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ABSTRACT

Applying toxicogenomics to improving the safety profile of drug candidates and crop protection molecules is most useful
when it identifies relevant biological and mechanistic information that highlights risks and informs risk mitigation
strategies. Pathway-based approaches, such as gene set enrichment analysis, integrate toxicogenomic data with known
biological process and pathways. Network methods help define unknown biological processes and offer data reduction
advantages. Integrating the 2 approaches would improve interpretation of toxicogenomic information. Barriers to the
routine application of these methods in genome-wide transcriptomic studies include a need for “hands-on” computer
programming experience, the selection of 1 or more analysis methods (eg pathway analysis methods), the sensitivity of
results to algorithm parameters, and challenges in linking differential gene expression to variation in safety outcomes. To
facilitate adoption and reproducibility of gene expression analysis in safety studies, we have developed Collaborative
Toxicogeomics, an open-access integrated web portal using the Django web framework. The software, developed with the
Python programming language, is modular, extensible and implements “best-practice” methods in computational biology.
New study results are compared with over 4000 rodent liver experiments from Drug Matrix and open TG-GATEs. A unique
feature of the software is the ability to integrate clinical chemistry and histopathology-derived outcomes with results from
gene expression studies, leading to relevant mechanistic conclusions. We describe its application by analyzing the effects of
several toxicants on liver gene expression and exemplify application to predicting toxicity study outcomes upon chronic
treatment from expression changes in acute-duration studies.
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Despite significant advances, determining the relevance of tox-
icity findings from animal safety studies to human health
effects is challenging. Identifying the mechanistic underpin-
nings of a toxicity finding is key, and characterization of tissue
samples using gene expression is often performed toward this
end. Initiatives to study a broad range of toxicants and reference
molecules has produced rich contextual information aiding the

interpretation of gene expression changes produced by a mole-
cule of interest (Ganter et al., 2005; Igarashi et al., 2015).
However, these data are challenging to process, search, and an-
alyze. Furthermore, many analysis algorithms are available,
ranging from mature approaches such as overrepresentation
analysis (widely used in the DAVID web application) (Huang
et al., 2009), the related gene set enrichment analysis (GSEA)
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method (Subramanian et al., 2005) and Connectivity Map (CMAP)
(Lamb et al., 2006; Smalley et al., 2010), to newer methods pur-
porting to offer additional insights (Bell et al., 2016; Lee et al.,
2014; Tawa et al., 2014; Te et al., 2016). These methods are gener-
ally not integrated and utility is often limited to computational
specialists, who themselves may struggle to implement meth-
ods or reproduce results from the literature without having ac-
cess to source code and detailed protocols. Finally, for those
approaches that offer user-friendly interfaces, a user must navi-
gate the process of producing “analysis-ready” fold change
results for each gene and upload them in multiple applications.

Herein, we sought to improve the integration of standard
methods with newer network-based methods to improve us-
ability for toxicologists and mechanistic interpretation relevant
to risk assessment. We describe the creation of an open-source,
publicly available platform for the analysis of gene expression
results from toxicity studies. Although the platform was devel-
oped using rat liver studies, it can be used to analyze data from
any study comparing the effect of a treatment or other interven-
tion to control samples. We have processed and loaded within
the application results from Drug Matrix (DM) (Ganter et al.,
2005) and TG-GATEs (TG) (Igarashi et al., 2015), which between
them provide results on 4182 liver experiments. This includes
both expression results and the histology/clinical chemistry
data within those repositories, analyzed using a shared lexicon
and standardized between the sources. In addition to analyzing
their uploaded data, users can query DM and TG experiments
and analyze results at the level of individual genes and gene
sets. Connectivity Map (Lamb et al., 2006; Smalley et al., 2010)
and related approaches attempt to infer properties of a treat-
ment of interest by identifying other drugs or tool compounds
having similar effects on the global transcriptome. Users can
identify the experiments from DM/TG having the most similar
transcriptional effects.

Previously, we described an approach linking perturbation of
co-expression networks (or “modules”) to a variety of toxicity
phenotypes (TXG-MAP analysis) (Sutherland et al., 2018). This
allows the identification of networks perturbed by a molecule of
interest that are also generally associated with its observed tox-
icity across a broad range of conditions. Here, we extend this ap-
proach by identifying a nonredundant collection of gene
ontology (GO) and canonical pathways that can be modulated in
liver toxicity studies.

MATERIALS AND METHODS

Web application and availability. A web application was created
using the Python and R programming languages. The applica-
tion consists of a PostgreSQL database, Python, and R backend
computation scripts, celery queuing system for job manage-
ment (http://www.celeryproject.org/; accessed August 29, 2018).
The user interface was developed using the Django web frame-
work and the HighCharts JavaScript library for visualizations
(https://www.highcharts.com/; accessed August 29, 2018). All
data files and source code are provided in the GitHub repository
hosted at https://github.com/IndianaBiosciences/toxapp;
accessed April 26, 2019. References to file names below refer to
their location in the repository. The public instance of the appli-
cation is hosted on Linux servers from Amazon Web Services.
The application has been thoroughly tested on Ubuntu 16.04
LTS and Centos 7.4. A deployment script (setup_server.sh)
allows private instances to be created with all requirements
satisfied.

Gene-level data preparation. Throughout, an “experiment”
denotes a comparison of treatment versus control samples; a
treatment consists of a combination of drug, dose, duration of
dosing, route of administration. More broadly, an experiment
(or intervention) can be used to compare animals harboring null
alleles of a gene of interest (ie a knockout animal) versus wild-
type animals. In DM (Ganter et al., 2005) and TGs (Igarashi et al.,
2015), experiments compare the effects of drug treatment in liv-
ers from 2 to 5 treated animals versus 2 to 5 vehicle matched
controls. The complete list of 3528 TG and 654 DM experiments
viewable in the application is available in Supplementary Table
1 of our prior work (Sutherland et al., 2018) and the repository
file data/experiments_DM_TG.txt.

Affymetrix CEL files for individual rat liver samples analyzed
with RG230-2 microarrays were obtained from DM (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57815,
accessed April 26, 2019) and the TGs repositories (http://toxico.
nibiohn.go.jp/english/; accessed August 29, 2018). Normalized
log intensities were calculated using the University of Michigan
“Brain Array” version 19 assignment of microarray probes to
genes (http://brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF/19.0.0/entrezg.asp; accessed August 29,
2018) and the RMA algorithm (Irizarry et al., 2003) as imple-
mented in the Affy package in Bioconductor (scripts/NORM.R).
For any given experiment, fold change values for each gene
were obtained using the Bioconductor package Limma (scripts/
Limma.R). Preprocessed fold-change results, consisting of log2
fold change (log2_fc), number of treated animals (n_trt), number
of control animals (n_ctl), average gene intensity in controls
(expression_ctl0), unadjusted p value (p), and Benjamini
Hochberg-adjusted p value (p_bh) are available in the data re-
pository at location data/groupFC. For example, repeat-dose
results for gemfibrozil (from TGs) are in the file data/groupFC/
gemfibrozil.Rat.in_vivo.Liver.Repeat-groupFC.txt.

Gene model and orthology. The rat genome was selected as the ref-
erence organism, using the Entrez gene nomenclature. The ap-
plication supports the upload of rat, mouse, and human gene
expression data. Mapping of human and mouse genes to rat
was performed using orthology information from RGD
(Shimoyama et al., 2015) as described in Sutherland et al. (2016).
The gene model includes all rat genes according to RGD,
whether or not they are tested on a given measurement tech-
nology. However, human or mouse genes having no rat ortholog
were excluded, and users uploading data for these organisms
will not obtain fold-change results for such genes. At the level
of pathways or modules where results are aggregated
across several genes (see below), the impact is trivial. The file
data/gene_info.txt includes 18 004 rat Entrez gene ids, mapped to
17 540 mouse and 17 820 human genes.

TXG-MAP co-expression analysis (modules). Co-expression network
analysis seeks to identify genes that respond similarly to per-
turbations in a biological system of interest. We used the
Bioconductor package WGCNA to identify groups of co-
expressed genes (or “modules”) from the DM rat liver data.
Algorithm parameters and details on the creation the 415 mod-
ules were provided in Sutherland et al. (2016). Because the mod-
ules are associated with several toxicity phenotypes, we refer to
the method as “Toxicogenomic Module Association with
Pathogenesis” (TXG-MAP). A visual representation of the mod-
ules on a phylogenetic tree provides a consistent visual frame
of reference for analysis. Module scores are presented as Z-
scores, such that a score of 2 is achieved by fewer than 4% of
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drug treatments, a score of 3 in fewer than 1%, etc. This indi-
cates the magnitude of an effect in the context of other drug
treatments.

Here, we updated the modules by replacing the original
Affymetrix probe sets with Brain Array definitions (via rat
Entrez gene IDs to which both were mapped 1:1). The assign-
ment of genes to modules is provided in data/
WGCNA_modules.txt, and module scores for a given experi-
ment calculated from the method score_modules in the source
package src/computation.py.

Gene set analysis. Gene set analysis seeks to identify canonical
pathways, GO and other gene sets that are enriched among the
most differentially expressed genes. We used the PAGE algo-
rithm (Kim and Volsky, 2005) as implemented in the
Bioconductor package Piano, given similar performance com-
pared with the popular GSEA algorithm and significantly faster
calculation (Varemo et al., 2013). Gene sets used in the analysis
were taken from GO and Molecular Signatures Database
(MSigDB), as described in Sutherland et al. (2016). The assign-
ment of genes to gene sets is provided in data/
rgd_vs_GO_expansion.txt and data/MSigDB_and_TF_annotation.txt.
The method score_gsa in the source package src/computation.py
performs the calculations in R. Gene sets from GO and MSigDB
are numerous and overlapping. Limiting to GO and curated
pathways from MSigDB, there are 11 581 gene sets for consider-
ation. In prior work, we noted that 1839 of these gene sets were
inducible or repressible in 1% or more of 3528 TG experiments
(in brief, “inducible gene sets”). The vast majority of gene sets
represent molecular processes that are either absent from liver
or rarely affected by drug perturbation.

To eliminate redundancy among related gene sets, the pvclust
R library was used to hierarchically cluster 1839 gene sets versus
gene set analysis (GSA) scores from all 3528 TG liver experiments
(command in R: pvclust(data, method.dist¼“cor”,
method.hclust¼“ward.D”, nboot ¼ 1000, parallel ¼ TRUE)). Clustering
algorithms may create too many clusters, or divisions of samples
that are no longer observed when the dataset is changed (here, the
term sample from statistics is a liver experiment comparing treated
versus control liver expression, not a liver sample). The algorithm
evaluates the significance of edges in the dendrogram while
performing bootstrap resampling of the samples. The method
reduce_tree in the src/treemap.py package takes as input the dendro-
gram exported from R, traces up the dendrogram from terminal to
root nodes and finds the edge nearest the root that is nonsignifi-
cant. All gene sets below the edge are merged into a single cluster.
The related method reduce_tree_pca uses principal components
analysis on a table of GSA scores having clustered gene sets on col-
umns and 3528 liver experiments on rows. The gene set with high-
est loading in the first principal component is selected as a
representative for the cluster.

A visual representation of the nonredundant gene sets
was created from the pruned dendrogram returned by the reduc-
e_tree_pca method. The tree was truncated at a height of 15, a
threshold selected to separate large branches near the tree root.
Visually, we found this to improve the aesthetics and interpret-
ability of results by making better use of 2D plane (ie web
browser screen space). The truncated dendrogram was rendered
using the yFiles circular layout algorithm in Cytoscape.

Clinical chemistry and histology results. Clinical chemistry and his-
tology results from DM and TG experiments are available from the
respective repositories. A simplified view of these results are pro-
vided within our application, by focusing on a limited number of

nonredundant endpoints encountered 10 or more times across the
combined DM and TG datasets; details on the curation process and
lexicon creation are given in Sutherland et al. (2018). The following
histology endpoints are included: Apoptosis/SingleCellNecrosis:
Hepatocellular; Congestion/Hemorrhage/Edema: Vascular;
Degeneration/Necrosis: Hepatocellular; Dilation/Dilatation/Ectasia/
Distension: Vascular; Fibrosis; Glycogen_Increased: Hepatocellular;
Hematopoiesis; Hyperplasia: Biliary; Hypertrophy: Hepatocellular;
Infiltration/Inflammation; Mitosis_Increased: Hepatocellular;
Vacuolation: Hepatocellular. The following clinical chemistry end-
points are albumin (ALB), alkaline phosphatase (ALP), alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), cholesterol
(chol), gamma-glutamyl transpeptidase (GGT), glucose (Glu), total
bilirubin (T Bili), total protein (TP), triglycerides (Trig). The source
file containing these results for each experiment is data/
toxicology_results_DM_TG.txt.

Association of gene sets with toxicity phenotypes. Previously, we de-
scribed the assignment of DM and TG experiments to 13 repre-
sentative toxicity phenotypes (Supplementary Table 4 in
Sutherland et al. [2018]). A toxicity phenotype denotes the oc-
currence of 1 or more dominant histological or clinical chemis-
try changes. For example, the phenotype “Necrosis, 1) no other
findings” denotes the occurrence of 2 minimal grades, 1 slight
grade, or greater severity of hepatocellular necrosis among 3
animals in a dose group, without other significant co-
occurring histological changes (“pure” necrosis). In addition,
we defined an additional composite phenotype of “adverse at
29 days” which included histological changes such as necrosis,
single cell necrosis, bile duct hyperplasia that are deemed ad-
verse by pathologists in studies of 29-day duration. The 14 tox-
icity phenotypes were “adverse at 29 days,” “bile duct
hyperplasia,” “cholesterol decrease,” “cholesterol increase,”
“fibrosis,” “hematopoiesis,” “hypertrophy,” “increased glyco-
gen,” “increased mitosis,” “necrosis,” “single cell necrosis,”
“trigs (triglyceride) decrease,” “trigs increase,” “vacuolation.”
These abbreviated phenotype terms correspond to the detailed
curated histology labels above: “necrosis” aligns to
“Degeneration/Necrosis: Hepatocellular,” meaning that a lesion
denoted as necrosis, degeneration, or degeneration and necro-
sis of hepatocytes would be assigned to the “necrosis” toxicity
phenotype.

DM and TG experiments were labeled as positive or negative
for each of the 14 toxicity phenotypes. Repeating our earlier
analysis with modules (Sutherland et al., 2018), the statistical as-
sociation between induction or repression of each gene set (in
the 1839 “inducible” set) and the occurrence of the liver pheno-
type was calculated using logistic regression. The models in the
R statistical language were computed as: glm(toxic � avgAbsEG þ
pathway_GSA_score, family¼“binomial”). As described in
Sutherland et al. (2018), avgAbsEG is the average absolute mod-
ule score, a measure which is equivalent to computing the per-
centage of genes that are differentially expressed. This
covariate removes the variation in the odds of observing toxicity
that is explained by overall effects of the treatment on gene ex-
pression, such that attributing significance to a particular gene
set genuinely reflects its role in explaining toxicity, not surro-
gacy with overall gene expression changes. Finally, we report
separately the association between gene sets in toxicity for con-
current injury (expression analysis performed on samples
where the lesion is present) versus predictive (expression analy-
sis performed on samples collected at 3, 6, 9, or 24 h of dosing,
before the lesion was noted). The source file containing these
association results is data/geneset_vs_tox_association.txt.
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Expression similarity from microarray versus RNA-seq measurement
technologies. To support the validity of comparing experiments
analyzed using RNA-seq to experiments from DM and TG using
Affymetrix microarrays, datasets were obtained from the Gene
Expression Omnibus repository (GEO; https://www.ncbi.nlm.
nih.gov/geo/, accessed March 22, 2019) and analyzed with the
Collaborative Toxicogenomics (CTox) application.

The first comparison evaluated RNA-seq results from the
Sequencing Quality Control (SEQC) consortium (Wang et al.,
2014). The file GSE55347_TGxSEQC_GeneExpressionIndex_
Magic_20120831_116samplesGSE47875_series_matrix.txt was
obtained for GEO series GSE55347. The authors’ mapping of
Aceview/Refseq transcripts to NCBI Entrez Gene IDs was used.
Because our RNA-seq workflow uses Ensemble identifiers, we
mapped Entrez Gene IDs to Ensemble Rat version 6.0 (Rnor_6.0)
using the NCBI mapping file (ftp://ftp.ncbi.nih.gov/gene/DATA/
gene2ensembl.gz; accessed March 18, 2019). Where multiple
Aceview/Refseq transcripts mapped to a single Ensemble gene,
only the highest abundance transcript was retained, as assessed
by the average abundance across the 116 samples. Finally, be-
cause the authors’ pipeline produced continuous abundance
estimates with quasi-normal distribution, these were analyzed
directly using the R package Limma, producing fold-change and
p value of each gene. Computation of pathway, module and ex-
periment similarity were performed in the same manner as all
other results processed within the CTox application. Because
the SEQC study used DM microarray results, there was no need
to process Affymetrix CEL files from GSE47875, as they were al-
ready processed and available in the application.

A second comparison evaluated results from a recent study,
referred to as “Abbvie study” in results (Rao et al., 2019). As RNA-
seq pipelines have become increasingly standardized because
the SEQC study, this afforded the opportunity to evaluate
results from a representative “industry-standard” approach.
The file GSE122315_Raw_counts.txt was obtained from
GSE122315. Except for rounding the counts to the nearest inte-
ger, this file was processed as-is by the CTox application.
Affymetrix RG230-2 CEL files were obtained from the file
GSE122184_RAW.tar for series GSE122184, and uploaded using
the standard workflow.

The above datasets produced pairs of treatment versus con-
trol experiments that differed only in the measurement tech-
nology employed. We evaluated the similarity of experiment
pairs by calculating the Pearson R correlation coefficient using
the 382 nonredundant pathways or the 405 TXG-MAP modules.
The experiments in Supplementary Dataset 6 were sorted by
the average absolute module score (avgAbsEG), calculated as de-
scribed in Sutherland et al. (2018).

RESULTS

Web Application
A web application for analysis of gene expression study data was
created using the Django web framework. The use of Python, the R
statistical language, and PostgreSQL database, technologies with a
large user base among scientific developers, will facilitate its exten-
sion by others. The CTox application allows users to describe the
purpose of a study, treatments/perturbations under investigation
and analyze sample results in the form of Affymetrix CEL files or
RNA-seq count data. Expression results from rat, mouse, and hu-
man are currently supported. Representative application dialogs
are shown in Figure 1.

Available Gene Expression and Histology/Clinical Chemistry Results
Drug Matrix (Ganter et al., 2005) and the open TGs (Igarashi et al.,
2015) repositories are rich resources describing the effects of 308
drugs, toxicants and other perturbations across 4182 liver
experiments (an experiment denotes the administration of a
drug for at a given dose and duration compared with a control
group). We reprocessed all Affymetrix CEL files using updated
probe set definitions (Dai et al., 2005) and robust p value estima-
tion using Limma (Irizarry et al., 2003).

Several result types are available when viewing 1 or more
experiments (Table 1). Gene-level analysis, whereby the expres-
sion change of each gene is reported as a fold change and p
value, can be used to identify the most induced or repressed
genes. Gene set analysis, implemented using the PAGE algo-
rithm (Kim and Volsky, 2005), is applied to gene sets from GO
terms, canonical pathways, and others from the MSigDB
(Subramanian et al., 2005). Co-expression networks summarize
results across 415 co-expressed gene sets (ie “modules”)
obtained by analysis of DM rat liver experiments (Sutherland
et al., 2018). When an experiment of interest strongly resembles
the global transcriptional profile of a reference compound, they
may share a similar mode of action. To that end, comparison of
a new experiment to all TG and DM rat liver experiments is eas-
ily achieved. Finally, a simplified view of clinical chemistry and
histology results across the 2 repositories allows the identifica-
tion of treatments that lead to a toxicity phenotype (or apical
endpoint) of interest and their further characterization in the
application.

Nonredundant Gene Sets for Liver Analysis
The identification of gene sets for which the constituent genes
are disproportionally induced or repressed is a common analy-
sis method for transcriptomic studies. The popular GSEA ap-
proach can be applied to gene sets from GO, KEGG, REACTOME,
and the MSigDB compilation of curated pathways and other
sources. MSigDB currently approaches 18 000 gene sets, result-
ing in as many hypothesis tests as analysis of all individual
genes in the genome (gene-level analysis). As such, large adjust-
ments to p values occur when correcting for multiple hypothe-
sis testing, introducing many false-negative results. Several
approaches for reducing the number of gene sets have been pro-
posed (Cantini et al., 2018; Liberzon et al., 2015). Minimal, non-
redundant gene sets will vary by tissue, owing to varying
expression of the underlying genes and tissue-specific func-
tions. Previously, we described a subset of GO terms (biological
process and cellular component [CC]) and curated pathways
(KEGG, REACTOME, Biocarta, and others) that are perturbed in
1% or more of TG liver experiments (Sutherland et al., 2016).
This reduced the number of gene sets for consideration from
11 581 to 1839 (henceforth, the “inducible/repressible” set, or
“inducible pathways” for conciseness).

Within the 1839 inducible set, inclusion of gene sets from
different sources suggested a significant level of redundancy (eg
cholesterol biosynthesis from GO, KEGG, REACTOME). Using
scores for each gene set versus 3528 TG liver experiments, hier-
archical clustering was used to organize the gene sets into clus-
ters of gene sets that are induced/repressed in the same
experiments. By testing the stability of clusters upon repeated
sampling of experiments (see Materials and Methods section),
we obtained 382 clusters containing 1 or more gene sets
(Supplementary Dataset 1). Within each cluster, a single gene
set that best captures the variation within the cluster was iden-
tified, serving as a surrogate for the others (no consideration of
whether the gene set in question best summarizes biological
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Figure 1. Illustrating key functionality in the CTox web application. A, Background and user guide links when accessing the application. B, Dialog for searching and

adding experiments of interest to an analysis “cart.” C, Viewing gene-level results for experiments in the analysis cart. D, Visualization of co-expression results on the

TXG-MAP (see Results section).

Table 1. Analysis Methods Available Within the CTox Web Application

Method Summary Strengths/Weaknesses

Gene-level analysis A list of all genes probed by the measurement
technology, with fold change and associ-
ated p value for treatment versus control

Ease of interpretation, but high risk of false positives due to large
number of hypotheses being tested.a High risk of “confirmation
bias,” ie focusing on the induction/repression of genes of interest in
experiments where many (unrelated) genes are more significantly
perturbed by the experimental conditions.

GSA A list of gene sets (GO terms, pathways, and
others) for which the constituent genes are
disproportionally induced or repressed
compared with all measured genes; returns
a score and p value for treatment versus
control

Simplifies by summarizing effects aggregated across related genes.
Ease of interpretation depends on the perturbed gene set; eg
“cholesterol biosynthesis” is clear in the context of liver, but
“generation of neurons” is not. In theory, lower risk of false posi-
tives, however the MSigDB collection now approaches 18 000 gene
sets.

TXG-MAP module
analysis

A list of scores, 1 for each of 415 modules in
the TXG-MAP. Modules consist of co-
expressed genes.

Simplifies by summarizing across co-expressed genes. Unlike other
methods, provides context on magnitude of effect compared with
other liver perturbations. Captures co-regulated biology not de-
scribed by canonical pathways, but interpretation requires study of
constituent genes. Results depend on quality/comprehensiveness
of training datasets. Low risk of false positives.

Similar experiments
analysis

A list of most similar experiments, compared
with user’s experiment. Global transcrip-
tional similarity, assessed by comparing
approximately 400 GSA scores or TXG-MAP
scores between experiments.

The fastest way to help understand mechanism, in those cases where
a compound of interest is similar to compounds/drugs with well-
understood mechanistic effects. Intermediate risk of false positives
(ca. 4000 comparisons performed). Requires global similarity (ie ex-
pression profile similarity across all pathways/modules); often no
high similarity reference compounds and therefore no insights
from approach.

Clinical chemistry/
histology findings

For DM and TGs, standardized clinical chem-
istry, and histology findings

NA—not expression analysis. When associated with gene expression,
results yield meaningful association with standard toxicology
interpretations.

aHigh risk of false positives if not applying a multiple hypothesis testing correction to the p values; when applying such a correction, it becomes a high risk of false neg-

atives—ie a gene is genuinely differentially expressed with a small non-adjusted p value, but after adjusting, the p value (or q value) is no longer small enough to be rec-

ognized as significant. The application described herein returns both unadjusted and adjusted p values.
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Figure 2. Network map of nonredundant inducible pathways in rat liver. The full set of 1839 inducible/repressible pathways was clustered using gene set analysis

scores for 3528 TG liver experiments; (A) showing 1 cluster (cluster 1578), which includes 30 pathways and 4 GO-CC terms (all relating to the proteasome) with highly

correlated scores (see Materials and Methods section). One pathway (REACTOME Genes involved in Destabilization of mRNA by AUF1) best captured the variation in

scores for all terms and was selected as a representative for the cluster. Other selections, based on maximal perturbation across experiments of interest, or most signif-

icant association with a toxicity phenotype are possible. The grouping is based solely on correlation of pathway scores, not gene membership or biological themes

among the gene sets. B, The set of 1839 pathways reduced to 382 clusters, with each cluster represented as a node on the map; the cluster in (A) is represented as 1

node on the map. Proximity in the map, as measured by traversal of branches, corresponds to correlation of scores between clusters. Clusters range in size from 1

through 92 gene sets (node size), and when counting all unique genes among their members, include from 5 to 2039 unique genes (shading).
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themes represented in the cluster). The 382 nonredundant gene
sets were graphically organized to facilitate visual interpreta-
tion of GSA results for liver gene expression studies (Figure 2).
The example in Figure 2 shows a cluster of 34 terms for which
the REACTOME term “Genes involved in Destabilization of
mRNA by AUF1” captured the maximum variation for the 34
clustered terms. Inclusion in the cluster of 4 GO-CC terms relat-
ing to the proteasome and inspection of other pathway annota-
tions suggests degradation of cell signaling factors by the
proteasome, a common method of regulation (Rousseau and
Bertolotti, 2018).

Association of Inducible Gene Sets With Toxicity Phenotypes
Gene expression profiling can be used to explain putative mech-
anisms responsible for drug-induced morphologic changes in

the liver. Because many differentially expressed genes or gene
sets will have no relation to the observed morphologic changes,
identifying the subset of expression changes linked to injury is
difficult. Previously, we described the statistical association be-
tween induction or repression of networks of co-expressed gene
sets, TXG-MAP modules, and the occurrence of various
histology-anchored toxicity phenotypes (Sutherland et al., 2018).
Here, we performed similar analyses to establish the relation-
ship between perturbation of inducible gene sets and the occur-
rence of liver toxicity phenotypes. We distinguish predictive
relationships (ie expression profiling from tissue collected 24
h after a single dose, before the appearance of injury) from con-
current relationships (ie expression profiling from the injured
tissue). Mirroring our findings with liver modules, we found a
larger number of statistically significant relationships for

Table 2. Top Three Nonredundant Pathways for Association With Toxicity Phenotype

Tox Phenotypea Timeb Top-Ranked Pathwaysc

Adverse at 29 days 1d GO: cellular amino acid metabolic process (�0.7), GO: drug metabolic process (�0.6), GO: unsaturated
fatty acid metabolic process (0.8)

Bile duct hyperplasia 1d GO: positive regulation of leukocyte apoptotic process (1.2), GO: cofactor metabolic process (�0.6),
KEGG: Cell adhesion molecules (0.6)

C REACTOME: Genes involved in Apoptotic execution phase (1.8), GO: positive regulation of extrinsic ap-
optotic signaling pathway in absence of ligand (1.7), GO: regulation of triglyceride metabolic process
(�1.7)

Cholesterol decrease 1d GO: regulation of membrane potential (�0.9), GO: germ cell nucleus (1), GO: regulation of feeding be-
havior (�1)

C REACTOME: Genes involved in Cell surface interactions at the vascular wall (�0.8), GO: extracellular
matrix (�0.5), REACTOME: Genes involved in Association of TriC/CCT with target proteins during
biosynthesis (1.2)

Cholesterol increase C REACTOME: Genes involved in Ethanol oxidation (0.7), GO: ethanol catabolic process (0.6), GO: canalic-
ular bile acid transport (0.5)

Hematopoiesis 1d GO: negative regulation of programed cell death (1.3), REACTOME: Genes involved in Sulfur amino acid
metabolism (�1.4), GO: dicarboxylic acid metabolic process (�1.1)

C GO: apoptotic cell clearance (2.3), GO: complement activation, classical pathway (2.2), GO: blood coagu-
lation (2.2)

Hypertrophy 1d REACTOME: Genes involved in Orc1 removal from chromatin (0.6), REACTOME: Genes involved in
SCF(Skp2)-mediated degradation of p27/p21 (0.7), GO: ribosomal large subunit export from nucleus
(1.5)

C GO: protein homotetramerization (1.2), GO: sterol esterification (�1.1), REACTOME: Genes involved in
Recycling of bile acids and salts (1.1)

Increased glycogen C PID: TNF receptor signaling pathway PMID: 18832364 (�1.6), GO: cellular response to lipoprotein parti-
cle stimulus (�0.9), GO: intrinsic apoptotic signaling pathway in response to DNA damage (�1.5)

Increased mitosis 1d KEGG: Pyruvate metabolism (1.4), KEGG: Propanoate metabolism (1), GO: single-organism catabolic
process (0.6)

Increased mitosis C GO: nuclear ubiquitin ligase complex (1.6), PID: Aurora A signaling PMID: 18832364 (1.1), GO: homolo-
gous chromosome segregation (1)

Necrosis C GO: macrophage chemotaxis (0.8), GO: myeloid leukocyte migration (0.5), GO: monocarboxylic acid cat-
abolic process (�0.8)

Single cell necrosis C REACTOME: Genes involved in Activation of Genes by ATF4 (1), GO: endoplasmic reticulum unfolded
protein response (1.1), PID: ATF-2 transcription factor network PMID: 18832364 (0.6)

Trigs decrease C BIOCARTA: Apoptotic DNA fragmentation and tissue homeostasis (�1.3), GO: pronucleus (�1), GO: pro-
tein depolymerization (�0.9)

Trigs increase C KEGG: Steroid biosynthesis (�0.3), GO: sterol esterification (0.7), GO: response to drug (�0.4)
Vacuolation C KEGG: Steroid biosynthesis (0.7), GO: isoprenoid biosynthetic process (0.7), GO: extracellular matrix as-

sembly (�0.8)

aRepresentative toxicity phenotype as defined in methods; “adverse at 29 days” is an aggregate endpoint and included any treatments that produced 1 or more adverse

morphologic changes at 29 days of dosing; only relationships at 1 day (1d) were evaluated.
bWhether expression analysis is performed from samples collected after 1 day (1d) or concurrent with the observed toxicity phenotype (C).
cShowing the top 3-ranked pathways for the toxicity phenotype and time, ranked using p-adj per (Sutherland et al., 2018), selecting only the most highly ranked path-

way within each cluster. The value in parentheses is the pathway’s coefficient in the logistic regression model, interpreted as the natural log of odds-ratio for observing

toxicity given a 1 unit increase in the pathway score. The sign indicates whether induction (positive) or repression (negative) associates with increased odds of toxicity.

A coefficient value of 0.69 corresponds to 2� odds of toxicity, 1.1 corresponds to 3�, etc. The full results are provided in Supplementary Dataset 2.
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concurrent injury, compared with single dose exposures
(Supplementary Dataset 2). For each combination of a timepoint
and toxicity phenotype, pathways were ranked from most to
least associated with a given phenotype. For any experiment,
the odds of observing a toxicity phenotype can be computed
from pathway scores (Table 2). This allows for the prediction of
toxicity in longer duration studies when performing expression
studies of � 24 h treatment duration.

Omeprazole-induced Liver Hypertrophy
In addition to their use for predictive applications, the relation-
ship between pathway perturbation and toxicity phenotypes
can be used to identify putative mechanisms linked to an ob-
served toxicity phenotype. When studying a compound that
causes a given toxicity phenotype (eg hepatocellular hypertro-
phy), this allows a user to observe whether pathways highly
ranked by expression are also highly ranked in their association
with the toxicity phenotype: “(1) this new compound causes hy-
pertrophy and induces pathway x; (2) pathway x associates with
hypertrophy across many other compounds; (3) therefore path-
way x may contribute to the occurrence of hypertrophy for this
new compound.”

Hepatocellular hypertrophy is frequently observed in toxic-
ity studies and is generally considered an adaptive response to
molecule exposure. When hypertrophy is observed, under-
standing its putative causes may help rationalize its relation-
ship to the compound’s pharmacological effects and/or
relevance in other species. Administration of omeprazole at 300
and 1000 mg/kg caused hypertrophy at 4 days or more of expo-
sure (TG histology results). To identify potential mechanisms

linked to hypertrophy, we identified 46 nonredundant gene sets
having an adjusted p value of < .001 at both doses, 24 h after ad-
ministration of a single dose (Figure 3; Supplementary Dataset
3). The significantly perturbed gene sets encompass a wide
range of biological functions, as underscored by their distribu-
tion throughout the pathway map (recall that gene sets that
tend to be perturbed by the same experiments are nearby on
the map). We subsequently filtered these to the top 50 most
strongly associated with hypertrophy across the entire TG data-
base (ie exhibit a statistically significant relationship versus the
phenotype across a wide range of conditions; Supplementary
Dataset 2, p-adj). This led to the identification of 8 significant
gene sets, including glutathione metabolism, proteasome com-
plex, DNA replication, and mitotic cell cycle gene sets. These
results are consistent with reports indicating that omeprazole
induces Nrf2-mediated response to oxidative stress. Thus, filter-
ing a larger list of differentially expressed gene sets against
those associated with the observed morphologic changes facili-
tates the process of identifying molecular processes causally
linked to injury.

Comparison of Nonredundant Gene Sets Versus TXG-MAP Modules
Gene sets from GO terms and pathways represent biological
processes as they are understood and curated from the biomed-
ical literature (henceforth, “pathways”). Notably, whether or not
a gene is transcriptionally active in response to stress is not a
consideration in associating genes with terms or pathways.
Several approaches have been described for identifying putative
biological networks from gene expression data, with no refer-
ence to pathways. TXG-MAP modules (Sutherland et al., 2018)
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Figure 3. Pathways perturbed by omeprazole treatment in rat liver. Expression results were analyzed for omeprazole 24 h following the administration of single doses

of 300 and 1000 mg/kg. A, Only pathways with gene set analysis score p-adj < .001 at both doses were retained. Within each of 382 pathway clusters, the pathway with

the highest average absolute score across the 2 doses was selected. B, Only the subset of 8 pathways ranked in the top 50 out of 1839 for association with hypertrophy

was considered.
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were obtained by analyzing co-expression patterns of genes
across the DM liver database. Biological processes driving co-
expression of genes in response to treatments that are not rep-
resented in pathways are identified, but those drivers may be
difficult to discern from the constituent genes and interpreta-
tion is more challenging than pathway analysis.

The CTox web application allows users to analyze their
experiments using pathways and co-expression networks. To
study the extent to which pathways recapitulate analysis using
co-expression modules, and vice versa, each TG liver experi-
ment was analyzed using the nonredundant pathways and

TXG-MAP modules. When comparing module and pathway
scores across 3528 TG experiments, a small proportion of mod-
ules are observed to be highly correlated with pathways and
therefore summarize similar effects (eg module 42 m and KEGG
glutathione metabolism; Figure 4A). Overall, only 16% of TXG-
MAP modules capture co-expression behavior well-represented
by pathways (defined as having similarity � 0.7; Figure 4B).
Conversely, only 20% of nonredundant pathways are well-
represented by modules. Modules and pathways are similarly
predictive of concurrent toxicity phenotypes, whereas modules
outperform for predictive applications (ie analyzing samples at
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1 day to predict later toxicity; Figure 5). Hence, orthogonal
approaches are more likely to lead to mechanistic insights for a
treatment of interest.

Identification of Similar Experiments
Compounds that exhibit similar effects on the transcriptome
may share pharmacological and/or mechanistic effects, an ob-
servation that underpins CMAP and related approaches (Lamb
et al., 2006; Smalley et al., 2010). Similarity of transcriptional
responses can be assessed by describing the effects of each
compound as a vector of pathway (GSA) or module scores (eg a
vector of 382 pathway scores for the 382 nonredundant path-
ways). Taking each pair of TG liver experiments, we compared
their similarity using the nonredundant pathways versus TXG-
MAP modules. Experiment similarities between pathway and
modules scores were modestly correlated (Figure 6A; Pearson R
¼ 0.59). Using the average similarity from nonredundant path-
ways and TXG-MAP modules, most pairs of highly similar
experiments involved the same compound at different doses or
timepoints, or comparisons of different compounds in the same
pharmacological class (eg NSAIDs, PPAR modulator; Figure 6B).
High similarity pairs of experiments involving compounds in
different pharmacological classes may indicate that they share
previously unrecognized pharmacological activity (or similar
mechanisms of toxicity).

Uricosuric Agents Benzbromarone and Benziodarone Are PPAR
Modulators
Among TG liver experiment pairs having similarity > 0.9, a
high proportion were PPAR modulators (clofibrate, fenofibrate,
gemfibrozil, pirinixic acid, rosiglitazone). In addition, we noted
5 pairs of experiments where 1 agent was a PPAR modulator

and the other was one of the uricosuric agents benzbromarone
or benziodarone, commonly used to treat gout. A further 95
such pairs were found in the next lower similarity range from
0.8 to 0.9. Compared with the lower similarity ranges, this rep-
resented a significant enrichment in prevalence of PPAR-
uricosuric agents (4.6% or 100 of 2887 pairs with � 0.8 similar-
ity, versus 0.2% of 2.6 M pairs with < 0.8 similarity; p ¼ < 2e-16,
v2 test). The 100 pairs included 12 benzbromarone
or benziodarone experiments, with treatment duration
ranging from 9 h to 29 days (Supplementary Dataset 4). This
suggested that benzbromarone and benziodarone are PPAR
modulators.

Clinical chemistry and histology changes for the 12 benzbro-
marone/benziodarone experiments included 6 causing > 50%
decrease in triglyceride levels and 7 causing hepatocellular hy-
pertrophy. The 39 PPAR experiments that comprise the 100 high
similarity pairs also lower triglyceride levels, without causing
hepatocellular hypertrophy. However, most caused hepatocel-
lular necrosis, not observed with benzbromarone/benziodarone
(Supplementary Dataset 4).

To further validate triglyceride-lowering mechanistic effects,
we evaluated pathway and module scores for the 6 uricosuric
agents and 26 PPAR modulator experiments that caused > 50%
decreases in triglyceride levels, ranking them from most to least
perturbed across agents of each class (Table 3). As expected
from global similarity of gene expression profiles, the most
highly induced pathways and modules for uricosuric agent
experiments were also highly ranked for PPAR modulators. In
addition, most of the gene sets and modules had strong associa-
tion with triglyceride lowering in general but not hypertrophy.
The utility of considering induction/repression in the experi-
ments of interest and the general association with the tox
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phenotype can be seen for module 285; it is induced across the
uricosuric agents and PPAR modulators but ranks poorly in as-
sociating with triglyceride lowering in general. Hence, it may
not play a role in the observed phenotype.

Our results strongly suggest that benzbromarone and ben-
ziodarone are PPAR modulators in rodent liver. Others have
investigated the PPAR activity of benzbromarone, confirming
our findings in rodents (Kunishima et al., 2007; Lee et al.,
2016) and human patients being treated for gout (Inokuchi
et al., 2009).

Comparing Results From RNA-seq and Microarray Studies
Users of the CTox application may upload results obtained by
microarray or RNA-seq analysis. Several studies support the va-
lidity of comparing results from different measurement tech-
nologies (Black et al., 2014; Rao et al., 2019; Wang et al., 2014). To
further corroborate these conclusions, we loaded into the appli-
cation results from 2 studies: (1) RNA-seq from the SEQC consor-
tium (Wang et al., 2014), and (2) recently published Affymetrix
microarray and RNA-seq results generated concurrently from
the same samples (Abbvie study) (Rao et al., 2019)
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(Supplementary Dataset 6). For the SEQC comparison, the me-
dian Pearson R expression similarity was .80 and .86 for non-
redundant pathways and TXG-MAP modules, respectively. For
the Abbvie study, the median expression similarity was .82 and
.86 for pathways and modules, respectively. These results de-
scribe concordance across measurement technologies (ie same
tissue samples, different technology). By comparison, expres-
sion similarity assessed from samples generated by different
laboratories using the same measurement technology and
treatment conditions are notably lower (Sutherland et al., 2016).
Consistent with our prior results (Sutherland et al., 2016), the
level of agreement between microarrays and RNA-seq increases
as the level of expression perturbation increases
(Supplementary Dataset 6). These results support the validity of
comparing results obtained using microarray and RNA-seq in
the CTox application.

DISCUSSION AND CONCLUSION

Numerous reports and algorithms have been described for pre-
dicting and understanding mechanism of liver injury using
transcriptomic results from nonclinical safety studies as a
means to identify relevant mechanistic information. However,
nearly 2 decades after transcript profiling was widely available
for use by toxicity researchers in academia and industry, bar-
riers to fuller adoption of toxicogenomic approaches in risk as-
sessment remain. A notable technical barrier is the need for
computational skills held by a minority of researchers in the
field. Other technical challenges include the difficulty of imple-
menting methods described in scientific reports without having
access to computer source code or detailed protocols. In addi-
tion, analysis usually relies on 1 method rather than an inte-
grated approach using multiple analysis methods. These (and
other) barriers contribute to challenges in assuring the repro-
ducibility of results. Finally, gaining greater acceptance of the
significance of particular findings (eg induction of the glutathi-
one metabolism pathway) requires an understanding of results
for 1 compound in a broad context and rapid interpretation,

preferably by the toxicologist doing the risk assessment
analysis.

To facilitate progress toward these goals, we have created a
CTox application that allows non-computational specialists to
evaluate liver gene expression results for their studies. Users
can describe their experiments, upload the corresponding sam-
ples, evaluate their results using a variety of established and
emerging systems biology analysis methods, compare them to
the extensive DM and TG repositories, and share them with
other researchers. Users can also search for and analyze data
from those repositories using the same analysis methods.
Analyses in other public applications are enabled, via exports of
suitably formatted data. The CTox software is hosted in the
Amazon Web Services cloud for use by the scientific commu-
nity, or can be downloaded and installed within organizations’
private networks. Finally, the source code is publicly available
on the GitHub.com repository, and all software components are
available via open source licenses. This enables the extension
and improvement of the application by others without licensing
barriers.

To illustrate the utility of the CTox application, we described
its use for identifying pathways predictive of an adaptive re-
sponse in liver after treatment with omeprazole. In this case
there was good overlap between modules and GO terms and ca-
nonical pathways that are predictive of hypertrophy. We also
elucidated a putative role of PPAR modulation by the uricosuric
agents benzbromarone and benziodarone, in explaining their
effects in rat liver. We demonstrated the importance of combin-
ing multiple lines of investigation to arrive at a small number of
gene sets and/or co-expression modules (“features”) putatively
linked to the observed phenotype: (1) identify features consis-
tently affected by the treatment across doses and/or timepoints,
(2) identify the subset of those features robustly associated with
the phenotype across a variety of treatments, and (3) corrobo-
rate if possible in molecules showing overall similar expression
effects compared with the treatment of interest. In the absence
of known toxicity study outcomes for a compound of interest,
the subset of affected features with statistically significant rela-
tion to 1 or more toxicity phenotypes can be used to understand
the odds of toxicity for the molecule of interest. These analyzes

Table 3. Most Perturbed Modules and Pathways by the Uricosuric Agents Benzbromarone and Benziodarone, and Relationship to Observed
Toxicity Phenotypes

Gene Set Urico Agent
Expression

Ranka

PPAR Mod
Expression

Ranka

q-Adj
Decreased
Trigsb

Rank
Decreased
Trigsc

q-Adj
Hypertrophyb

Rank
Hypertrophyc

GO: fatty acid catabolic process 1 1 2.64E-10 20 0.0000131 117
DM: liver: 26 2 2 0.000041 36 0.000043 195
DM: liver: 17 2.5 1.5 0.0000064 21 9.2E-08 130
GO: negative regulation of oxidative stress-induced intrinsic

apoptotic signaling pathway
3 9 5.06E-08 26 2.94E-11 25

DM: liver: 285 5.5 16.5 0.025 177 2.7E-12 73
GO: coenzyme metabolic process 5.5 8 0.0000429 43 8.73E-15 15
REACTOME: Genes involved in destabilization

of mRNA by AUF1 (hnRNP D0)
5.5 7.5 0.00026007 51 1.15E-07 72

REACTOME: Genes involved in metabolism
of lipids and lipoproteins

6.5 7 6.16E-13 7 0.00000173 92

aEach pathway or module was ranked from most to least perturbed (absolute value of pathway/module score) within each of 6 uricosuric agent and 26 PPAR modulator

experiments, and the rank averaged across the 6/26 experiments.
bThe adjusted q value indicating the pathway or module’s general association with the phenotype across all TGs experiments.
cThe corresponding rank for the phenotype. These are “concurrent” associations, because expression results were taken from samples where the phenotype is present.

Abbreviation: Trigs, triglycerides. Full results are provided in Supplementary Dataset 5.
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are possible either in the application itself, or by exporting small
subsets of the data and further manipulating them in Excel.

We seek to further develop the application in collaboration
with the toxicology community. Improvements to the suite of
visualization tools will permit more detailed analysis within the
application itself, such as exploring the connection between co-
expression networks, canonical gene sets and their linkage to
gene-level results. Also, we are actively implementing other
analysis methods, such as the benchmark dose methodology to
identify points of departure for multi-dose expression studies.
Finally, whereas the application can be used to analyze data
from any system, we are developing additional tissue-specific
nonredundant gene set collections and co-expression modules,
and annotating their association to tissue injury (heart and
kidney).

In summary, we have developed an open-source toxicoge-
nomics analysis application which helps to increase accessibil-
ity, transparency, and collaboration between researchers in the
field. The application is available to the scientific community at
http://ctox.indianabiosciences.org.
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