16 and not of de novo
desaturation of saturated C18. We therefore propose
that marine picocyanobacterial DesC desaturases
have a substrate specificity towards fatty acid chains
of C14 and C16 (Figure 5c). However, we cannot
discard the possibility that there is little or no
synthesis of C18 fatty acid chains in these cyano-
bacterial strains, thus the lack of substrate could
explain their unusual specificity; Biller et al., 2011)
did not specify whether the C18:1 detected in their
cultures is (n-7) or (n-9).

Based on the vFAD activity assay, acting solely in
C16 fatty acids, and the fatty acid profile of marine
picocyanobacteria, we propose a model for

Figure 4 GC/FID analysis of FAMEs isolated from Ole1 yeast
cells expressing vFADs. After lyophilization the esterified fatty
acids were transesterified with sodium methoxide and analyzed
by GC/FID (see Materials and methods). (a) Chromatogram of the
control yeast, Ole1 transformed with an empty pYES2/CT vector.
(b) Chromatogram of the Ole1 yeast expressing vFAD-I (marked
with a gray arrow in Figure 2). (c) Chromatogram of the Ole1 yeast
expressing vFAD-II (marked with a black arrow in Figure 2). For
the chromatogram of the InvSc2 strain (containing an active ole1
gene) see Supplementary Figure 5.
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cyanophage FAD activity (Figure 6). Several viruses
infecting eukaryotic organisms carry fatty acid
metabolism AMGs for lysing the host’s cell (Vardi
et al., 2009), to enable the replication of their genome
(Lee et al., 2001) or for the biosynthesis of their
unique lipids composing the envelope membranes
(Ziv et al., 2016). Interestingly, several bacterial-like
FADs were recently detected in genomes of Emilia-
nia huxleyi viruses (Nissimov et al., 2017). While
their activity is yet unknown, it was speculated
(Nissimov et al., 2017) that they play a role in the
massive remodeling of the fatty acid profiles
observed in infected host cells (Evans et al., 2009;
Rosenwasser et al., 2014). However, this speculation
seems now less favored as this remodeling is
characterized by rather higher percentages of satu-
rated fatty acids (Malitsky et al., 2016). Cyanomyo-
phages, on the other hand, do not contain lipid
membrane envelopes and their capsids are com-
posed solely of proteins. We therefore propose
that in cyanophages fatty acid metabolism AMGs,
that is, vFADs, are carried out to modulate
the fluidity of the cytoplasmic or thylakoid
membranes of the infected cell. Modulating the
cytoplasmic membrane could lead to better lysis,
whereas modulating the thylakoid membranes
could improve the stress response of the infected

cell reducing photodamage and oxidative stress,
among other stresses, resulting in better physiologi-
cal conditions for the ongoing infection. In the
94 kbp contig, we found along with the vFAD, vPSII
and vPSI genes, whose activity might benefit from
modifications in the thylakoid membrane fluidity,
and a gene encoding for ferredoxin, which could
potentially act as the electron donor to the vFAD
(Figure 1).

Marine Synechococcus and Prochlorococcus are
among the most abundant photosynthetic organisms
on Earth, and it was estimated that cyanophages lyse
between 0.005 and 10% of cyanobacteria daily
(Waterbury and Valois, 1993; Suttle and Chan,
1994). During infection, the virocell’s physiology is
remarkably different from the original, uninfected
cyanobacteria, as phages bring new metabolic cap-
abilities with the potential to rewire the host’s
metabolism. Here we report a novel pathway in
cyanophages, that is, fatty acid metabolism that
could have an overall impact on the virocell’s
performance. This might lead to a higher fitness of
the phage and to a change in the quality of the debris
left after burst, which becomes part of the dissolved
organic matter used by heterotrophs and it is
shunted back into the food web (Wilhelm and
Suttle, 1999). As we keep unveiling rare phage

Figure 5 Fatty acid analysis of marine picocyanobacteria. (a) GC/FID analysis of FAMEs isolated from picocyanobacteria. FAMEs were
prepared from lyophilized cells using acidic methanolysis, and analyzed by GC/FID (see Materials and methods). Position of double bonds
was verified by GC/mass spectrometry (GC/MS) analysis, after converting FAME to DMOX derivatives (see Supplementary Figure 7).
(b) Fatty acids profile of the marine picocyanobacterial strains. Fatty acids are expressed as the percentage of total fatty acids. A profile of
all strains analyzed in this study can be found in Supplementary Figure 6. (c) Proposed pathway scheme for the biosynthesis of fatty acids
in the analyzed picocyanobacteria. De novo synthesis ends either with carbon chain length 14 or 16 yielding 14:0 and 16:0, respectively.
Next, these fatty acids may be desaturated by a DesC-type Δ9 desaturases yielding 14:1 (n-5) and 16:1 (n-7), respectively. The later may
then be further elongated (Elo) into 18:1 (n-7) or again be desaturated by DesA-type Δ12 desaturase yielding 16:2 (n-4).
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capabilities, we realize that their roles in the
environment are far greater than expected.

Materials and methods

Metagenomic data analysis
Metagenomic data sets from the Tara Oceans micro-
biome (Sunagawa et al., 2015) and virome (Brum
et al., 2015) were reassembled using IDBA-UD (Peng
et al., 2012) assembler as described elsewhere
(Philosof et al., 2017) providing higher quantity of
longer scaffolds than previously reported (Sunagawa
et al., 2015). Errors in the assembly were corrected
using two read-mapping-based in-house tools as
described elsewhere (Philosof et al., 2017). Viral
psaD sequences obtained in a previous study of
vPSI-4 genes (Roitman et al., 2015) were used as
query to recruit scaffolds in the reassembled Tara
Ocean data set using TBLASTX (Altschul et al.,
1990; Camacho et al., 2009) with the default
parameters. One of the identified scaffolds,
SAMEA2621085 (station 70, depth 5m, 0–0.22
filter), contains the four genes of vPSI-4 (psaD, C, A
and B). The scaffold carrying the vPSI-4 genes was
extended using the miniassembly technique
described elsewhere (Sharon et al., 2013). This
process leads to the recruitment of other fragments
of the same genome until no further elongation could
be reached. The resulting 94 kbp fragment went
through QC, and consistency of the extended scaf-
fold was confirmed by mapping the sample reads to
the scaffold using Bowtie2 (Langmead and Salzberg,
2012).

ORFs were identified in the 94 kbp contig using
GeneMark (Besemer and Borodovsky, 1999; Zhu
et al., 2010) and manually annotated using BLASTX
(default parameters) and transfer RNAscan-SE (Lowe
and Eddy, 1997). The vFAD protein sequence was
used as query for a TBLASTN search (e-value 0.1)
against metagenomic data sets (Supplementary
Table 2). All retrieved contigs were screened using
BLASTX (e-value 10e− 10) against the NCBI non-
redundant (nr) protein database to identify all
putative proteins in the contigs. FADs from cyanoph-
age origin were selected based on top hits with
o70% identity to picocyanobacteria.

Relative abundance of vFADs was calculated using
Salmon (version 0.8.2) (Patro et al., 2017). A
collection of 1150 DNA sequences (Supplementary
Table 6) composed of cyanobacterial FADs, the
BLASTX identified vFADs, cytochrome b6 (petB)
from photosynthetic microorganisms (chloroplasts,
freshwater and marine cyanobacteria) and viral
marker genes (gp20, gp23, DNAPol, MCP and psaA)
were used to create a Salmon index. The index was
used for the quantification of the DNA collection in
the 399 metagenomes from the Tara Oceans micro-
bial, giant viruses and viral fractions with Salmon in
the quasimapping mode with the following para-
meters ‘—meta —incompatPrior 0.0 —libType A —

gcBias —seqBias —numBootstraps 100’. Quantifica-
tion results were processed by tximport (version
1.4.0) (Soneson et al., 2015), followed by the filtering
of sequences with o20 mapped reads and normal-
ization with edgeR (version 3.18.1) (Robinson et al.,
2010). Reads per kilobase per million were calcu-
lated from the normalization results by the edgeR
function reads per kilobase per million. Abundance
plots were generated in Python (version 3.6.0)
using the visualization package Seaborn (version
0.8.0) (Waskom et al., 2016) after grouping and
summarization using pandas (version 0.20.1)
(McKinney, 2010).

vFAD–cyanobacteria correlation analysis
The positive samples for vFADs were used to
perform a linear regression between the normalized
and summarized counts of viral desC and cyanobac-
terial petB from different ecologically significant
taxonomic units (Farrant et al., 2016)
(Supplementary Table 5), using Python (version
3.6.0) and the ‘ols’ function of the package statmo-
dels (version 0.8.0) (Skipper and Perktold, 2010).
Detection of outliers in the different linear regression
analysis was based on the Cook’s distance (Di),
discarding those with Di 4 1.

Geographical distribution of vFADs
The map was plotted using a custom R script
(version 3.4.0) (R Core Team, 2017) and the
packages: maps (version 3.2.0) (Becker et al., 2017),
ggplot2 (Wickham, 2009) and ggalt (version 0.4.0)

hyper-desaturation

improved
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photoinhibition

cold
adaptation
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lysis

desaturation

maintenance

cyanophage encoded
vFADs

thylakoid
membranes

cytoplasmatic
membrane

16:0 16:1 (n-7)

host lipids

viral induced
desaturated

lipids

Figure 6 Model for vFAD activity. Upon infection, phages
carrying vFAD genes can increase or maintain the desaturation
degree of the cytoplasmatic and/or the thylakoid membranes by
desaturating C16:0 fatty acids. This might lead to the maintenance
of the desaturation degree in the membranes, leading to higher
stability of the infected cells. Additionally, phages could increase
the desaturation in the membranes leading to improved lysis and
better stress response, including cold adaptation and
photoprotection.
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(Rudis et al., 2017). Minor aesthetical adjustments
were performed in Inkscape (version 0.92).

Data availability and bioinfomatic analysis
The R scripts and Jupyter (Kluyver et al., 2016)
notebooks used for normalization, abundance esti-
mation, correlation analysis and map plotting are
available at: https://github.com/BejaLab/vFADs.

Phylogenetic construction and analysis
Newly identified FADs, and talC and regA gene
sequences were translated to proteins according to
the correct open reading frame and aligned along
with sequences from picocyanobacteria and cyano-
phages retrieved from GenBank. Multiple sequence
alignments were created using ClustalX v.2.1 (Larkin
et al., 2007). Maximum-likelihood phylogenetic trees
were constructed using the phylogeny.fr pipeline
(Dereeper et al., 2008), including the PhyML v.3.0
(Guindon et al., 2010) and the WAG substitution
model for amino acids (Whelan and Goldman, 2001).
One hundred bootstrap replicates were performed
for each analysis. See Supplementary Files 5–7 for
the alignments used to construct the trees.

Expression of vFADs
One representative from each of the vFAD families
(SAMEA2621033_16500 for vFAD-I and
SAMEA2621085_722 for vFAD-II, marked with a
gray and a black arrow, respectively in Figure 2)
were chosen for expression. We performed codon
usage adaptation for optimal expression in yeast
using Integrated DNA Technologies (IDT) tool for
codon optimization to Saccharomyces cerevisiae
codon usage. DNA fragments, as gBlocks Gene
Fragments (IDT), were cloned into the pYES2/CT
vector (Thermo Fisher Scientific, Waltham, MA,
USA) using EcoRI and NotI sites in frame so that
the gene is fused to the vector’s His-tag at the N
terminus of the protein, and sequenced to confirm
their identity. The plasmids were transformed into
yeast strains INVSc2 and Ole1 (ole1) following a
modified protocol from Xiao (2006). Individual
colonies were grown overnight at 30 °C in SD media
with glucose, lacking uracil. To cultivate Ole1 cells,
the media were supplemented with 0.02% linoleic
acid (18:2 (n-6)) and 0.2% Tween-60. To induce
expression a 0.5ml overnight culture were trans-
ferred to 20ml medium containing galactose and the
appropriate supplements. Cells were cultured for
4 days at 30 °C, harvested by centrifugation at 3000 g
for 10min, frozen at −20 °C and lyophilized for 48 h.

Picocyanobacterial cultivation
Prochlorococcus strains were grown in a seawater-
based medium Pro99 medium (Moore et al., 2007)
based on Mediterranean seawater. Synechococcus
strains were grown in an artificial seawater-based

medium (Wyman et al., 1985) with modifications as
described previously (Lindell et al., 1998). All strains
were grown in 30ml cultures at 21 °C under cool
white light under a 14:10 h light–dark cycle, at a
10–15 μmol photonm− 2 s−1. Synechococcus strains
WH7803 and WH8102 and Prochlorococcus strains
Med4, NATL2A, MIT9312 and MIT9313 were grown
as axenic strains, whereas Synechococcus strains
WH8109 and WH7805, Prochlorococcus strain Med4
and freshwater Synechococcus strain PCC7942 were
non-axenic cultures. Three cultures were grown for
every strain and analyzed separately, except Med4,
for which we grew three axenic cultures and two
non-axenic cultures. (The non-axenic cultures were
used for identification of the gas chromatography/
flame ionization detection (GC/FID) of fatty acid
methyl esters (FAMEs), as they have all fatty acids
identified, and the axenic cultures were used for the
fatty acid abundance analysis.) The bacteria were
harvested at the beginning of the stationary phase by
centrifugation at 6000 g for 15min, and then again at
9000 g for 10min. Pellets were flash frozen and
stored at − 80 °C until they were lyophilized for 24 h.

Lipid extraction and analysis
For analysis of esterified fatty acids in yeast,
lyophilized cell pellets were submitted to transester-
ification using sodium methoxide (Hornung et al.,
2002): Cells were homogenized in 0.5ml 0.5 M

sodium methoxide and 1.4ml methanol by vortex-
ing. After shaking for 1 h, FAMEs were extracted by
adding 2ml saturated sodium chloride and 4ml
hexane. The hexane phase was dried under stream-
ing nitrogen and dissolved in 30 μl acetonitrile.

For analysis of fatty acid profiles from cyanobac-
teria, lyophilized bacteria cells were submitted to
acidic hydrolysis (Miquel and Browse, 1992). One
milliliter of a methanolic solution containing 2.75%
(v v− 1) sulfuric acid (95–97%) and 2% (v v− 1)
dimethoxypropan was added to the sample. The
sample was incubated for 1 h at 80 °C. To extract the
resulting FAME, 200 μl of saturated sodium chloride
solution and 2ml of hexane were added. The hexane
phase was dried under streaming nitrogen and
dissolved in 100 μl acetonitrile for GC analysis.

For determination of the position of double bonds
in fatty acids, FAMEs were converted into their 4,4-
dimethyloxazoline (DMOX) derivatives according to
Christie (1998). Ninety microliters of FAME resulting
from acidic hydrolysis was dried under streaming
nitrogen, 200 μl 2-amino-2-methyl-1-propanol was
added and the sample was incubated at 180 °C for at
least 14 h. Fatty acid derivatives were extracted by
adding 1ml of dichloromethane to the sample,
followed by 2.5ml hexane and 1ml water. The
hexane phase was washed once with 1ml water and
then dried under streaming nitrogen. DMOX deriva-
tives were separated from remaining FAME by thin
layer chromatography, using petrol ether/diethyl
ether (2:1, v v− 1) as running solvent. DMOX
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derivatives were extracted from the plate, dissolved
in 10 μl acetonitrile and subjected to GC/mass
spectrometry.

GC/FID analysis was performed with an Agilent
6890 gas chromatograph (Agilent Technologies,
Waldbronn, Germany) fitted with a capillary DB-23
column (30mx0.25mm; 0.25 μm coating thickness;
J&W Scientific, Agilent). Helium was used as carrier
gas at a flow rate of 1mlmin−1. The temperature
gradient was 150 °C for 1min, 150–200 °C at
8 Kmin−1, 200–250 °C at 25 Kmin− 1 and 250 °C for
6min. FAMEs were identified according to the
retention time of the corresponding peaks in the
external standard (Supelco 37 component FAME
Mix; Sigma, Munich, Germany). GC/mass spectro-
metry analysis for DMOX derivatives was carried out
using a ThermoFinnigan Polaris Q mass selective
detector connected to ThermoFinnigan Trace gas
chromatograph (Austin, TX, USA) equipped with a
capillary DB-23 column. GC was performed using
the same conditions as for GC/FID. Electron energy
of 70 eV, an ion source temperature of 230 °C, and a
temperature of 260 °C for the transfer line is used.
See Supplementary Figure 7 for the DMOX deriva-
tives analysis.
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