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Fe-MIL-101 exhibits selective 
cytotoxicity and inhibition of 
angiogenesis in ovarian cancer cells 
via downregulation of MMP
Jiaqiang Wang, Daomei Chen, Bin Li, Jiao He, Deliang Duan, Dandan Shao & Minfang Nie

Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, 
cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an 
easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer 
cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL−1) and normal mouse embryonic 
fibroblasts (BABL-3T3, IC50 = 78.3 μg mL−1) cells. It was more effective against SKOV3 cells than typical 
anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL−1) and oxaliplatin (OXA, IC50 = 64.4 μg mL−1),  
but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL−1) and OXA 
(IC50 = 13.8 μg mL−1). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) 
via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and 
induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells 
than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results 
reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian 
tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in 
angiogenesis-dependent diseases, including ovarian cancer.

Ovarian cancer is the second most common gynaecological malignancy worldwide and the leading cause of death 
among gynaecologic neoplasms. The tumour microenvironment encompasses various stromal cells and extra-
cellular matrix surrounding tumour cells and differs from the normal tissue environment1. Increasing evidence 
suggests that the tumour microenvironment also plays critical roles in tumour progression and metastasis, and 
new strategies for synergistic tumour therapeutics target both tumour microenvironment and tumour cells1. The 
tumour microenvironment comprises numerous signalling molecules and pathways that influence the angiogenic 
response2. Angiogenesis, the formation of new blood vessels from a pre-existing vascular network, is principally 
mediated by endothelial cell proliferation and migration. It provides oxygen and nutrients to actively proliferating 
tumour cells3, and is responsible for the development and metastasis of most types of tumours4. The pathogenesis 
of malignant tumours is mainly caused by the disruption of angiogenesis and the imbalanced endothelial remod-
elling and regression. Therefore, inhibition of angiogenesis is emerging as a promising new approach for cancer 
treatment5–9.

Matrix metalloproteinases (MMP), a family of zinc-binding proteins including the gelatinases MMP-2 and 
MMP-9, have been shown to play a central role in angiogenesis and tumour cell invasion and metastasis due 
to their ability to degrade the extracellular matrix10. Thus, downregulating MMP-2/9 expression or decreasing 
enzymatic activities in the tumour microenvironment is crucial in inhibiting angiogenesis, tumour invasion and 
metastasis1. As a result, MMP inhibitors have been recognized as drug candidates for anticancer therapeutics, and 
much effort has been made to design and develop molecules that inhibit MMP activity5,10.
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In contrast to conventional approaches, nanotechnology presents novel opportunities to develop promis-
ing diagnostics and therapeutics tools for the treatment of cancer and many other diseases11,12. However, lit-
tle evidence exists that nanomaterials themselves might possess intrinsic anticancer properties, and only a few 
nanoparticles’ intimate interactions with the tumour microenvironment were reported13–17. For example, Fe3O4 
nanoparticles coated with piroctone olamine18, fullerene-based nanomaterial Gd@C82(OH)22

19–22, hollow meso-
porous carbon nanocapsules (HMCNs)23 and polysaccharide-based hydrogels24 have been found to exhibit inhi-
bition of MMP activity. However, none have translated to clinical application due to the dose-limiting side effects 
following systemic administration of these pharmacological MMP inhibitors24.

Compared with nanostructures such as metallic-, dielectric-, magnetic-, liposomal-, and carbon-based 
structures with potential medical applications, metal-organic frameworks (MOFs) are currently eliciting 
much attention in materials science and biotechnology due to outstanding properties including crystal-
line open structures, extremely high surface areas, tunable pores, diverse structure and chemical functional-
ity25,26. For instance, Fe-MIL-101_NH2, consisting of trimeric iron(III) octahedral clusters interconnected by 
1,4-benzenedicarboxylate anions, has been reported as a nontoxic nanocarrier for the controlled delivery of sev-
eral antitumoural and retroviral drugs27,28. Until now, the available toxicity information regarding MOFs have 
remained scarce and the contemporary use of MOFs for cancer treatment has been largely limited to serving as 
contrast agents for imaging techniques and carriers for drug delivery28–32. Few reports have directly used MOFs 
as anticancer agents.

Treating malignant tumours effectively with low toxicity remains a major challenge and is urgently required. 
Despite the intensive studies on the synthesis, characterization and possible applications, the biocompatibility 
and cytotoxicity of MOFs have rarely been investigated. Until now, the available toxicity information dealing 
with MOFs or coordination polymers has been limited33. For instance, the toxicological effects of three different 
iron carboxylate MOFs, MIL88A (fumarate), MIL88B (tetramethylterephthalate) and MIL100 (trimesate), was 
examined by Horcajada and colleagues both in vitro and in vivo34, and all three showed no observable toxicity.  
A recent study reported that these iron carboxylate MOFs were rapidly sequestered by the liver and spleen, bio-
degraded and directly eliminated through the urine or faeces without causing obvious toxicity35. The values of the 
half maximal inhibitory concentration (IC50) for the MIL-101_NH2BrBODIPY,1,3,5,7-tetramethyl-4,4-difluoro-
8-bromomethyl-4-bora-3a,4a-diaza-s-indacene (BrBODIPY) coated MIL-101 on human HT-29 colon adenocar-
cinoma cells have also been reported36. Additionally, the in vitro toxicity of lanthanide-based MOFs was carried 
out in HT-29 and acute lymphoblastic leukaemia human cells, showing important cytotoxicity values28,37. Zinc 
MOFs exhibited a time and concentration dependent cytotoxicity in rat PC12 pheochromocytoma cells38. The 
CuBTC MOF associated drug 5-fluorouracil was extremely cytotoxic against human MCF-7 breast cancer ade-
nocarcinoma cells and human HL60 acute promyelocytic leukaemia cells via apoptosis mechanisms39. The mech-
anisms of apoptosis induced by MOFs are largely unknown. Moreover, little is known about the interactions of 
MOFs with the tumour microenvironment, and the antiangiogenic properties and inhibition of MMPs of MOFs 
remain almost completely unknown. Therefore, more research is needed regarding the use of MOFs in cancer 
therapy applications.

Here we investigated the inhibitory effects of Fe-MIL-101 on SKOV3 human ovarian cancer, HeLa cervical 
cancer and A549 lung cancer cell line growth and the proliferation, migration and tube formation of human 
umbilical vein endothelial cells (HUVECs). We also studied the effect of Fe-MIL-101 on cell apoptosis and 
MMP-2 and MMP-9 expression in HUVECs and SKOV3 cells. This study evaluated the mechanism associated 
with the antitumour and antiangiogenic activity of Fe-MIL-101.

Results and Discussion
Characterization of Fe-MIL-101. Fe-MIL-101 was obtained from ferric hydroxide and terephthalic acid 
as previously described25. The textural properties of Fe-MIL-101 are summarized in the supplementary Table S1 
and Fig. S1. The adsorption/desorption isotherm of Fe-MIL-101 is of type I indicating the presence of the micro-
porous network, which possesses the Langmuir surface area (5400 m2g−1) and Brunauer–Emmer–Teller (BET) 
surface area (3710 m2g−1). The X-ray diffraction (XRD) pattern of Fe-MIL-101 is also shown in supplementary 
Fig. S2. The diffraction peaks all corresponded to the product synthesized by Skobelev. Together these results 
confirmed the proper synthesis of Fe-MIL-101.

Effect of Fe-MIL-101 on cell growth. The cytotoxicity of Fe-MIL-101 in four cell lines (HeLa, A549, 
SKOV3 and HUVEC cells) and control normal mouse embryonic fibroblast BABL-3T3 cells was evaluated by 
the MTT assay. Fe-MIL-101 exhibited concentration-dependent inhibition in HeLa, A549, SKOV3, HUVEC and 
BABL-3T3 cells with a half maximal inhibitory concentration (IC50) of 41.9, 74.6, 56.5, 33.5, and 91.2 μ g mL−1 
at 24 h, respectively (Table 1 and Fig. 1a). The IC50 for A549 cells was the highest among these cancer cells. These 
data show that Fe-MIL-101 is least active against A549 cells than other cells and demonstrate that Fe-MIL-101 has 
selective toxicity against different cancer cell lines.

Fe-MIL-101 also possessed cytotoxicity in a time-dependent manner in all cells except for HeLa and 
BABL-3T3 cells. The IC50 for A549, SKOV3 and HUVEC cells was reduced to 68.5, 37.3, and 24.5 μ g mL−1, 
respectively, when treated with Fe-MIL-101 for 48 h. When treatment time was prolonged to 72 h, the IC50 value 
for A549, SKOV3 and HUVEC cells was 54.3, 23.6, and 9.9 μ g mL−1, respectively, which was much lower than the 
values at 24 and 48 h.

Differential cytotoxicity is important because one of the greatest challenges facing chemotherapy is the inabil-
ity of anticancer drugs to effectively distinguish between tumour cells and normal cells40. The IC50 of Fe-MIL-101 
in BABL-3T3 cells was approximately 3.3- and 8-fold higher than that for SKOV3 cells and HUVEC cells, respec-
tively. Fe-MIL-101 also has selective toxicity against HeLa, A549, and SKOV3 cancer cells and HUVEC cells 
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and shows less toxicity against normal BABL-3T3 mouse embryonic fibroblasts cells (Fig. 1a). This suggests that 
Fe-MIL-101 may have a potential utility in the selective treatment of cancer cells.

Other Fe based MOFs, MIL-100 and MIL-88B, were also used to treat SKOV3 cells (Table 1). Fe-MIL-101 was 
more active against SKOV3 cells than Fe-MIL-100 and Fe-MIL-88B. Other Fe-based MOFs34 including MIL-
100, MIL101_2CH3, MIL101_NH2, MIL88B and derivations (supplementary Table S2) exhibited low toxicity 
on HeLa cells with IC50 values ranging from 690 to 2500 μ g mL−1. These values are much higher than that of 
Fe-MIL-101 (IC50 =  41.9 μ g mL−1), indicating that the structure of iron terephthalic acid may play an important 
role. Therefore, the roles of Fe3+ and organic ligand (terephthalic acid, H2BDC) were also tested in vitro. The 

Cell line Time (h) Fe-MIL-101 OXA ART ART/Fe-MIL-101

HeLa

24 41.9 84.8 126.5 –

48 50.1 28.5 62.7 –

72 67.8 20.0 43.6 –

A549

24 74.6 219.8 160.7 128.3

48 68.5 128.3 66.0 55.8

72 54.3 27.0 31.1 21.4

SKOV3

24 56.5 241.5 280.8 42.9

48 37.3 120.8 121.1 25.1

72 23.6* 64.6 96.9 24.9

HUVEC

24 33.5 98.0 145.7 34.0

48 24.5 31.3 87.9 22.8

72 9.9* 20.9 58.8 14.9

BABL-3T3

24 91.2 77.8 118.2 91.6

48 78.8 34.2 52.4 74.0

72 78.3 13.8 36.6 69.4

Table 1.  Comparison of IC50 (μg mL−1) of five cell lines by anticancer cell drugs and Fe-MIL-101.

Figure 1. (a) Differential cytotoxicity of Fe-MIL-101 in cancer cells (HeLa, A549, SKOV3), human umbilical 
vein endothelial cells (HUVEC), and normal mouse embryonic fibroblasts cells (BABL-3T3) by MTT assay  
for 24–72 h. (b) The IC50 values of artesunate (ART), Fe-MIL-101 and ART/Fe-MIL-101 in cells for 72 h.  
(c) Inhibitory effect of Fe-MIL-101 on proliferation of HUVECs. (d) Proliferation of HUVECs treated with CM 
from SKOV3. *P <  0.05, vs. control.
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organic constitutive linker H2BDC was not toxic on HeLa cells with IC50 values 800 ±  20 μ g mL−1 34. In our study, 
the IC50 value of H2BDC for 24 h for SKOV3, BABL-3T3, and HeLa cells was 1353.9, 1111.6 and 1166.8 μ g mL−1, 
respectively, suggesting that the organic linker H2BDC was not toxic. Iron is a component in haemoglobin and 
exists at approximately 22 μ M in blood plasma, and shows little toxicity in the body41. Iron oxide nanoparticles are 
clinically approved as magnetic resonance imaging contrast agents, and in vitro assays have shown that these par-
ticles do not exhibit toxicity34. We also observed that the IC50 value of FeCl3• 6H2O was above 1000 μ g mL−1 for the 
above three mentioned cell lines. We also investigated the concentration of iron released from Fe-MIL-101 into 
medium by inductively coupled plasma-atomic emission spectrometry ICP-AES measurement. No detectable 
iron leaked into the medium at 37 °C after 72 h. These results suggest that Fe-MIL-101 instead of Fe3+ or organic 
ligand play key roles in cytotoxic activity and show that Fe-MIL-101 exhibited much higher cytotoxic activity 
against SKOV3 cells than other iron MOFs such as Fe-MIL-100 and Fe-MIL-88B (supplementary Table S2).

Other MOFs such as Tb-MOFs35 showed high cytotoxicity values against human HT-29 colon adenocarci-
noma cells (IC50~10 μ g mL−1) and Gd-MOFs28 also showed high cytotoxicity values against human acute lymph-
oblastic leukaemia cells (IC50~15 μ g mL−1), which was due to the linkers’ antitumoural activity34. By contrast, the 
cytotoxicity of ZrMOFs UiO6634 (IC50 HeLa =  400 μ g mL−1) is much lower than that of Fe-MIL-101.

Interestingly, Fe-MIL-101 exhibited higher cytotoxicity against SKOV3 cells than the anticancer drug carbo-
platin, for which IC50 is 54.6 μ g mL−1 at 72 h42. Even compared with the positive controls artesunate (ART) and 
oxaliplatin (OXA), the inhibitory activity of Fe-MIL-101 was more effective than ART and OXA against SKOV3 
and HUVEC cells, but only had a minor effect on HeLa, A549 and BABL-3T3 cells.

To achieve better anti-cancer effects, Fe-MIL-101 was used as carrier matrices for the ART delivery system. 
The amount of the drug laden in Fe-MIL-101 was measured by UV-vis spectroscopy and the ART contents were 
determined to be 0.70 g of ART per gram of the sample of Fe-MIL-101 (0.7 g/g material). Cytotoxic tests of ART/
Fe-MIL-101 were also carried out against A549, SKOV3, HUVEC and BABL-3T3 cell lines (Table 1 and Fig. 1b). 
As shown in Fig. 1b, the IC50 values of ART were higher than that of ART/Fe-MIL-101 for A549, SKOV3 and 
HUVEC cells, suggesting that ART/Fe-MIL-101 exhibits better anti-proliferative effects than ART. However, 
except for A549 cells, the IC50 values of ART/Fe-MIL-101 on cells were similar to those of Fe-MIL-101 under the 
same condition. This implies that there is no significant difference between Fe-MIL-101 and ART/Fe-MIL-101. 
This could be attributed to the following reasons: the adsorption of ART led to a significant decrease in both sur-
face areas, and pore volumes of Fe-MIL-101 indicated that ART was mainly adsorbed within the pores instead of 
on the external surface of Fe-MIL-101, whereas surface areas decrease from 3700 m2g−1 to 1760 m2g−1 and pore 
volumes decrease from 1.96 cm3g−1 to 0.93 cm3g−1 (Table S1, supplementary Fig. S3). Therefore, Fe-MIL-101 
with very high cytotoxicity would contact SKOV3 cells first and cause cell death before the slow release of ART. 
The above results again confirm that Fe-MIL-101 is the major cause of cytotoxic activity in cancer and normal 
cells during this treatment time. More research is needed to obtain further insight into the reason why ART/
Fe-MIL-101 did not enhance toxic effects compared with unloaded Fe-MIL-101.

To further evaluate the cytotoxic effect of the Doxorubicin (DOX) and DOX/Fe-MIL-101 in three cancer cell 
lines (HeLa, A549, and SKOV3 cells) and control normal mouse embryonic fibroblast BABL-3T3 cells by the 
MTT assay. As shown in supplementary Table S3, free DOX and DOX/Fe-MIL-101 also possessed cytotoxicity 
in a time-dependent manner in all cells. When treatment time was prolonged to 72 h, both free DOX and DOX/
Fe-MIL-101 gave approximate IC50, indicating DOX/Fe-MIL-101 has similar cytotoxic effects against HeLa, 
A549, and SKOV3 cells than free DOX. However, the IC50 values of DOX/Fe-MIL-101 were higher than that of 
DOX for the normal cells, suggesting DOX/Fe-MIL-101 also shows less toxicity against normal BABL-3T3 mouse 
embryonic fibroblasts cells. This selective toxicity was consistent with Fe-MIL-101.

Endothelial cells are the main component of new capillary vessels, and endothelial cell proliferation plays 
a critical role in the formation of new capillaries43. As proliferation, migration and capillary tube formation of 
endothelial cells are critical steps in angiogenesis44, we investigated the effects of Fe-MIL-101 on the prolifer-
ation of HUVECs. As illustrated in Fig. 1c, treatment with Fe-MIL-101 (3.12–25 μ g mL−1) for 24, 36, 48 and 
72 h resulted in inhibition of cell proliferation in a concentration-dependent and time-dependent manner. The 
inhibitory rates of HUVEC proliferation at 24, 36, 48 h and 72 h were 40.6 ±  1.5%, 50.1 ±  3.2%, 68.4 ±  4.4% and 
89.4 ±  1.6% for 25 μ g mL−1 Fe-MIL-101, respectively. There were significant differences in concentrations higher 
than 6.25 μ g mL−1 (*P <  0.01) (Fig. 1c). Previous studies demonstrated that ART exhibits anti-proliferation 
and anti-angiogenic activity as well as antitumour activity45. Interestingly, similar to the cytotoxicity study of 
Fe-MIL-101 and ART/Fe-MIL-101, Fe-MIL-101 was more effective than ART in inhibiting cell growth, and load-
ing ART did not improve the cytotoxicity effect.

The effect of Fe-MIL-101 on HUVEC proliferation in conditioned media (CM). Vascular endothe-
lial growth factor (VEGF) plays various functions in endothelial cells, including the induction of proliferation and 
differentiation46. VEGF increased the proliferation of HUVECs compared with controls (Fig. 1d). Moreover, CM 
from SKOV3 cells induced a significant increase in the proliferation of HUVECs to levels higher than treatment 
with VEGF. However, Fe-MIL-101 significantly inhibited cell proliferation under VEGF and CM treatment con-
ditions. Furthermore, Fe-MIL-101 displayed a similar anti-proliferation effect compared with SU5416, a selective 
inhibitor of VEGF tyrosine kinase activity.

Fe-MIL-101 induces apoptosis of HUVECs. To determine the underlying mechanism of Fe-MIL-101 
activity, the nuclear morphology of control and Fe-MIL-101 treated cells was observed by staining cell nuclei with 
Hoechst 33342 as previously described47. Apoptotic cells are generally characterized by condensation of chroma-
tin and/or nuclear fragmentation. HUVEC cells were cultured and exposed to Fe-MIL-101 at concentrations of 
12.5 and 25 μ g mL−1 for 48 h. As shown in Fig. 2a, control cells, which were uniformly blue, were viable, whereas 
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treated cells showed apoptosis, with nuclear shrinkage, chromatin condensation and cytoplasmic blebbing, and 
bright blue dots in the nuclei, representing nuclear fragmentation.

The FITC-Annexin-V and PI binding assay was used to further confirm Fe-MIL-101-induced apop-
tosis (Fig. 2b). In the dual parametric dot plots, the lower left quadrant represents the viable cell population 
(Annexin-V negative and PI negative), the upper right represents apoptotic cells undergoing secondary necrosis 
at the last stage or dead cells (Annexin-V and PI double positive), and the lower right represents the early stage 
apoptotic cell population (Annexin-V positive and PI negative). As the concentration of Fe-MIL-101 increased 
from 3.12–25 μ g mL−1, the Annexin-V positive/PI negative cells increased from 3.7% to 13.7%, whereas the dou-
ble positive cells increased from 17.4% to 40.2%. Increasing numbers of apoptotic cells progressed from the early 
stage to the late stage resulting in either death or secondary necrosis under Fe-MIL-101 at higher concentrations. 
This data confirms again that Fe-MIL-101 can effectively induce the apoptosis of HUVECs.

Fe-MIL-101 decreases mitochondrial membrane potential of HUVECs. Mitochondria play 
a key role in the apoptotic pathway of cell death and changes in mitochondrial membrane permeability com-
prise the early events during apoptosis48. Mitochondrial membrane potential was measured using JC1 (5, 5′ ,  
6, 6′ -tetrachloro-1, 1′ , 3, 3′ -tetraethyl-imidacarbocyanine iodide) staining. Treatment of HUVEC cells with 
Fe-MIL-101 resulted in increased JC1 green fluorescence, indicating a decrease of mitochondrial membrane 

Figure 2. HUVEC apoptosis induced by Fe-MIL-101 for 48 h. (a) Hoechst 33342 staining of HUVEC cells. 
(b) After incubation with Fe-MIL-101 (0–25 μ g mL−1) for 48 h, HUVECs were stained with FITC-Annexin-V 
and PI and analysed by flow cytometry. (c) Mitochondrial membrane potential was measured in HUVECs by 
JC1 and fluorescence probe staining. (d) HUVECs were treated with Fe-MIL-101 (0–25 μ g mL−1) for 48 h and 
stained with propidium iodide to determine cellular DNA content by flow cytometry.
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potential (Fig. 2c). These results indicate that Fe-MIL-101 induced apoptosis in HUVEC cells through the mito-
chondrial pathway. The adverse changes in mitochondrial function due to Fe-MIL-101, with possible association 
of intracellular reactive oxygen species (ROS) production, trigger the apoptosis process49. Fen+ ions can generate 
ROS through the Fenton or Haber–Weiss reaction when in contact with cells34,50. It is noteworthy that redox 
active metals and ROS pathways alter the plasma membrane potential, provoking changes in cell cycle regula-
tion51, or causing the membrane lipid peroxidation52, resulting in cellular death or apoptosis34.

Fe-MIL-101 induces G0/G1 phase cell cycle arrest in HUVEC cells. The cell cycle is an important 
key step in angiogenesis53,54. We next performed flow cytometry to analyse the effects of Fe-MIL-101 on the 
cell cycle. Analysis of the cell cycle distribution of HUVEC cells indicated that Fe-MIL-101 treatment induced 
an increase in the percentage of G0/G1 phase cells and a reciprocal reduction in the percentage of S and G2/M 
phase cells (Table 2, Fig. 2d). Treatment with Fe-MIL-101 for 48 h led to a dose-dependent accumulation of cells 
in G0/G1 phase (64.5% in control cells versus 53.9% in cells treated with 25 μ g mL−1 Fe-MIL-101; P <  0.05) and 
a decrease in the number of cells in S phase (P <  0.05) and G2/M phase (P <  0.05). We next evaluated apoptosis 
levels by flow cytometric Annexin V/PI assay. The results showed that 48 h incubation of cells with 3.12–25.0 μ g  
mL−1 Fe-MIL-101 resulted in 21.1–53.9% apoptotic populations (Table 2), indicating that the apoptosis rate sig-
nificantly increased with the increase of Fe-MIL-101 concentration (Fig. 2b). These data show that Fe-MIL-101 
induced apoptosis on HUVECs via G0/G1 cell cycle arrest similar to nanoparticles such as [Gd@C82(OH)22]n54, 
gold nanoparticles (AuNP40)55, SDS-solubilized single-walled carbon nanotubes (SDS-SWCNTs)56 and silica nan-
oparticles57. For example, [Gd@C82(OH)22]n treatment of human MCF-7 breast cancer cells and human ECV304 
umbilical vein endothelial cells induced G0/G1 phase arrest and induced cell apoptosis by downregulating CDK4, 
CDK6, cyclin E, cyclin D2, and Bcl-2 expressions and by upregulating p21 and Bax expressions54. AuNPs induced 
cell cycle arrest at the G0/G1 phase and induced apoptosis in A549 lung cancer cells55. SDS-SWCNTs caused cell 
cycle arrest at G0/G1 phase in normal rat NRK 52E kidney tubular cells56. Silica nanoparticles induced G1 phase 
arrest through upregulation of p53 and p21 in the rat embryonic ventricular myocardial cell line H9c2(2-1)57.

The effect of Fe-MIL-101on normal BABL-3T3 cells was also examined by flow cytometry for comparison. 
The results were shown in supplementary Fig. S4. The cell was mainly distributed G0/G1 phase (76%) in control 
cells by flow cytometry analysis. Treatment with different concentration of Fe-MIL-101 for 48 h not led to a 
change in G0/G1 phase. As well as Fe-MIL-101 has no effect on the distribution of cell S phase and G2/M phase, 
suggesting Fe-MIL-101 did not disrupt the cell cycle of normal cells. However, Fe-MIL-101 treatment induced an 
increase in the percentage of G0/G1 phase and a reciprocal reduction in the percentage of S and G2/M phase in 
human umbilical vein endothelial cells (HUVECs). Above results indicated that Fe-MIL-101 effectively induced 
HUVECs arrest at G0/G1 phase, but did not disrupt the cell cycle of normal cells, which maybe the cause of selec-
tivity toxicity towards cancer cells but not the normal cells.

Effects of Fe-MIL-101 on migration of HUVECs. The migration of endothelial cells is an important step 
of angiogenesis. We performed wound-healing experiments and measured the amount of migrating cells to the 
wound area after HUVEC cells were treated with 12.5 μ g mL−1 of Fe-MIL-101. ART, which inhibits migration of 
HUVECs45, served as a positive control (Fig. 3a). The migrating number of cells treated by Fe-MIL-101 was less 
than those treated with ART and the controls (Fig. 3b). In addition, Fe-MIL-101 inhibited HUVEC migration in 
a time-dependent manner. This effect was not due to cell death, because HUVECs did not show any morpholog-
ical changes such as blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation or chromosomal 
DNA fragmentation. HUVEC proliferation was also determined by MTT assay. Figure 1c shows that the inhi-
bition rate was about 13.1% when HUVEC cells were treated with 12.5 μ g mL−1 Fe-MIL-101 for 24 h, indicating 
that this concentration of Fe-MIL-101 was non-toxic over a short period and the inhibition of cell migration 
was not caused by the cytotoxicity of Fe-MIL-101. Together this indicates that Fe-MIL-101 possessed a stronger 
inhibitory effect on migration than control and ART groups, and this inhibitory effect was not due to the cyto-
toxicity of Fe-MIL-101. Fe-MIL-101 also inhibited SKOV3 cell migration in a time- and dose-dependent manner 
(supplementary Fig. S4). This suggests that Fe-MIL-101 has the potential to inhibit tumour and endothelial cell 
migration.

Effects of Fe-MIL-101 on HUVEC tube formation. Tumour growth and proliferation depends on 
the formation of new blood vessels (vasculogenesis and angiogenesis) for the supply of oxygen and nutrients. 
VEGF induced endothelial cell morphogenic differentiation into capillary-like structures58 and CM collected 
from tumour cells increased endothelial cell proliferation, migration and tube-like structure formation in vitro59. 

Conc. μg mL−1

Distribution of cell cycle (%)

Apoptosis rate (%)G0/G1 S G2/M

0 78.5 ±  1.7 18.1 ±  1.1 13.3 ±  1.1 7.4

3.12 87.4 ±  2.3 5.5 ±  2.3 9.9 ±  2.1 21.1

6.25 88.8 ±  2.2 2.3 ±  1.6 8.4 ±  1.4 22.2

12.5 91.9 ±  2.7* 1.9 ±  1.6* 5.9 ±  1.6 40.0*

25 92.8 ±  2.5* 1.9 ±  1.0* 5.1 ±  2.1 53.9*

Table 2.  Apoptosis of HUVEC cells when treated with Fe-MIL-101 for 48 h detected by flow cytometry.
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Therefore, we assessed the effect of Fe-MIL-101 on new blood vessel formation in vitro of HUVECs treated with 
10 ng mL−1 VEGF or CM collected from SKOV3 cells. As shown in Fig. 4a, HUVECs formed a robust and com-
plete tube network within 12 h post-seeding. Tube formation of HUVEC was observed in all groups. The tubes 
of the CM treated group were longer than the VEGF treated group, which may be because CM contains some 
pro-angiogenic proteins, such as VEGFs, angiopoietin-2 and basic fibroblast growth factor (bFGF)60. Fe-MIL-101 
(12.5 μ g mL−1) partially abolished this process with an observed reduction of number and length of tube-like 
structures. Capillary tubes were completely disassembled in the presence of 25 μ g mL−1 Fe-MIL-101. There was 
an approximately 60–90% reduction in the total tube length per field following 12.5 and 25 μ g mL−1 Fe-MIL-101 
treatment for 12 h (Fig. 4b,c), suggesting a decrease in a dose-dependent manner. Moreover, Fe-MIL-101 also 

Figure 3. Fe-MIL-101 inhibits HUVEC cell migration. (a) Scratches were introduced by scraping the cell 
monolayer with a pipette tip. Scale bar: 100 μ m. (b) Relative migration activity. Data represent the mean SD 
(n =  3). **P <  0.01, *P <  0.05 compared with control.

Figure 4. Fe-MIL-101 and SU5416 inhibit VEGF-induced or CM-induced tube formation of endothelial 
cells. (a) Dil-labeled HUVECs were inoculated on Matrigel-coated wells and treated with VEGF (10 ng mL−1) 
or CM prepared from SKOV3 cells in the presence or absence of either Fe-MIL-101 or 20 μ M of SU5416. Scale 
bar: 200 μ m. (b) Cumulative tube length in four fields/well (P <  0.05). (c) The inhibition percentage of the tube 
length in cells treated as indicated.
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had better antiangiogenic activity compared with the inhibitor SU5416 (20 μ M). As shown in Fig. 4b, the length 
of tubes induced by 25 μ g mL−1 Fe -MIL-101 was approximately three-fold shorter than that induced by SU5416 
in the VEGF group and about 5.5-fold shorter than the length of tubes induced by SU5416 in the CM group. 
Similar results were observed in the group pre-treated with 25 μ g mL−1 Fe-MIL-101 (Fig. 5a–c). In the presence 
of VEGF, tube formation was inhibited by 93%, which showed a comparable effect in the presence of CM. AgNPs9  
(80 μ g mL−1) inhibited about 80% tube formation of bovine retinal endothelial cells on Matrigel. HMCNs23 
effectively inhibited the formation of tubes induced by VEGF. Based on the inhibition percentage equation, 
Fe-MIL-101 inhibited more than 90% tube formation of HUVECs (Figs 4c and 5c), suggesting that Fe-MIL-101 
exhibited better antiangiogenic activity compared with AgNPs and HMCNs. These data show that Fe-MIL-101 
could serve as a potential candidate for anti-angiogenic therapy.

Expression of MMP-2 and MMP-9 in SKOV3 and HUVEC cells. MMPs appear to play an important 
role in the process of tumour progression and angiogenesis of endothelial cells. Thus, we investigated MMP-2/9 
protein expression in SKOV3 and HUVEC cells. MMPs are secreted as pro-enzymes that become active when 
cleaved. Western blot analysis showed that the total protein expression of MMP-2 (MMP-2 and active-MMP-2) 
and MMP-9 markedly decreased in SKOV3 cells upon Fe-MIL-101 treatment in a dose-dependent manner 
(Fig. 6a). Analyses of MMPs in HUVECs showed that VEGF and CM can upregulate the expression of MMP-2, 
MMP-9 and their active forms (Fig. 6b,c). These results are consistent with previous studies61,62. It is also inter-
esting to note that treatment with Fe-MIL-101 significantly inhibited VEGF or CM-induced upregulation of 
MMP expression and activities. Moreover, MMP-2/9 levels in SKOV3 cells were significantly diminished in a 
dose-dependent manner upon treatment with Fe-MIL-101 for 24 h. Recent studies have shown that MMP-2 
and MMP-9 are critical in the progression of angiogenesis. For example, the fullerene-based nanoparticle Gd@
C82(OH)22 and hollow mesoporous carbon nanocapsules (HMCNs) serve as potent antiangiogenesis inhibitors 
through downregulating multiple angiogenic factors including MMP-2/921,23. Compared with Gd@C82(OH)22, 
HMCN nanoparticles, the synthesis of Fe-MIL-101 is more simple. Moreover, Fe-MIL-101 possesses better activ-
ity of inhibition of MMP-2/9 than HMCN nanoparticles. Together the above results reveal that proliferation 
and migration of tumour cells and HUVECs were inhibited in the presence of Fe-MIL-101. Numerous gene 
products including urinary plasminogen activator, matrix metalloproteinases (MMP-2, MMP-9) and cyclooxy-
genase 2 and other chemokines regulate cell migration, invasion and tube formation processes63. Our results show 
that the expressions of MMP-2 and MMP-9 proteins in SKOV3 and HUVEC cells incubated with Fe-MIL-101 

Figure 5. Tube formation is influenced by pre-treatment with Fe-MIL-101. (a) Capillary structure formation 
was observed in HUVECs incubated with Fe-MIL-101 (12.5, 25 μ g mL−1) after 24 h. Scale bar: 200 μ m.  
(b) Cumulative tube length in four fields/well (P <  0.05). (c) The inhibition percentage of the tube length in cells 
treated as indicated.
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are significantly downregulated in a concentration-dependent manner, suggesting that Fe-MIL-101 exhibits 
significant inhibitory effect on the metastasis of metastatic cancer cells by downregulating the expressions of 
metastasis-related proteins.

Conclusions
Fe-MIL-101 was found to elicit anti-proliferative effect on HeLa, A549, SKOV3 cancer cells and HUVECs and 
showed less toxicity against BABL-3T3 normal mouse embryonic fibroblast cells. Fe-MIL-101 may have a poten-
tial utility to distinguish effectively between HeLa, A549, SKOV3 tumour cells and normal cells. Moreover, 
Fe-MIL-101 effectively induced apoptosis of HUVECs through the mitochondrial pathway and caused G0/G1 
cell cycle arrest, but has no effect on cell cycle of normal BABL-3T3 cells. In addition, Fe-MIL-101 suppressed 
angiogenesis processes in vitro. Fe-MIL-101 has the potential to inhibit tumour and endothelial cell growth 
and migration mainly through downregulation of MMP-2/9 protein expression. Therefore, the antitumour and 
anti-angiogenic efficacy of Fe-MIL-101 suggest that Fe-MIL-101 may be a promising novel candidate for cancer 
chemotherapy and our results help provide new insights into the application of MOFs.

Methods
Chemicals and instrumentation. Terephthalic acid (H2BDC, 99%), ferric chloride hexahydrate (FeCl3• 
6H2O, 99%), ethanol (99.5%), and N, N dimethylformamide (DMF, 99.9%) were purchased from Alfa Aesar 
(Ward Hill, MA) and used for synthesis. All organic solvents were of analytical grade. Artesunate (C19H28O8, 
98%, MW =  384.4) was purchased from Guiling Pharmaceutical Co. Ltd., (Guangxi, China). Oxaliplatin was 
purchased from Jiangsu Aosaikang Pharmaceutical Co., Ltd., (Nanjing, China). Doxorubicin hydrochloride 
(8S,10S) -10-(4-amino-5-hydroxy-6-methyl-tetrahydro-2H-pyran-2-yloxy) -,8,11 – trihydroxy -8- (2-hydroxy-
acetyl)-1-methoxy -7,8,9,10 -tetrahydrotetracene -5, 12-dione were purchased from Alfa Aesar (Ward Hill, MA). 
The Annexin-V/PI detection apoptotic kit, JC1 lipophilic cation (5, 5′ , 6, 6′  tetrachloro 1, 1′ , 3, 3′  tetraethyl 
benzimidazol carbocyanine iodide), and mitochondrial membrane potential detection kit were from Beyotime 
Institute of Biotechnology (Jiangsu, China).

Figure 6. Inhibitory effects of Fe-MIL-101 on the expressions of MMP-2/9. Inhibitory effects of Fe-MIL-101 
on the expressions of MMP-2/9 in SKOV3 cells (a), in HUVEC cells line induced by VEGF (b), and under 
induction of CM (c).
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Fourier transform infrared measurements were performed on a Nicolet 8700 instrument. X-ray powder 
diffraction (XRD) experiments were conducted on a D/max-3B spectrometer with Cu Kα  radiation. Pore size 
distributions, BET surface areas and pore volumes were measured by nitrogen adsorption/desorption measure-
ments using a Micromeritics Tristar II Surface area and porosity analyser. Prior to the analysis, the samples were 
degassed at 90 °C for 1 h. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis was 
used to determine the contents of Fe3+ released from Fe-MIL-101. ICP-AES measurement was carried out with 
a Shimadzu ICPS-1000IV model. Fluorescence spectroscopy measurements were carried out using a F-7000 FL 
Spectrophotometer. Cells were analysed using a FACSCalibur flow cytometer (Becton Dickinson & Co., Franklin 
Lakes, NJ) and an Olympus IX73 microscope.

Synthesis of Fe-MIL-101. MOF Fe-MIL-101 was synthesized with ferric hydroxide and terephthalic acid 
according to the literature1. Briefly, FeCl3• 6H2O (0.675 g, 2.45 mmol) and H2BDC (0.206 g, 1.24 mmol) were 
added slowly into DMF (15 mL) solution. The mixture was stirred for 10 min at room temperature, and then 
transferred into a Teflon-lined stainless steel autoclave and heated at 110 °C for 20 h. The resulting brown solid 
was filtered off, and the raw product was purified by washing in hot ethanol (70 °C, 3 h), filtered off, and dried in 
an oven (70 °C, 30 min). The particles were isolated by centrifuging and washed with DMF and ethanol to remove 
any unreacted starting materials.

Incorporation of artesunate and doxorubicin. Artesunate (ART) and Doxorubicin (DOX) were loaded 
in Fe-MIL-101 according to the literature27. Briefly, 20 mg Fe-MIL-101 and 40 mg ART were added in 10 mL 
acetone solution and stirred for 72 hours. The precipitate was separated by centrifuging at 13 000 rpm and washed 
several times with acetone. Then, the ART/Fe-MIL-101 was prepared and dried under vacuum during 3 days. The 
ART was quantified by was estimated by UV-Vis spectroscopy at 238 nm. The ART contents were determined to 
be 0.70 g of ART per gram of the sample of Fe-MIL-101 (0.70 g/g material).

12.5 mg Fe-MIL-101 was added in 5 mL of a solution of DOX in ethanol (5 mg mL−1) under stirring at room 
temperature for 72 hours. The resulting nanoparticles were then purified by centrifugation and washed several 
times with ethanol. This process was repeated until no fluorescence signal from free, non-encapsulated drug 
was detected in the supernatant solution. Then, the DOX/Fe-MIL-101 was prepared and dried under vacuum 
during 3 days. DOX was quantified by fluorescence spectroscopy (emission maximum at 551 nm when excited at 
472 nm). The DOX contents were determined to be 0.43 g of DOX per gram of the sample of Fe-MIL-101 (0.43 g/g 
material).

Cell culture. BABL-3T3 mouse embryonic fibroblasts cells, A549 human lung adenocarcinoma cells, HeLa 
human cervical cancer cells, and SKOV3 human ovarian cancer cells were purchased from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). The BABL-3T3 cell line was cultured in DMEM (high glucose) and 
other cells were grown in DMEM (low glucose) containing 10% fetal bovine serum. HUVECs were isolated from 
term umbilical cord veins using collagenase and cultured in DMEM supplemented with 20% fetal bovine serum. 
All cell lines were grown at 37 °C in a humidified 5% CO2 atmosphere. HUVEC cells were used within 6 passages.

MTT assays. SKOV3, A549, HeLa, BABL-3T3 and HUVEC cells were plated in 96-well plates at a density 
of 1 ×  104 cells per well. After 24 h of culture in the normal growth medium, cells were exposed to various con-
centrations (1.56–25 μ g mL−1) of Fe-MIL-101 for 24, 48 and 72 h. Cells were incubated with 5 μ g mL−1 MTT 
solution for 4 h, and 150 μ L DMSO was added for dissolving crystals. Absorbance at 490 nm was determined 
using a Spectra Max 190 microplate spectrophotometer (Molecular Devices Corporation, USA). Cell numbers 
were obtained as absorbance values. The results were expressed as IC50 values. The experiment was repeated at 
least three times.

Conditioned media sample preparation and the effect of Fe-MIL-101 on HUVEC proliferation in 
conditioned media. Conditioned media (CM) was collected from P6 SKOV3 cells. Cells at 80–90% conflu-
ence were washed with PBS three times and incubated with fresh DMEM without FBS medium (1 ml of medium 
per 9 cm2 of growth area) for 24 h at 37 °C. Media were then centrifuged (600 g, 10 min, 4 °C) and stored at −80 °C 
for further experiments.

Proliferation was assessed using the MTT assay in 96-well plates. HUVECs were incubated for 24 h in 10% FBS 
medium, and then replaced with 2% FBS media and incubated overnight before treatment. VEGF (10 ng mL−1)  
and SU5416 (20 μ M) were used as positive and negative control groups, respectively. Cells were exposed to of 
Fe-MIL-101 (25 μ g mL−1). After 24 h, 5 μ g mL−1 MTT reagent was added in solution for 4 h, and 150 μ L DMSO 
was added into plates for dissolving crystals. Absorbance at 490 nm was determined as described above.

Apoptosis assay by Hoechst 33342 staining. HUVEC cells were seeded at a density of 2 ×  105 cells/well 
on the surface of a cover slip in a 6-well plate in 2 mL medium containing 10% FBS. After 24 h, cells were treated 
with Fe-MIL-101 (12.5 or 25 μ g mL−1) and incubated for 48 h. Cells were washed with ice-cold PBS, and fixed 
with 4% paraformaldehyde for 10 min. The cells were incubated with Hoechst 33342 for 15 min at room temper-
ature after washing three times with 2 mL of PBS. The cover slips were mounted on glass slides and the cells were 
analysed using a confocal fluorescence microscopic system (Olympus IX73, Japan).

Flow cytometry analysis of apoptotic and necrotic cells. After chemical treatment, cells (1 ×  106) were 
harvested, washed with PBS, fixed with 70% ethanol, and maintained at 4 °C for at least 12 h. Pellets were stained 
with the fluorescent probe solution containing 5 μ g mL−1 PI and 1 μ g mL−1 FITC-Annexin-V in PBS on ice in dark 
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for 15 min. The fluorescence emission was measured at 490 nm using 488-nm excitation by a FACSCalibur flow 
cytometer (Beckman Dickinson & Co., Franklin Lakes, NJ). A minimum of 1 ×  104 cells was analysed.

Mitochondrial membrane potential assay. HUVECs were treated with Fe-MIL-101 for 48 h in 24-well 
plates and washed three times with cold PBS. Cells were incubated with 5 μ g mL−1 of JC1 for 20 min in culture 
medium at 37 °C in the dark. Cells were imaged under a fluorescence microscope (Olympus IX73, Japan).

Flow cytometry analysis of cell cycle. HUVECs were seeded into 6-well plates at a density of 1 ×  106 cells 
per well and incubated for 24 h in DMEM supplemented with 10% FBS at 37 °C and 5% CO2. The medium was 
removed and replaced with medium (final DMSO concentration, 0.05% v/v) containing Fe-MIL-101 (3.12, 6.25, 
12.5, or 25 μ g mL−1). After incubation for 48 h, the cell layer was trypsinized, washed with PBS and fixed with 
70% ethanol. Next, 20 μ L of RNAse (0.2 μ g mL−1) and 20 μ L of propidium iodide (0.02 μ g mL−1) were added to 
the cell suspensions and they were incubated at 37 °C for 30 min. Samples were analysed with a FACSCalibur flow 
cytometer (Becton Dickinson & Co., Franklin Lakes, NJ). A minimum of 1 ×  104 cells was analysed.

HUVEC migration assay. After cells were grown to confluence in a 6-well plate, cell monolayers were 
scratched with a 200-μ L pipette tip. Cells were washed twice and the medium was replaced by fresh CM in 
DMEM. After 24 h under various conditions, the number of migrated cells into the scratch area was quantified 
using an inverted microscope fitted with a digital camera (Olympus IX 73, Japan).

Tube formation assay. Tubular network formation assay was performed as described by Mirshahi64. Briefly, 
50 μ L Matrigel was added to each well of 96-well plates and the plates were incubated at 37 °C for 30 min for harden-
ing. Then, 100 μ L HUVEC suspensions (2 ×  105 cells per mL), different doses of Fe-MIL-101, VEGF (10 ng mL−1)  
and CM were seeded on the Matrigel-coated plates for 12 h. In the other group, HUVECs pre-treated with 
Fe-MIL-101 (12.5, 25 μ g mL−1), VEGF (10 ng mL−1) and CM for 12 h were prepared by trypsinization, washed 
once with growth medium, and re-suspended at 2 ×  105 cells per mL in growth medium. Cells (100 μ L) were gen-
tly added to the Matrigel-coated plates and incubated at 37 °C for 12 h. Tubular network formation was quantified 
by measuring the length of tubules in randomly chosen five fields under a fluorescence microscope (Olympus 
IX73, Japan). The total length of a tube-like network in each photograph was measured using Adobe Photoshop 
TM software. The inhibition percentage (%) of a sample was calculated by the following equation: inhibition per-
centage =  (LC−LS) /LC ×  100%, where LC is the average total capillary length of three control wells and LS is the 
average total capillary length of the three sample-treated wells.

Western blot. Cells were washed with cold PBS and resuspended in lysis buffer (20 mM Tris-HCl, 150 mM 
NaCl, 1% Triton X-100, SDS, 10% β -mercaptoethanol, 1 mM PMSF, EDTA and leupeptin) for 1 h on ice. The 
lysates were centrifuged at 4 °C for 15 min (14,000 g). Proteins were separated by 10% SDS-PAGE and transferred 
onto PVDF membranes by standard procedures. Membranes were incubated sequentially with blocking agents 
(5% non-fat milk in PBS-Tween), primary antibodies (MMP-2/9 1:200, β -actin 1:1000, GAPDH 1:3000) and 
HRP-conjugated secondary antibodies. The signal was detected by chemiluminescence agents.

Statistical analysis. All values are expressed as the mean ±  S.D. and the significant levels between two 
groups were assessed by Student’s t-test. Results were considered statistically significant at 95% confidence 
interval (i.e., P <  0.05). All figures and graphical readings shown were obtained from at least three independent 
experiments.
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