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Abstract Sepsis is not a monolithic disease, but a loose collection of symptoms with diverse

outcomes. Thus, stratification and subtyping of sepsis patients is of great importance. We examine

the temporal evolution of patient state using our previously-published method for computing risk

of transition from sepsis into septic shock. Risk trajectories diverge into four clusters following

early prediction of septic shock, stratifying by outcome: the highest-risk and lowest-risk groups

have a 76.5% and 10.4% prevalence of septic shock, and 43% and 18% mortality, respectively.

These clusters differ also in treatments received and median time to shock onset. Analyses reveal

the existence of a rapid (30–60 min) transition in risk at the time of threshold crossing. We

hypothesize that this transition occurs as a result of the failure of compensatory biological systems

to cope with infection, resulting in a bifurcation of low to high risk. Such a collapse, we believe,

represents the true onset of septic shock. Thus, this rapid elevation in risk represents a potential

new data-driven definition of septic shock.

Introduction
Sepsis and septic shock are the leading causes of in-hospital mortality (Liu et al., 2014), and are the

costliest medical conditions in the United States (Torio et al., 2016). Improving outcomes in sepsis

patients is therefore of great importance to public health. Kumar et al., 2006 showed that every

hour of delayed treatment in septic shock increased mortality by ~8%. More recent studies have cor-

roborated this finding, though delayed treatment remains common in current practice (Kumar et al.,

2006; Martin-loeches et al., 2015; Ferrer et al., 2014; Levy et al., 2010; Kalil et al., 2017). Conse-

quently, a number of computational approaches for early prediction of sepsis and septic shock using

electronic health record (EHR) data have been developed (Henry et al., 2015; Nemati et al., 2018;

Mao et al., 2018; Liu et al., 2019). We recently developed a method for predicting patients with

sepsis who are likely to transition to septic shock based on the hypothesis that there exists a detect-

able physiologically distinct state of sepsis, which we identify as the ‘pre-shock state,’ and that entry

into this state presages the impending onset of septic shock (Liu et al., 2019). The pre-shock state

was characterized by fitting a regression model to classify data from patients with sepsis who never

develop septic shock from those who do. This model was used to calculate a time-evolving risk score
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that can be updated each time a new measurement becomes available. When a patient’s risk score

exceeds a fixed threshold (time of early warning/prediction), we predict that the patient has entered

the pre-shock state and is therefore highly likely to develop septic shock. Best performance achieved

was 0.93 AUC, 88% sensitivity, 84% specificity, and 52% average positive predictive value, with a

median early warning time (EWT) of 7 hr. We also showed that a patient’s risk score at the first

observation subsequent to threshold crossing was indicative of the confidence of a positive predic-

tion. For some patients, this ‘patient-specific positive predictive value’ was as high as 91%.

The diverse patterns of sepsis make guideline-driven treatment difficult, as guidelines reflect the

needs of the ‘average’ patient. Furthermore, treatments are not without risk. For example, high dos-

ages of vasopressors have been associated with increased mortality (Dünser et al., 2009). Overuse

of antibiotics is also a concern. Minderhoud et al., 2017 showed that no evidence of bacterial dis-

ease is found in almost 30% of patients with suspected sepsis in the emergency department. A study

by Kelm et al., 2015 also showed that 67% of sepsis patients treated with early goal-directed ther-

apy (EGDT) developed signs of fluid overload, which in turn increases risk of complications such as

hypertension, pulmonary edema, and respiratory failure. It is likely that no single treatment policy is

suitable for all sepsis patients, and thus, there has been interest in subtyping and stratifying sepsis

patients in hopes of identifying phenotypes relating to patterns of treatment responsiveness. Individ-

ual biomarkers such as serum lactate have been used to stratify sepsis patients by mortality

(Mikkelsen et al., 2009). Most recently, Seymour et al., 2019 published a clustering study in which

four types of sepsis patients were identified using the most abnormal value of 29 clinical variables

observed in the 6 hr following hospital admission; these four types of patients differ in mortality and

serum biomarkers of immune response.

In this study, we examine the temporal evolution of patient state as assessed using our previ-

ously-published method for computing patient risk of transition into septic shock. Previously we ana-

lyzed and interpreted this risk score from the perspective of threshold crossing (i.e. if, when, and/or

how steeply a threshold crossing occurs), whereas here the time-evolution of risk in the hours follow-

ing threshold crossing is hypothesized to yield further insight into patient state. We undertake a

novel analysis of time-evolving risk scores to discover the distinct patterns of time-evolving risk that

exist across patients. The application of spectral clustering to risk score trajectories reveals that

patient risk trajectories diverge into four distinct clusters in the time window following early predic-

tion of septic shock. Patients in these clusters stratify by outcome, as measured by prevalence of

septic shock and by mortality. Moreover, these four clusters differ in the treatments received, as well

as median time to septic shock onset (i.e. median EWT). In the highest-risk group, by time of early

warning, fewer patients had been treated with vasopressors and been adequately fluid resuscitated

than in the lowest-risk group. Time to septic shock onset was shorter in the highest-risk group as

well. Using k-nearest neighbors to predict cluster membership, we are able to reliably assign

patients to these risk categories based on their risk score trajectories.

Furthermore, we observe that the transition from sepsis to pre-shock on average occurs on a

rapid time scale, with a sharp increase in risk occurring within 30–60 min immediately preceding

time of early warning. This rapid change in the risk score is associated with rapid changes in values

of systolic and diastolic blood pressure, lactate, and heart rate. Sepsis is defined as dysregulated

immune response to infection (Singer et al., 2016). We hypothesize that the rapid transition of risk

score results from and is therefore indicative of an abrupt failure of compensatory biological systems

to cope with infection, resulting in a change in patient state trajectory that crosses a bifurcation from

low to high risk. Such a collapse in compensation, we believe, represents the true onset of septic

shock, and thus what we have previously referred to as the pre-shock state represents a potential

new data-driven definition of septic shock. Previous studies of dynamical systems models of compen-

sation of inflammatory responses have put forth a similar notion of disease progression in sepsis

(Reynolds et al., 2006; Chow et al., 2005; Cameron and Sleigh, 2019; Buchman, 1996). The Infec-

tious Disease Society of America’s recently-published recommended revisions to the National Severe

Sepsis and Septic Shock Early Management Bundle (Klompas, 2020) recognizes and acknowledges

the ambiguity in determining the time of septic shock onset when applying current definitions, and

states that there is a need for a clearer and reproducible definition of septic shock onset.
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Results
Using data from the 12 hr time window aligned at the time of early prediction, spectral clustering

yielded four clusters. The clusters are labeled in order of descending septic shock prevalence (Fig-

ure 1; Figure 1—figure supplement 1; Table 1). Prior to early prediction, the distribution of risk

score is homogenous in all four clusters. This is followed by an abrupt increase in risk score within

the hour immediately preceding the time of early warning. Following this transition, risk scores

diverge into four distinct clusters. Clusters 1 and 4 are of particular interest as they represent the

highest and lowest risk patients, respectively, and thus we primarily analyze differences between

these two groups of patients. Table 1 shows that these clusters differ by septic shock prevalence

(76.5% in the post-prediction high-risk cluster vs. 10.4% in the low-risk cluster) and mortality (43% in

the high-risk cluster vs. 18% in the low-risk cluster). Higher risk clusters also have shorter times to

septic shock onset (EWTs). In the high-risk cluster, the median elapsed time between the time of

early prediction and time of septic shock onset is 9.8 hr, whereas in the low-risk cluster, it is 29.9 hr.

These four clusters also stratify based on the proportion of patients who have been treated by

the time of entry into the pre-shock state (Table 2). Higher risk clusters have a lower proportion of

patients who have been treated by the time of early prediction (i.e. higher risk clusters contain more

patients with greater delays in treatment). At time of early warning, 7.8% of patients in the high-risk

cluster are adequately fluid resuscitated, whereas in the low-risk cluster, 21.3% of patients are ade-

quately fluid resuscitated. Similarly, in the high-risk cluster, 14.3% of patients have been treated with

vasopressors by time of early warning, whereas in the low-risk cluster, 50.7% of patients have been

treated.

The trajectories of physiological variables associated with patients in each of the risk score clus-

ters evolve in a similar fashion to the risk score (Figure 2). Lactate, which has the greatest contribu-

tion to risk score (Supplementary file 1B), has a steep increase preceding time of early prediction

Figure 1. Risk score clusters obtained using spectral clustering on the 12 hr following time of early prediction.

Time 0 represents td, time of early prediction. Bold solid and dashed lines indicate mean risk within each cluster.

Each solid line becomes a dashed line at the cluster median EWT (indicated on figure). Shaded areas indicate one

standard deviation from the mean. Black horizontal line indicates risk score threshold for early prediction.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Eigenvalues of Graph Laplacian of post-early prediction risk trajectories.

Figure supplement 2. Receiver operating characteristic curves for early prediction in eICU.

Figure supplement 3. Risk score clusters obtained using spectral clustering on the 12 hr following time of early

prediction in the MIMIC-III database.
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(Figure 2A). Systolic blood pressure has a steep decrease preceding time of early prediction

(Figure 2B) and slight differences in mean heart rate (HR) are observed between clusters following

time of early prediction (Figure 2C). The separation of these trajectories between the post-predic-

tion low-risk and high-risk clusters, as quantified by Kullback-Leibler divergence, is not as great as

that of risk score (Figure 2—figure supplement 1). Nevertheless, these rapid and coordinated

changes of clinical feature trajectories mimic that seen in the risk score trajectory.

The results of Table 2 demonstrate that the proportion of patients who have received interven-

tions by time of early prediction varies between the low-risk and high-risk clusters. Early prediction

immediately follows an abrupt change in physiological state, as reflected in a steep increase in risk

score preceding threshold crossing. A greater proportion of low-risk patients than high-risk patients

received intervention prior to this transition, indicating that cluster membership is influenced by

intervention. Because, according to the Sepsis-3 criteria, septic shock is a treated state, with ade-

quate fluid resuscitation and the administration of vasopressors as part of the labeling criteria, all

septic shock patients receive intervention at some point; however, high-risk patients received one or

more interventions at later times relative to the time of early warning as compared to low-risk

patients. Moreover, median early warning time is shorter in the high-risk cluster than in the low-risk

cluster.

There is not only a temporal difference in initiation of intervention between low-risk and high-risk

patients, but also a difference in their physiological states prior to intervention. Table 3 gives the

mean values of 20 significantly different features (Wilcoxon rank-sum test, p<0.01, Bonferroni cor-

rected) at 1 hr prior to the first instance of adequate fluid administration, and the eight significantly

different features at 1 hr prior to the first instance of vasopressor administration. Not only do

patients in the high-risk cluster receive treatment later than low-risk patients (on average), but

patients in the high-risk cluster are also in a more severe state 1 hr prior to the first instance of each

intervention than those in the low-risk cluster, with higher HR, lower blood pressure, higher lactate,

and higher SOFA scores. The data demonstrate that the high-risk and low-risk clusters, the two most

distinct in risk trajectory and outcome, differ in patient physiology immediately prior to the first

instance of treatment with fluids or vasopressors.

One application of patient stratification via clustering is to predict whether or not any given

patient is classified as high-risk. Patients predicted to be in the high-risk cluster are more severely ill

than those predicted to be in the low-risk cluster. Classification of risk trajectories was performed

using k-nearest neighbors, using between 0 and 12 hr of data following time of early

prediction (Figure 3). As the amount of available post-threshold-crossing data increases, so too

does the accuracy of classification of patient trajectories. Using a single observation subsequent to

Table 1. Clusters in Figure 1 stratify by septic shock prevalence, mortality, and time to septic shock onset (EWT).

Clusters are numbered in descending order of septic shock prevalence.

Post-Prediction cluster Size % Septic Shock % Mortality Median time to shock onset (EWT)

1 (High-risk) 1558 (17.2%) 76.5% 43% 9.8 hr

2 2672 (29.5%) 46.3% 34% 12.6 hr

3 3538 (39.0%) 26.0% 22% 15.3 hr

4 (Low-risk) 1305 (14.4%) 10.4% 18% 29.9 hr

Table 2. Proportion of patients in each of the four clusters who have received adequate fluid resuscitation or treatment with

vasopressors by time of early prediction.

Cluster % Shock patients adequately fluid resuscitated % Shock patients treated with vasopressors

1 (High-risk) 7.8% 14.3%

2 9.8% 22.2%

3 13.8% 29.3%

4 (Low-risk) 21.3% 50.7%
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Figure 2. Physiological trajectories in (A) Lactate, (B) systolic blood pressure, and (C) heart rate for the 4 clusters of

patients illustrated in Figure 1. Solid lines indicate the mean value of each feature within each cluster. Shaded

areas indicate an interval of 1 standard deviation from the mean.

Figure 2 continued on next page
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time of early prediction, high-risk trajectories can be classified with 76% accuracy. With 10 hr of data

(at the current rate of data collection), accuracy exceeds 95%.

All septic shock patients, as determined by the Sepsis-3 criteria, are treated at some point pre-

ceding or at the time of shock onset. Therefore, it is important to distinguish between physiological

changes driven by disease progression (which can be observed prior to the first intervention), and

changes in physiological state that may reflect response to intervention. We repeated our analysis of

risk score trajectories by aligning risk scores about the time of first intervention. First intervention

was defined as the earliest time antibiotics were ordered, vasopressors were administered, or ade-

quate fluid resuscitation was achieved. Spectral clustering produced five clusters stratified by septic

shock prevalence and mortality (Figure 4; Figure 4—figure supplement 1; Table 4). The highest

risk cluster has a 75.9% prevalence of septic shock, and 42.2% mortality, whereas the lowest risk

cluster has a 19.2% prevalence of septic shock, and 26.4% mortality. Furthermore, these clusters

stratify by the mean time between entry into pre-shock and the time of first intervention (Figure 4).

Differences in these times between clusters is statistically significant at the 99% confidence level (Wil-

coxon rank-sum test, Bonferroni corrected). In the highest-risk clusters, there is the greatest delay

between threshold crossing and the initiation of intervention. In the two lowest-risk clusters, initia-

tion of intervention precedes entry into the pre-shock state on average. Note that risk score trajecto-

ries begin to diverge prior to the time of first intervention. For example, in the post-intervention

high-risk (red line) cluster 1, the risk score is increasing more than 5 hr before the first intervention is

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Kullback-Leibler Divergence of Risk Score and physiological variables between the highest-

risk and lowest-risk clusters in the window surrounding early prediction.

Figure supplement 2. Physiological trajectories in (A) Lactate, (B) systolic blood pressure, and (C) heart rate for

the 3 clusters of patients illustrated in Figure 1—figure supplement 3 in the MIMIC-III database.

Figure supplement 3. Kullback-Leibler Divergence of Risk Score and physiological variables between the highest-

risk and lowest-risk clusters in the window surrounding time of early prediction in the MIMIC-III database.

Table 3. Mean values of features which are significantly different at a 99% confidence level between

the post-prediction high-risk and low-risk clusters at the time point 1 hr preceding (A) first instance

of adequate fluid resuscitation or (B) first instance of vasopressor administration.

A

High-risk Low-risk High-risk Low-risk

HR (bpm) 99.4 96.0 BUN (mg/dL) 39.8 33.2

SBP (mmHg) 107.2 112.4 pH 7.30 7.33

DBP (mmHg) 59.3 62.4 PaCO2 (mmHg) 40.5 41.9

MBP (mmHg) 72.5 75.1 Urine (mL/hr) 5.6 3.2

Resp (bpm) 22.7 21.6 Resp SOFA 1.1 0.6

FiO2 66.2% 61.2% Nervous SOFA 0.5 0.3

GCS 12.1 12.8 Cardio SOFA 0.4 0.1

Platelets (k/mL) 211.0 232.1 Liver SOFA 0.1 0.0

Creatinine (mg/dL) 2.2 1.9 Coag SOFA 0.5 0.3

Lactate (mmol/L) 4.6 2.9 Kidney SOFA 1.2 0.8

B

High-risk Low-risk High-risk Low-risk

HR (bpm) 100.4 93.3 pH 7.28 7.30

Resp (bpm) 23.0 21.4 PaCO2 40.8 43.2

CVP (mmHg) 18.2 16.4 Hemoglobin (g/dL) 11.1 10.6

FiO2 71.2% 64.2% Hematocrit 33.9% 32.7%
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achieved. In the low-risk cluster 5 (magenta line), the risk score is decreasing approximately 3 hr

before the first intervention is achieved. In general, the decline of risk scores follows the time of

completion of first intervention. However, twelve hours following intervention, patient risk in most

clusters is only slightly reduced compared to the value of risk score at the time of first intervention.

These results demonstrate that, in the high risk clusters (clusters 1–3), the rate at which risk score

growth slows and eventually declines following intervention is relatively slow when compared to rate

of risk score growth prior to time of first intervention. Cluster membership, and hence patient risk, is

therefore largely determined by patient state at time of first intervention. These results suggest that

timely interventions are key to managing patient risk.

Discussion

Pre-shock state
In this study, we present an approach for stratification of sepsis patients that considers the evolution

of their risk score over time, rather than their state at a fixed point in time. The observed divergence

of risk score trajectories following entry into the pre-shock state indicates that there exists some

Figure 3. Risk trajectory classification accuracy. The duration of data used consequent to early prediction is

specified by the x-axis. 90% confidence intervals, as empirically estimated using bootstrap, are indicated by the

shaded area.

Table 4. Clusters in Figure 4 stratify by septic shock prevalence and mortality.

A similar number of patients are in each cluster.

Post-Intervention cluster Size % Septic Shock % Mortality

1 (High-risk) 1506 75.9 42.2

2 1654 52.2 33.7

3 1758 38.5 26.9

4 2257 21.1 18.2

5 (Low-risk) 1711 19.2 26.4
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crucial time in sepsis patients when patient risk trajectory, and thus outcome, is determined well

before these patients are clinically diagnosed as being in septic shock.

Previously, we hypothesized that there exists a physiologically distinct state of sepsis that pre-

cedes the imminent transition into septic shock (Liu et al., 2019). We referred to this state as the

pre-shock state. Figures 1 and 2 show that prior to entry into the pre-shock state, patients are indis-

tinguishable on the basis of their risk scores or physiological variables. Risk trajectories diverge only

upon entry into the pre-shock state (Liu et al., 2019). Entry into this state is rapid, with a large

change in risk score occurring over a time window of 30–60 min. This rapid and statistically signifi-

cant increase of risk occurs simultaneously with an increase of mean lactate and heart rate and a

decrease of mean systolic blood pressure (Figure 2). These changes occur well before patients meet

the Sepsis-3 definition of shock. We hypothesize that this rapid transition event reflects the collapse

of an underlying biological control mechanism that, up to this time point, has helped limit the pro-

gression of sepsis. While this biological control mechanism has yet to be identified, we believe that

its failure fundamentally defines septic shock. That is, when patients enter what we have previously

called the pre-shock state, they are in fact in a state of septic shock. In the case of patients identified

by clustering as high-risk, we believe the members of this cluster are in a state of shock on average

Figure 4. Risk score trajectories following the first instance of intervention. Threshold for early prediction is indicated by the horizontal line. Bold lines

indicate mean risk within each cluster. Shaded areas indicate one standard deviation from the mean. The mean time within each cluster between entry

into the pre-shock state and the time of first intervention is indicated on the right-hand side of the figure. A positive number indicates that the time of

first intervention is after the time of threshold crossing, whereas a negative number indicates that the first intervention precedes entry into pre-shock.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Eigenvalues of Graph Laplacian of post-intervention risk trajectories.
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10 hr before they satisfy the current clinical definition of shock. Clearly, entry into the pre-shock state

is sufficiently rapid that its detection will require intelligent automated monitoring of patients.

Classification of trajectories
While this clustering study was performed retrospectively, one way in which these results may inform

clinicians is by classifying new observations into one of the four clusters. Previously, we computed

patient-specific positive predictive value by binning the first value of risk score subsequent to thresh-

old-crossing into deciles, and computing the proportion of true positive patients in each bin

(Liu et al., 2019). We showed that positive predictive value for patients with high risk scores relative

to threshold could be as high as 90%. Here, we stratify risk trajectories using k-nearest neighbors.

Since spectral clustering creates clusters that minimize within-cluster distances between data points,

k-nearest neighbors using a similar distance metric is an appropriate choice of classifier, as it assigns

to new points the most common label of its nearest neighbors. Using a single observation, we

achieve 76% accuracy in classifying risk trajectories as high-risk or not. Intuitively, the certainty of this

prediction increases with increasing length of observation; however, the rate at which performance

increases is relatively slow. At 10 hr following time of early prediction, about half of observed

patients would already meet the Sepsis-3 criteria for septic shock. This can be in part due to the

infrequent rate of observation of important features. For example, the median time between obser-

vations for lactate, the most important feature in our risk model (Supplementary file 1B), is 11.2 hr

(Supplementary file 1E). We therefore hypothesize that prediction performance would be

improved, and reliable predictions could be made earlier if measurements of key features such as

lactate were performed more frequently once risk score exceeds the threshold. Vincent et al., 2016

have advocated for lactate measurements every 1–2 hr. The characteristics of the predicted cluster

then serve to inform the clinician about patient prognosis, and overall severity of disease: patients

whose risk trajectories are classified as high-risk are in grave danger of developing septic shock and/

or death, requiring the highest level of monitoring possible.

Early interventions and intervention response
The data of Figure 2 show that entry into the pre-shock state is a result of physiological change due

to disease progression. Patient risk trajectories remain distinct following threshold crossing (Figure 1)

and first intervention (Figure 4). Kalil et al., 2017 suggest that responsiveness to treatment is deter-

mined by the baseline severity of sepsis . We corroborate this finding and show that physiological

state prior to the initiation of treatment (Figure 4) is linked to risk trajectory after entry into the pre-

shock state. The highest-risk patients had the greatest average delay between entry into pre-shock,

and the initiation of treatment, whereas in the lowest-risk patients, initiation of treatment preceded

entry into the pre-shock state (Figure 4). The physiology at time of first intervention, which in the

majority of patients follows threshold-crossing (Figure 1), of patients in the low-risk cluster generally

represents a less severe state than that of patients in the high-risk cluster. Patients in the low-risk

cluster have lower heart rate, higher systolic blood pressure, higher GCS, and lower SOFA scores, all

of which indicate a lower overall severity of disease (Table 3). Patients whose risk scores are high at

the time of initiation of treatment have risk scores which remain high 12 hr later (and have corre-

spondingly worse outcomes), and patients whose risk scores are low at time of first intervention

have risk scores which remain low 12 hr later (Figure 4, Table 4). The data of Figure 4 indicate that

treatment is followed by an improvement in patients’ condition, as assessed by risk score. However,

this improvement is limited and has a slow time-course (Figure 4). The result is that patients in a

more severe state of sepsis at time of first intervention generally cannot be rapidly rescued from a

high-risk state, whereas initiation of treatment earlier in the disease progression generally mitigates

risk over the remainder of the course of treatment. Therefore, it is perhaps critical that patients at

risk of septic shock are treated in as early a stage as possible in order to achieve the most favorable

outcomes. Achieving this goal of early treatment is not trivial. Some patients are admitted to the

hospital or ICU already in a highly severe state of sepsis and treated immediately. The median time

of entry into the pre-shock state for patients in the high-risk cluster precedes admission into the ICU

by 135 min, and only follows admission into the hospital by 40 min. For patients in the low-risk clus-

ter, this time is 48 min after ICU admission, and 8 hr after hospital admission. Many patients prog-

ress from low to high risk (as assessed by risk score) while heavily monitored in the ICU, however,
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without the benefit of a risk scoring model, the combination of physiological changes that indicate

such a progression may be difficult or impossible for clinicians to recognize (Figure 2), with the

exception of lactate which is infrequently measured and often not ordered until there is already a

clinical suspicion of sepsis (Vincent et al., 2016). The majority of transitions into the pre-shock state

are not due to changes in lactate. A measurement of lactate coincides with threshold crossing (and

thus can cause a change in risk score at that time) in 41.7% of patients. 56% of threshold crossings

occur before any measurement of lactate is made. For these reasons, the availability to clinicians of a

real-time risk score may be key in recognizing patients who would benefit from early stage

interventions.

Clustering algorithm
To cluster our time series data, we chose spectral clustering. Spectral clustering differs from algo-

rithms such as k-means in that clustering is not based on distance from a centroid. Rather, clusters

are chosen using a distance metric such that cluster members are close to one another. Whereas

k-means results in linear boundaries between clusters, spectral clustering can produce clusters with

nonlinear boundaries. Moreover, while we utilize Euclidean distance in this study, meaning that tra-

jectories in the same cluster tend to have similar values at each time point, other distance functions

can be used in spectral clustering. As our risk score trajectories are time series data, one possible

alternative approach is to fit models to each time series, and define similarity between data points in

terms of mutual information (Jebara et al., 2007).

Generalizability of findings
Previously, we demonstrated the generalizability of our method for early prediction of septic shock,

by training risk models on the MIMIC-3 database, and then applying them on the eICU database

(Liu et al., 2019). We wish to be similarly confident that the results of this study generalize across

patient populations. The eICU database used to build the classifier employed in this study consists

of data from 208 hospitals in geographically disparate locations across the United States

(Pollard et al., 2018). The consistency of our findings across this dataset makes it likely that the pat-

terns discovered here apply across sepsis patients at large. To evaluate this, we repeated our meth-

odology for clustering risk trajectories using the MIMIC-3 database (Johnson et al., 2016), from

which we originally developed our methodology for early prediction of septic shock. We obtain the

same principal findings of a rapid transition in risk at the time of threshold crossing, reflected in

changes in physiology. Prior to this event, patient risk trajectories are homogenous, but diverge into

clusters following this transition. These clusters stratify by prevalence of septic shock and mortality

(Figure 1—figure supplement 3, Figure 2—figure supplement 2, Figure 2—figure supplement 3,

Supplementary file 1I).

Biological interpretation
Sepsis, and in particular, the competing interactions of inflammatory responses to sepsis and anti-

inflammatory processes, have been conceptualized and modeled using dynamical systems

(Reynolds et al., 2006; Chow et al., 2005; Cameron and Sleigh, 2019; Buchman, 1996). Various

compensatory systems are responsible for maintaining homeostasis, represented by stable equilibria

of the system, despite the perturbances of the sepsis disease state. However, when the disease pro-

gresses beyond a certain point, the properties of the system may change, and equilibrium points

may lose their stability or disappear. In particular, Reynolds et al., 2006 propose a model in which

progression of sepsis results in a transcritical bifurcation, in which the stable equilibrium of compen-

sated homeostasis (referred to as the ‘health’ state) loses its stability. One possible interpretation of

our observations of patterns in patient risk trajectories is that processes such as those described by

these dynamical systems models underly the transition from sepsis to septic shock. We find that

prior to entry into the pre-shock state, patient risk trajectories change gradually, indicating that the

patient is in a state of compensated homeostasis. However, an abrupt physiological event occurs

which causes rapid change of risk. This phenomenon could be explained by the collapse of compen-

satory systems, resulting in the loss of homeostasis and stability. The shift of the underlying biologi-

cal systems into an unstable regime would explain this rapid change in physiology.
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Spectral clustering
We choose the number of clusters (k) using the eigengap heuristic, choosing a value of k, such that

the gap (difference) between the k-th and (k+1)th eigenvalues of the graph Laplacian is large relative

to the gap sizes between other pairs of consecutive eigenvalues. The Davis-Kahan theorem

(Davis and Kahan, 1970) guarantees that this choice of k results in a partition of data points which

is robust to small perturbations. This means that the resulting clusters are stable even when small

amounts of noise are introduced to the data, and thus, if the distribution of data that is being clus-

tered is a good representation of the study population of interest, it is then likely that the same clus-

ters will be found.

Risk modeling
XGBoost (Chen and Guestrin, 2016) is a supervised learning method which uses gradient boosting

of decision trees to build models for classification. Essentially, the model consists of the weighted

sum of multiple decision trees; trees are added iteratively to the model, and subsequent trees

attempt to minimize the error of previous models. Decision trees are able to learn nonlinear decision

boundaries, and thus, XGBoost produces a nonlinear model of risk.

Accounting for comorbidities
Comorbidities and pre-existing conditions potentially contribute to patient risk independently of

their physiological state. 54% of sepsis patients in eICU have at least one comorbidity, as deter-

mined by a Charlson Comorbidity Index (CCI) greater than 0 (Charlson et al., 1987). Sepsis patients

have a significantly greater CCI (Wilcoxon rank-sum test, p<0.01) than non-sepsis patients, as deter-

mined using their ICD-9 codes (Quan et al., 2005), though we did not find a significant difference in

CCI between sepsis patients who did not develop septic shock, and sepsis patients who developed

septic shock (Supplementary file 1C).

In the eICU database, pre-existing conditions are given in the pasthistory table. Of the 243 dis-

tinct comorbidities present, 26 are significantly associated with mortality, 15 are significantly associ-

ated with septic shock, and 3 (namely, COPD, hepatic encephalopathy, and cirrhosis/varices) have

significantly different prevalence rates in the true/false positive cohorts for early prediction of

impending septic shock (p<0.01, Fisher’s exact test, Bonferroni corrected). The addition of the pres-

ence of these conditions as features in our risk model, however, did not significantly alter perfor-

mance in early prediction. This is likely because the information contained within these features is

not independent of the physiological data, and thus, any contribution of comorbidities to patient

risk is captured by the model from physiological variables.

Prior studies have shown that between 34–66% of sepsis patients have at least one comorbidity,

and that comorbidities had prognostic value in assessing risk of mortality in sepsis patients

(Artero et al., 2010; Oltean et al., 2012), though Innocenti et al., 2018 found that with the addi-

tion of physiological variables indicative of sepsis severity, such as lactate, comorbidities lost their

independent prognostic value. Our findings are consistent with the results of the prior literature.

Limitations
We algorithmically determine sepsis and septic shock labels according to the Sepsis-3 consensus

definitions, and use the Surviving Sepsis Campaign (Dellinger et al., 2013) guidelines to determine

when patients are adequately fluid resuscitated. Therefore, limitations inherent to these labels are

also limitations of this study. One possibility is that the first instance of adequate fluid resuscitation

may not give an accurate indication of treatment initiation for patients treated according to different

protocols. This limitation may be mitigated in part by the proliferation of treatment protocols resem-

bling EGDT for treatment of sepsis; if the majority of protocols sufficiently resemble EGDT in their

administration of fluids, then the Sepsis-3 criteria may correctly identify patients who have been ade-

quately fluid resuscitated, even under other protocols.

As previously mentioned, every observational study is limited by the potential for confounding

factors. The task of inferring factors responsible in determining responsiveness to treatment is partic-

ularly difficult, as many variables besides the impact of intervention influence patient outcome. While

it is possible to demonstrate association between variables, the only way to demonstrate causality is

through randomized controlled trials; however, as Liu et al., 2016 indicate, given the state of
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equipoise in sepsis care, with many different treatment protocols heavily resembling one another,

such a study is unlikely to be undertaken.

Conclusion
We show that there exist four clusters of risk score trajectories in the time window immediately fol-

lowing entry into the pre-shock state. Prior to this time, patient physiological state is largely insepa-

rable, but following entry into pre-shock, patient trajectory diverges into four strata, and these

trajectories remain separate in the time window following pre-shock. One possible driving factor

behind this divergence in patient trajectory is physiological state prior to initiation of treatment. The

rapid change in risk score as patients enter pre-shock, and the relatively minute scale of change in

physiological variables in this time window possibly indicate a general need for automated methods

for early warning, as such changes may be imperceptible to human clinicians. Moreover, the abrupt

nature of this transition possibly marks entry into septic shock. The transition from sepsis to septic

shock, in general, is not a gradual event, but occurs on a rapid time scale, potentially as the result of

loss of biological compensation mechanisms, leading to system instability. Further study into the bio-

logical mechanisms that underlie this sudden transition are important to understanding the nature of

septic shock. Through use of risk score trajectories, it is now possible in retrospective studies to

know at what critical point in time to look for biological signatures relating to this sudden transition

of risk.

Materials and methods

Data extraction and processing
The eICU database (version 2.0) contains electronic health record (EHR) data collected between

2014 and 2015 from 200,859 ICU stays at 208 hospitals in the United States (Pollard et al., 2018).

Data for these patients was extracted from the eICU PostgreSQL database using the RPostgreSQL

package (Conway et al., 2017). The majority of entries in eICU are given as timestamp-value pairs

where a label denotes the meaning of the value; these entries are spread across 31 tables. A total of

28 features (including heart rate, systolic blood pressure, lactate, urine output) are used in the calcu-

lation of our risk score trajectories. These entries are located in tables within the database, and an

additional description column indicates the meaning of each entry. Supplementary file 1A specifies

the location of each variable used in this study, along with associated description strings, and the

column containing said description string. Multiple such strings may correspond to the same feature;

for those features, all entries containing any of those strings were queried. For blood pressure meas-

urements, invasive measurements took precedence over non-invasive measurements, i.e. if multiple

entries existed for the same timestamp for a given patient, the invasive measurements would be

kept and the non-invasive measurements at the same timestamp would be discarded. Otherwise, all

such entries would be treated as equivalent. ICD-9 codes as specified by Quan et al. were used to

compute the Charlson comorbidity index (Charlson et al., 1987; Quan et al., 2005).

Infection criteria
Due to the lack of sufficient data for blood cultures in the eICU database, we determine suspected

infection using the ICD-9 codes specified by Angus et al., 2001. Prevalence of the ICD-9 codes

indicative of suspected infection most common in the eICU database are given in

Supplementary file 1G.

Labeling clinical states
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) were applied to

patient EHR data to produce a time-series of clinical state labels (Singer et al., 2016). Sepsis

patients are those with suspected infection and a Sequential Organ Failure Assessment (SOFA) score

of 2 or higher (Singer et al., 2016; Vincent et al., 1996). Of the 200,859 ICU stays in eICU, 41,368

had suspected infection, as determined using the ICD-9 codes specified by Angus et al., 2001.

Though Seymour et al., 2016 recommend the use of concomitant orders for antibiotics and blood

cultures, the limited availability of blood culture data in eICU necessitates the usage of ICD-9 codes.

Septic shock patients are those with sepsis who have received adequate fluid resuscitation, require
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vasopressors to maintain a mean arterial blood pressure of at least 65 mmHg, and have a serum lac-

tate >2 mmol/L. Time of septic shock onset is determined as the earliest time when all conditions of

septic shock are satisfied. Adequate fluid resuscitation was determined using the 2012 SSC guide-

lines (Dellinger et al., 2013), which is the version that was current at the time of collection of eICU

data: adequate fluid resuscitation is defined as having received 30 mL/kg of fluids, or having

attained fluid resuscitation targets of >0.5 mL/kg/hr urine output, mean arterial pressure of at least

65 mmHg, or a CVP of 8–12 mmHg. EGDT compliance was determined by computing whether or

not adequate fluid resuscitation was achieved during at least one time point within the first 6 hr after

ICU admission.

Computing risk trajectory
Risk models were built according to the methods previously described, using 28 clinical features

extracted from EHR data (Liu et al., 2019). We hypothesized the existence of a pre-shock state: that

is, in patients who transition from sepsis to septic shock, there exists a physiologically distinct state

of sepsis and entry into this state indicates that the patient is highly likely to develop septic shock at

some future time. In order to characterize the pre-shock state, an XGBoost (Chen and Guestrin,

2016) regression model was trained using data from the sepsis clinical state in patients who do not

go into septic shock, and data from a time window spanning 2 hr prior to septic shock onset to 1 hr

prior to septic shock onset in patients who do transition to septic shock. Risk score trajectories were

computed for each patient by applying this model at each time point of a window of interest using

the most recently observed values of each feature.

Spectral clustering (see below) was applied to risk score trajectories aligned about a time point

defined in two different ways. In the first (Figures 1–2), risk score trajectories and physiological time

series were aligned at the time of entry into the pre-shock state, td, which corresponds to the time

of occurrence of the first above-threshold risk score (Liu et al., 2019). The post-detection time win-

dow spanned from td to td +12 hr. In this window, risk score was computed at 1 hr intervals starting

at td. In the second alignment method (Figure 3), risk trajectories were aligned about the time of

the first intervention given to a patient, determined as the earliest of time of prescription for antibi-

otics, time of vasopressor administration, or the first time at which adequate fluid resuscitation was

achieved.

Clustering
Spectral clustering is a nonlinear clustering algorithm that generates clusters such that distances

between points in the same cluster are minimized, and distances between points in different clusters

are maximized (Ni et al., 2002). This is achieved by computing the eigenvectors of the graph Lapla-

cian matrix. Each data point is a node on a weighted undirected graph: the diagonal entries of the

matrix will be the number of connections each node has (usually a pre-specified constant), and the

off-diagonal entries will be the connection weights. Connection weights, in this case, are given by

applying a Gaussian kernel to Euclidean distance; if wi,j is an off-diagonal entry of the graph Lapla-

cian, and d(xi,xj) is the Euclidean distance between points i and j, we have:

wi;j ¼ e�d xi ;xjð Þ
2

The eigenvectors of the graph Laplacian represent a nonlinear projection of the data into a new

space, in which k-means or any other clustering method can be performed on the transformed data

(Figure 5). By doing so, a solution to the semidefinite relaxation of the graph partition problem,

which seeks to assign each node in a weighted undirected graph such that within-cluster weights are

maximized, and between-cluster weights are minimized, is obtained (Ni et al., 2002). Therefore, risk

score trajectories in the same cluster will have similar values of risk at each time point. In this study,

the implementation of the kernlab R package was used (Karatzoglou et al., 2004).

Moreover, spectral clustering contains its own procedure for selecting k, the number of clusters,

the eigengap heuristic. This procedure selects k such that the gap between the k-th and (k+1)-th

eigenvalues of the graph Laplacian is large. Geometrically, by the Davis-Kahan theorem, this guaran-

tees that the eigenvectors of the graph Laplacian are robust to small perturbations in the data

(Davis and Kahan, 1970). Intuitively, this means that the results of spectral clustering for a selected
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value of k will be robust to small changes in the data, one common measure of goodness of fit for

clustering algorithms (Ni et al., 2002).

Classification of Trajectories
Classification performance for assigning new observations to clusters as a function of the number of

post-detection samples (feature-vectors) was evaluated. First, clustering was applied to the entire

dataset, obtaining cluster membership for every data point in the dataset; these clustering results

are considered ground truth, and are used as labels for training and testing. 70% of the data was

used as training data, and spectral clustering was performed on this training subset in order to gen-

erate training labels. K-nearest neighbors classification was used to predict cluster membership for

the remaining 30% of the dataset, using the five nearest neighbors in the training set as measured

by Euclidean distance. Performance was then evaluated against the ground truth clusters obtained

on the entire dataset; clusters were numbered in order of descending prevalence of septic shock,

and two clusters with the same order are considered equivalent.
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