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Metabolic homeostasis is sustained by complex biological networks that respond to nutrient availability. Genetic and envi-

ronmental factors may disrupt this equilibrium, leading to metabolic disorders, including obesity and type 2 diabetes. To

identify the genetic factors controlling metabolism, we performed quantitative genetic analysis using a population of 199

recombinant inbred lines (RILs) in the nematode Caenorhabditis elegans. We focused on the genomic regions that control me-

tabolite levels by measuring fatty acid (FA) and amino acid (AA) composition in the RILs using targeted metabolomics. The

genetically diverse RILs showed a large variation in their FA andAA levels with a heritability ranging from 32% to 82%.We

detected strongly co-correlated metabolite clusters and 36 significant metabolite quantitative trait loci (mQTL).We focused

on mQTL displaying highly significant linkage and heritability, including an mQTL for the FAC14:1 on Chromosome I, and

another mQTL for the FA C18:2 on Chromosome IV. Using introgression lines (ILs), we were able to narrow down both

mQTL to a 1.4-Mbp and a 3.6-Mbp region, respectively. RNAi-based screening focusing on the Chromosome I mQTL iden-

tified several candidate genes for the C14:1 mQTL, including lagr-1, Y87G2A.2, nhr-265, nhr-276, and nhr-81. Overall, this

systems approach provides us with a powerful platform to study the genetic basis of C. elegans metabolism. Furthermore,

it allows us to investigate interventions such as nutrients and stresses that maintain or disturb the regulatory network con-

trolling metabolic homeostasis, and identify gene-by-environment interactions.

[Supplemental material is available for this article.]

Energy homeostasis is maintained by biological networks that are
affected by nutrient availability and keep functional balance at
cellular and molecular levels (Andreux et al. 2012). When this
equilibrium is disrupted by genetic and/or environmental pertur-
bations, such an imbalanced metabolic system can lead to meta-
bolic disorders, including obesity and type 2 diabetes (Andreux
et al. 2012). To study the interactions between genetic and en-
vironmental factors, different approaches are used in model or-
ganisms, including reverse and forward genetics (Williams and
Auwerx 2015). Reverse genetics approaches comprise techniques
that focus on the phenotypic impact of the knockdown, knockout,
or overexpression of specific candidate genes. This approach typi-
cally focuses on a single gene and therefore has several limitations
(Williams and Auwerx 2015): (1) The additive and nonadditive in-
teractions between gene variants cannot be observed; (2) common
variants with a subtle effect cannot be detected; and (3) prior hy-
potheses about the gene function are a prerequisite. Instead, for-
ward genetics bypasses these limitations as it exploits the natural
phenotypical variation in a population to identify causal genetic
variants (Williams and Auwerx 2015). This involves classic muta-
genesis screens and techniques such as quantitative trait loci
(QTL) analysis and genome-wide association studies (GWAS).
QTL analysis is a statistical technique that examines the associa-
tion between amarker genotype and a quantitative trait, i.e., a trait

with continuous phenotypic variation that is affected by genetic
and environmental factors. For QTL analysis, a segregated popula-
tion is used to find genomic regions that are associated with the
trait variation in the population (Slate 2005). GWAS relies on nat-
ural populations to identify common genetic variants associated
with traits and has been successful in identifyingmany loci associ-
ated with susceptibility to complex diseases such as type 1 and
type 2 diabetes (Visscher et al. 2017). In this study, we chose to
use the nematode Caenorhabditis elegans as a model organism to
explore genetic variation affecting metabolic parameters. Con-
siderable variation would validate C. elegans for further identifica-
tion of complex gene by environment interactions correlated with
metabolism.

C. elegans is a versatile model organism for understanding
complex genetic pathways underlying distinct phenotypes such
as stress response, lifespan, host–pathogen interaction, and behav-
ior (Gao et al. 2017b). The Kammenga group generated a segregat-
ing population of C. elegans derived from the genetically and
ecologically divergent strains N2 (Bristol) and CB4856 (Hawaii),
which is suitable for studying genome-to-phenome relations (Li
et al. 2006; Andersen et al. 2012; Sterken et al. 2015). The segregat-
ing population consists of 199 homozygous recombinant inbred
lines (RILs) that have been SNP genotyped and phenotyped for
several traits, including gene expression (Li et al. 2010; Rockman
et al. 2010; Viñuela et al. 2010) and stress-response hormesis (fa-
vorable response to mild stress) (Gutteling et al. 2007; Doroszuk
et al. 2009; Rodriguez et al. 2012; Snoek et al. 2017). The 1993These authors contributed equally to this work.
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RILs all have a different combination of
alleles derived from the N2 or CB4856
parental strains, allowing us to deter-
mine the natural influence of genetics
on a phenotypic trait.

InC. elegans, changes inmetabolism
are often studied at the transcriptional
level, and multiple metabolic genes
have been identified in worms (Hout-
kooper et al. 2013; Lopez-Otin et al.
2013; Gao et al. 2017b). At the same
time, to get a comprehensiveunderstand-
ing of the overall metabolic changes, one
has to get closer to measuring metabolic
physiology, for instance usingmetabolo-
mics. Based on recent advances in the
metabolomics field, our group developed
a sensitivemass spectrometry (MS)–based
platform for measuring metabolites in
C.elegans. Thisplatformallowsus to rapid-
ly detect 44 medium-chain, long-chain,
and very-long-chain fatty acids (FAs)
(C14:0-C30:0) and 19 amino acids (AAs)
in a sample of approximately 500 worms
(Gao et al. 2017a). Using this platform,
we measured metabolites in the RILs of
C. elegans on a large scale and identified
the effect of genetic variation onmetabo-
lism (Fig. 1). Overall, we systematically
investigated the genetic basis of metabo-
lism by QTL mapping, and based on our
findings, we propose that this RIL panel
is a powerful platform to study complex
metabolic traits thatunderlie gene-by-en-
vironment interactions.

Results

Metabolite levels in C. elegans show high heritable variation

To extract general principles about the complex genetics of me-
tabolism, we measured the impact of genetic variation on metab-
olite levels in 199 RILs using our recently established sensitive MS
platform (Fig. 1; Supplemental Table S1; Li et al. 2006; Thompson
et al. 2015; Gao et al. 2017a). We chose to collect young adult
worms for measuring their metabolite profiles as the metabolite
amounts at this age are not influenced by egg production or
aging per se (Gao et al. 2017a). The metabolite traits displayed
high levels of variation across the RILs, sometimes beyond
what was observed in the two parental strains, suggesting trans-
gressive segregation (Fig. 2A,B; Supplemental Table S1). For in-
stance, the two most abundant metabolites, C18:1 and alanine,
showed a large absolute difference between the RILs with the
lowest and highest abundance of 6.5- and 5.6-fold, respectively
(Supplemental Table S2). In addition, metabolites present at low-
er concentrations, including C20:3 and methionine, showed a
large absolute difference between the lowest and highest RIL
of 10.5- and 11.1-fold, respectively. Transgression was observed
for 18 metabolites, especially in FAs (FDR=0.05) (Supplemental
Table S3). Transgression analysis is a measure for the genetic
complexity of a trait, for instance due to genetic interactions. It
showcases that metabolite levels are affected by multiple poly-

morphic genes of which the alleles cause a balanced phenotype
in the parental lines.

Next, we calculated the broad-sense heritability (H2) of
thesemetabolite traits, which is a measure of the genetic contribu-
tion to the variation inmetabolite levels (Fig. 3). For highly herita-
ble traits, the contributing genomic loci (quantitative trait loci,
QTL) aremore likely to be found. To calculate theH2, wemeasured
metabolite levels in 51 RILs and the two parental strains an addi-
tional three times. We found significant heritability for 51 metab-
olite traits (FDR=0.05), ranging from 0.32 (tryptophan) to 0.69
(lysine) for the AAs (Fig. 3A), and from 0.32 (C22:1) to 0.82
(C14:1) for the FAs (Fig. 3B; Supplemental Table S4). Together,
our data show that both AAs and FAs have moderate to high heri-
tability, increasing the chance to identify significant QTL. Specif-
ically, the traits with nonsignificant transgression and high
heritability, for instance the FA C14:1 (H2 = 0.82), are most likely
associated with a single major locus explaining most of the meta-
bolic variation.

Metabolite levels exhibit strong correlations in the RIL cohort

Levels of different metabolites are likely correlated since homeo-
stasis is supported by integratedmetabolite networks (Houtkooper
et al. 2010). We calculated the correlations for all pairs of FAs and
AAs over all RILs independently. We found strong correlations

Figure1. Flowchart of the strategy to identify genetic loci that controlmetabolic traits.Metabolite pro-
files for 19 amino acids (AAs) and 44 fatty acids (FAs) were measured in 199 recombinant inbred lines
(RILs). Thesemetabolite profiles were plotted and correlated with the RIL genetic map, identifying genet-
ic loci linked to variation in metabolite levels (metabolite quantitative trait loci, mQTL). Subsequently,
these mQTL were verified/confirmed and fine-mapped using introgression lines (ILs), strains containing
a small locus of one parental strain in the genetic background of the other parental strain ([N2] orange;
[CB4856] blue).
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between different clusters of metabolites (Fig. 4). For AAs,
we observed a strong positive correlation cluster between several
hydrophobic AAs, including methionine and phenylalanine, the
hydrophilic AA tyrosine, and branched-chain AAs (BCAAs) valine,
leucine, and isoleucine (Fig. 4A). Another positively correlated
cluster was found in ornithine, citrulline, glycine, serine, lysine,
glutamic acid, and aspartic acid (Fig. 4A). This cluster negatively
correlated with the former positive cluster. Overall, we observed
correlations betweenmanymetabolites, suggesting shared genetic
variants that regulate the levels of these metabolites.

In the FA correlation profile, we observed a strong positive
correlation in several polyunsaturated FAs (PUFAs), includ-
ing C18:3, C20:3, C20:4, and C20:5 forming a small cluster (Fig.
4B). Strong correlations were also found in a large cluster of
long-chain and very-long-chain FAs. Another large cluster was
formed by C30:0 and several unsaturated FAs (e.g., C20:1, C22:1,
C24:5, and C24:6) (Fig. 4B). Notably, these last two clusters
showed a strong negative correlation with the first small cluster.
Taken together, the strong correlations within metabolite classes
imply that linked metabolite QTL (mQTL) could be detected
as many metabolites show similar patterns of variation over
the RILs.

Multiple QTL link metabolite levels

to causal loci

To identify loci that explain variation in
metabolite levels, we performed QTL
mapping on 56 metabolites measured in
the 199 RILs (Fig. 5A). We expected to
detect 80% of the genomic loci explain-
ing a minimum of 10% per locus of the
trait variation in this population when
using a single-marker model with the
−log10(p) > 3.7 as the significance thresh-
old (Supplemental Table S5).Wedetected
36 significant mQTL for 26 metabolites
(Fig. 5A; Supplemental Table S6), which
shows that specific loci affectingmetabo-
lite trait variation can be identified. We
observed 15 significant mQTL for eight
differentAAs.We found that fourAAs (ty-
rosine, phenylalanine, methionine, and
leucine) shared two broad mQTL peaks
on Chromosome I (∼10.5 Mbp) and
Chromosome IV (∼11.0 Mbp). These
four AAs also displayed strong positive
correlations between the trait levels in
the RILs (Fig. 4A). For the AA methio-
nine, an additional mQTL was found on
Chromosome X. Individually, each of
these three QTL explained∼7%of the to-
tal variation, and together they explained
18.5%of the variation inmethionine lev-
els between theRILs inanadditivemodel.
Furthermore, only two AAs, lysine and
alanine, were eachmapped to a single lo-
cus, on Chromosomes IV and V, respec-
tively. For the FA traits, we detected a
total of 21 significant mQTL for 18
unique FAs. Among these FAs, we ob-
served several sharedmQTL. For instance,
we detected a mQTL in the first 0.6 Mbp

of Chromosome II for C14:0, C15:0, and C17:0. Also, the mQTL
for three very-long-chain FA species—C24:1, C24:5, and C24:6—
were all mapping to a locus on Chromosome I, with a peak at
10.5 Mbp. Across the QTL analysis, the most significant mQTL
we detected [−log10(p) = 18.8] was for C14:1, which mapped to a
single locus on Chromosome I within a region of 12.2–14.7 Mbp.
This metabolite trait also had the highest heritability (H2 = 0.82),
without significant transgression.

Epistatic interactions between mQTL and genetic complexity

In order to investigate whether epistasis played a role in themetab-
olite levels, we took two approaches. First, we tested for interac-
tions between the mQTL peaks of the nine metabolites with
multiple peaks, but failed to identify strong interactions (P>
0.01) (Supplemental Table S7). Second, we conducted a genome-
wide two-marker scan for interactions. We identified 17 locus–lo-
cus interactions for six metabolites: C15:1, C16:1, C24:5, alanine,
aspartic acid, and glutamine (FDR<0.1) (Supplemental Table S7).
Combining the single-marker and two-marker scanmQTLmodels,
we calculated the amount of heritable variation explained by these
mQTL. For some metabolites, such as isoleucine, no variation

A

B

Figure 2. Metabolite levels across the 199 RILs and the two parental strains. (A) The average trait level
of 19 AAs is first expressed as percentage of total AAs, followed by z-score transformation. The 199 RIL
values are indicated in gray, the value of the parental strain N2 in orange, and the value of the parental
strain CB4856 in blue. Trait levels below limit of quantification of AAmeasurement (0.4 nmol/mg of pro-
tein) are not shown. (B) The mean values of the levels of 44 FAs are shown after data transformation (the
absolute FA concentration is expressed as a percentage over total FAs, followed by z-score transforma-
tion). The FA levels in 199 RILs are indicated in gray, those in the parental strain N2 and CB4856 are in-
dicated in orange and blue, respectively. FA levels below limit of quantification of the measurement (0.03
nmol/mg of protein) are not shown.
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could be explained despite a high heritability. In contrast, for
C14:1 ∼50% of the heritability was explained by mQTL. In total,
for 28 metabolites part of the H2 could be explained by the identi-
fied mQTL (Fig. 5B).

To gain an overview of the genetic complexity and its effect
on the detection of QTL, we identified the overlap betweenmetab-
olite traits with significant mQTL, transgressive segregation, and
heritability (Fig. 5C): 7/18 metabolite traits (39%) that display sig-
nificant transgression also mapped to significant mQTL, and 17/
18 metabolite traits (94%) that have significant transgression
also had relatively high heritability. Furthermore, 27/51 metabo-
lite traits (53%) that showed a moderate to high heritability were
mapped to one or more significant mQTL. Overall, a negative rela-
tionwas observed between the number of transgressive strains and
the successful mapping of mQTL (Supplemental Fig. S1). These
findings suggest that manymetabolite traits showed heritable var-
iation and the genetic regulation of these metabolite traits was
highly complex and likely involved multiple interactions between
different genetic variants. This was supported by an analysis of the
heritable variation in the parental strains versus the H2 in the RILs
(Supplemental Fig. S2). Here we observed that most of the H2 was
driven either by many additive loci with opposing effects or by ge-
netic interactions such as epistasis.

Independent confirmation of the C14:1 and C18:2 mQTL using

introgression lines

Next, we decided to focus on two mQTL that displayed the most
significant linkage and high heritability: the mQTL for C14:1 on
Chromosome I and the one for C18:2 on Chromosome IV. For
C14:1, 34% of variation could be explained by the genotype at

the peak location on Chromosome I
(Fig. 6A,B), and RILs with a CB4856 ge-
notype at this QTL were associated with
higher levels of C14:1 than RILs with
an N2 genotype at this QTL (Fig. 6B).
This shows that a major locus is affecting
C14:1 levels between these strains.

We next used introgression lines
(ILs) to independently validate the C14:
1 mQTL and narrow down the mQTL
peak to a smaller region. These ILs con-
tain a small genomic segment derived
from one parental strain introgressed
into the genetic background of the
other parental strain (Fig. 6C). For
C14:1, we used eight ILs (Sterken 2016).
Four strains (WN212, WN215, WN217,
and WN218) contain a CB4856-derived
introgression in an N2 genetic back-
ground (Doroszuk et al. 2009), and four
strains (CBN017, CBN019, CBN020,
and CBN021) contain an N2-derived
introgression in a CB4856 genetic back-
ground (Sterken 2016). The introgres-
sions of both IL sets cover the C14:1
mQTL on Chromosome I (Fig. 6C). We
measured the metabolite levels in the
ILs and tested the hypotheses put for-
ward from the RIL experiment (Fig. 6D;
Supplemental Fig. S3): (1) An N2 locus
decreases the C14:1 abundance, and

(2) a CB4856 locus increases the abundance. We found that the
four CB4856-background ILs had lower C14:1 levels, confirming
the first hypothesis (FDR<0.05). Three out of four N2-background
ILs had increased C14:1 levels, which confirmed the second hy-
pothesis (FDR<0.05). WN218 did not show a significant increase
in the C14:1 abundance (Fig. 6D). By analyzing the introgression
locations, we hence narrowed down the mQTL region to 12.4–
13.8 Mbp.

For the FA C18:2, two QTL were identified: one on Chro-
mosome II (lower abundance in N2 genotype) and one on Chro-
mosome IV (higher abundance in N2 genotype) (Fig. 6E,F).
Together, these two loci explain 27%of the trait variation. For con-
firmation of the C18:2mQTL, we used twoN2 genetic background
ILs (WN251 andWN252) and four CB4856 genetic background ILs
(CBN079, CBN080, CBN081, and CBN089) (Fig. 6G). As for C14:1,
we tested the prediction from the IL panel: an increase in abun-
dance by the CB4856 locus and a decrease by the N2 locus (in pres-
ence of the minor mQTL) (Fig. 6H; Supplemental Fig. S4). Here,
three of the four CB4856-background ILs and one of the two N2-
background ILs confirmed themQTL for C18:2 (FDR<0.05). Based
on theminimum region of the confirming ILs, themQTL could be
confirmed to the region spanning 2.8–6.4 Mbp. Overall, these re-
sults independently confirmed the detection of the two mQTL
in the RILs, demonstrating that this approach is an important
step to make forward genetics possible for identifying complex ge-
netics underlying metabolic regulation.

Identification of candidate genes in the Chromosome I mQTL

In order to identify candidate genes that might underlie the varia-
tion inmetabolite levels, we performed a candidate gene approach

A

B

Figure 3. Heritability analysis of AAs and FAs. We estimated broad-sense heritability (H2) of metabolic
traits based on a set of 51 RILs thatweremeasured at least three times. The bars indicate theH2, where the
dashed line indicates a permutation-based false discovery rate (FDR) of 5% (based on 1000 permuta-
tions). We found evidence for strong, significant, heritable variation in most AA (A) and FA (B) abundanc-
es, ranging from 0.32 to 0.82 (FDR =0.05). Only for FA C15:1 and C22:6 no significant H2 was found.
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on the Chromosome I mQTL, because
this was the most significant QTL but
also because three FAs mapped to the
same locus. A computational approach
was used to prioritize candidate genes
by compiling a list of polymorphic genes
that are (1) involved in lipid metabolism
or (2) transcription factors (Thompson
et al. 2015; Kanehisa et al. 2016; Lee et
al. 2018). These were cross-referenc-
ed with the single-marker mQTL peaks.
Candidates were prioritized based on
polymorphisms that lead to an aberrant
protein or potentially differential reg-
ulation (Supplemental Table S8). Next,
we analyzed C14:1 profiles of N2 worms
with RNAi against a selection of 19 genes
from all the candidates. The C14:1
amounts in RNAi-treated worms were
compared to worms treated with control
RNAi (Escherichia coli HT115 strain)
(Supplemental Fig. S5). Of all 19 candi-
dates tested, we found that worms fed
with RNAi targeting lagr-1, Y87G2A.2,
nhr-265, nhr-276, and nhr-81 contained
a significantly higher amount of C14:1
compared to the control (Supplemental
Fig. S5A,B). The mammalian homolog
of lagr-1 is CERS1, which encodes
ceramide synthase 1 catalyzing the syn-
thesis of C18 (dihydro)ceramide (Zhao
et al. 2011). It was previously shown
that worms with reduced expression
of lagr-1 have a reduced lipid content
using Nile Red staining (Ashrafi et al.
2003). Y87G2A.2 encodes an enzyme
that functions similarly to mammalian
acyl-CoA thioesterase 8, which catalyzes
the hydrolysis of acyl-CoA to free FAs in
peroxisomes (Hunt and Alexson 2002).
Although transcription factors nhr-265,
nhr-276, and nhr-81 have never been
studied on their roles in lipid metabo-
lism, our findings provide potential
novel functions of these transcription
factors that could be explored in future
work. Because the long-chain FA C15:1
and the very-long-chain FA C26:0 also
mapped to the same Chromosome I lo-
cus, we also measured the amount of
C15:1 and C26:0 in the same RNAi-treat-
ed samples (Supplemental Fig. S5C,D).
Worms fed with RNAi against acox-1.1
or scrm-2 showed significantly decreased
C15:1 amounts, suggesting a causal role
of these two genes in the regulation
of lipid abundance (Supplemental Fig.
S5C). The C26:0 concentration increased
when acox-1.1 or acox-1.4 (isoforms of
the same gene) was knocked down
(Supplemental Fig. S5D). This is fully in
line with the suspected biochemical

A

B

Figure 4. Correlation analysis of AA and FA species in the RIL strains. (A) Correlation heat map of AA
profiles of all the RIL strains. There was a strong cluster of methionine, tyrosine, phenylalanine, arginine,
and branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Another positively correlated
cluster was found in ornithine, citrulline, glycine, serine, lysine, glutamic acid, and aspartic acid. The for-
mer positive cluster was negatively correlated with some AAs from the latter cluster, including proline,
aspartic acid glutamic acid, lysine, serine, and glycine. (B) Correlation heat map of FA profiles of the
RILs. Strong correlation was found in a group of long-chain and very-long-chain FAs. Polyunsaturated fat-
ty acids (PUFAs) were also clustered and positively correlated.
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role of these proteins, since these are homologs of human ACOX1
encoding peroxisomal acyl-coenzyme A oxidase 1. This enzyme
catalyzes the first reaction of the very-long-chain FA oxidation
pathway in peroxisomes (Wanders and Waterham 2006).

Discussion

Imbalanced metabolic homeostasis often leads to chronic meta-
bolic diseases (Gao et al. 2014). How genetic and environmental
factors contribute to disturbed metabolism differs significantly

among individuals and this process remains elusive (Andreux
et al. 2012). Recent technological advances in “-omics” studies
have made it possible to measure large-scale interactions in
many components of a cell, allowing the study of complex biolog-
ical systems and identification of new biochemical mechanisms
(Williams et al. 2016). An example of such work is a GWAS on hu-
man blood metabolites collected from two European population
studies (Shin et al. 2014). Among many associations, there was a
striking association between the SCD gene and the FAmyristoleate
C14:1 (Shin et al. 2014). Although mammalian model systems

A

C

B

Figure 5. QTL mapping of metabolite levels in the 199 RILs. (A) To identify genetic factors responsible for the observed metabolite trait variations,
we performed QTL mapping with the metabolite profiles of 199 RILs. In total, 36 significant mQTL were detected for AA and FA traits at an FDR=0.05
[−log(p) > 3.7], ranging from 4.2 to 16.5 (Supplemental Table S7). The x-axis displays the position of the QTL in mega base pairs (Mbp) for each chromo-
some, and the y-axis displays the trait for which a significant QTL was found. (B) The heritability of each metabolite and the amount of variation explained
by identified mQTL. Two classes of mQTL are distinguished: additive loci and locus–locus interactions. (C) Overlapping metabolite traits that are identified
in QTLmapping, heritability analysis, and transgressive segregation analysis. Except for onemetabolite trait (C15:1), all metabolite traits that weremapped
to one or more significant QTL were highly heritable. Seven transgressive metabolite traits appeared to be associated with one or more significant QTL.
These seven traits also have significantly higher heritability.
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Figure 6. QTL peaks for C14:1 andC18:2 levels and narrowing down theQTL peak regionswith ILs, respectively. (A) A strongQTL for C14:1was detected
onChromosome I (the dashed line indicates FDR=0.05 threshold). (B) The genetic variations attributed to aQTLwere calculated by the correlation between
themetabolite level and the genotype at the peak location. RILs that have aCBmarker at this locus have a relatively higher abundance of C14:1 compared to
those that have anN2marker. Thirty-four percent of the variation in FAC14:1 levels can be explained by genetic variation onChromosome I. (C) Genotypes
of the ILswith either aCB4856backgroundor anN2background. Thegenomeof an IL is composedof a recipientgenomecontributedbyoneof theparental
strains and a short homozygous segment of the genome contributed by the other parental strain.WN212,WN215,WN217, andWN218 strains are ILs with
anN2background, andCBN017,CBN019,CBN020, andCBN021 are ILswith aCB4856background.Genomic segments fromN2aremarkedwith orange;
those fromCB4856 aremarkedwith blue. (D)Metabolite profiles of ILs and two parental strains. CB4856 has higher levels of C14:1. All CBN lines have lower
levels thanCB4856 (metabolite levelswere normalized to percentage z-score),meaning that there is aQTL coveredby all of these lines; same for allWN lines,
only WN218 has a lower level than N2. Therefore, this strain does not contain the QTL. The WN ILs narrow the QTL for C14:1 down to a region of 12.42–
13.84 Mbp. (E) Two QTL were detected for C18:2: One QTL peak was detected on Chromosome II and one on Chromosome IV (the dashed line indicates
FDR=0.05 threshold). (F ) RILs that have anN2marker at the locus on Chromosome IV have a relatively higher abundance of C18:2 compared to those that
have a CB4856 marker. Twenty-seven percent of the variation in the FA C18:2 level can be explained by genetic variation on Chromosomes II and IV. (G)
Genotypes of the ILswith either a CB4856background or anN2background. CBN079, CBN080, CBN081, andCBN089 are ILswith aCB4856 background,
andWN251 andWN252 strains are ILs with an N2 background. Genomic segments fromN2 aremarkedwith orange; those fromCB4856 aremarkedwith
blue. (H) FA profiles of ILs and two parental strains. Three of the CBN lines have higher levels than CB4856 (metabolite levels were normalized to percentage
z-score), and one of the two WN strains confirmed the mQTL for C18:2. The mQTL could be confirmed to a region of 2.8–6.4 Mbp. Significance was cal-
culated using Student’s t-test and corrected for multiple testing. (∗) q <0.05; (∗∗) q<0.01; (∗∗∗) q<0.001; (NS) not significant.
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traditionally serve as a platform to identify association between ge-
netic variants and metabolic consequence, it can be too complex
to dissect the underlying mechanism of action in complex meta-
bolic traits. Hence, we chose to use the genetically tractable and
cost-effective organism C. elegans in this study. To study the quan-
titative trait metabolite abundance, we measured FAs and AAs in a
population of 199 C. elegans RILs derived from the genetically
diverse strains N2 (Bristol) and CB4856 (Hawaii) (Li et al. 2006;
Thompson et al. 2015; Gao et al. 2017a). This systems approach
enabled us to investigate linkage between genetics and metabo-
lism, identifying genomic regions contributing to genetic varia-
tion in metabolite abundances.

In hybrids of inbred lines and crosses between populations of
diverse animals, transgressive or extreme phenotypes (transgres-
sive segregation) falling beyond the parental phenotypes are often
seen (deVicente and Tanksley 1993; Rieseberg et al. 1999). For ex-
ample, in C. elegans transgression has been reported for some
quantitative morphological traits, such as body size, egg size,
and fertility (Gutteling et al. 2007; Kammenga et al. 2007). Forme-
tabolite abundances, we found that 28.6% (18/63) of the metabo-
lite traits displayed transgression. This suggests that the genetic
variation underlying metabolite abundance is a complex trait.
Transgressive segregation in metabolite abundances is lower com-
pared to the levels found in yeast 41% (14/34), but more extreme
compared to transgression in gene expression in C. elegans (affect-
ing ∼6% of the genes) (Viñuela et al. 2012; Breunig et al. 2014).
This makes sense in the light of metabolite levels as complex cellu-
lar phenotypes that can be affected on many regulatory levels.
We then calculated the broad-sense heritability to estimate the ge-
netic contribution to the high levels of variation we observed in
the metabolite traits between the RILs. The majority of metabolite
traits were highly heritable, suggesting there was a high chance
of identifying an associated genomic locus. Previous studies in
RILs from other organisms have also demonstrated that most
metabolic traits are highly heritable (H2 > 0.5) (Andreux et al.
2012; Chen et al. 2014). Despite the fact that the heritability range
differs across species, we showed ample evidence for moderate to
high heritability in the metabolite traits of the 199 RILs with a
range from 0.32 to 0.82, motivating us to identify detailed correla-
tions between metabolites and the causal QTL for the metabolite
traits.

Next, we analyzed the metabolite–metabolite correlations of
the samemetabolite classes and found strong correlations between
multiple pairs of metabolite traits. Because involvement of differ-
ent types of AAs in differentmetabolic pathways is rather complex,
strong correlations between different pairs of AAs imply shared bi-
ological properties. All three BCAAs—valine, leucine, and isoleu-
cine—showed strong positive correlation, likely because they
share chemical similarities and are catabolized using similar path-
ways (Valerio et al. 2011; Mansfeld et al. 2015). In addition, it is
worthnoting that the first set of highly correlatedAAs are all essen-
tial or derived from an essential AA (like tyrosine from phenylala-
nine). The remaining AAs aremostly synthesized from either sugar
or TCA cycle intermediates. The source of AA synthesis as well as
the different catabolic pathways may be relevant with respect to
the observed anti-correlation. Two aromatic AAs tyrosine and phe-
nylalanine were positively correlated together with all three
BCAAs. Such correlation was previously observed in several type
2 diabetes studies in humans (Felig et al. 1969; Wang et al. 2011;
Chen et al. 2016). For instance, in a nested case-control study for
prediction of type 2 diabetes in a Framingham Offspring cohort,
the abundance of these five AAs was significantly elevated under

fasting state in high-risk individuals (Wang et al. 2011). Our find-
ing that these five AAs strongly correlate suggests a conserved reg-
ulatory role. As metabolite traits are regulated in a complex
fashion, QTL mapping highlights the complexity of genetic regu-
lation of metabolite abundances (Andreux et al. 2012). To increase
the power of our approach, we chose to measure metabolite pro-
files in a large number of strains instead of multiple biological rep-
licates per strain, as this has the highest impact on QTL mapping
power (Andreux et al. 2012). Out of 36 significant single-marker
mQTL that mapped for 26metabolite levels, ninemetabolite traits
were mapped to multiple mQTL, and some mQTL correlated with
multiple metabolite traits. An additional two-marker mapping
identified 17 pairs of interacting loci for six metabolite levels,
showing that genetic interactions play a role in genetic variation
underlying metabolites. Together, these findings indicate consid-
erable genetic complexity in the regulation of metabolic quantita-
tive traits (Flint andMott 2001; Flint andMackay 2009). To further
investigate the genetic architecture of these quantitative pheno-
types, we focused on the strongest mQTL detected for the FA
C14:1 on Chromosome I. Using ILs that covered the genomic re-
gion of this mQTL, we were able to narrow it down to a 1.4-Mbp
region. In genetic studieswith segregating populations, such as hy-
brid populations of mice and flies, large numbers of QTL could be
detected, althoughmost of them have very small effects, and only
a few loci havemoderate to large effects on quantitative traits (Flint
andMackay 2009). In this study, the C14:1 mQTL served as an ex-
cellent example of a large-effect QTL as it showed a strong impact
on the metabolite trait and explained large variations we have ob-
served in the RILs, whereas the majority of the detected mQTL
only had a small effect.

Independent confirmation of candidate genes by RNAi
knockdown in Bristol N2 strain illustrated that lagr-1, Y87G2A.2,
nhr-265, nhr-276, and nhr-81 affected the levels of C14:1. Although
lagr-1 and Y87G2A.2 indeed play a role in lipid metabolism, the
other genes, encoding transcription factors, have not been studied
previously for their involvement in the regulation of lipid metab-
olism. This could support further research into detecting the causal
polymorphic genes underlying the mQTL for C14:1. Since the
scope of this study was to investigate the overall genetic architec-
ture of metabolites in C. elegans, we did not pursue the search for
causal genetic variants or to addressing the phenotypic effect of
parental alleles of these candidate genes. Altogether, we believe
that this RIL population of C. elegans provides us with a powerful
platform to study the genetic basis of metabolism. The systems ap-
proach with QTL analysis makes it possible to address important
questions related to genetic architectures of quantitative traits,
such as genetic actions or gene-by-gene interactions and with
the environment. The RILs can thereby play an important role to
dissect the mechanisms underlying the complex processes of me-
tabolism in a natural andunbiasedmanner and allowus to identify
factors important for gene-by-environment interactions. In addi-
tion, this systems approach will also enable researchers to explore
further into additional interventions, such as dietary alterations
and environmental stresses–associated metabolic changes.

Methods

C. elegans strains and bacterial feeding strains

In total, 199 RILs were used (Li et al. 2006). Approximately twenty-
five percent of these RILs have been genotyped by sequencing
(Thompson et al. 2015). A list of the strain names and their
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genotypes can be found in the Supplemental Table (Supplemental
Table S1). For narrowing down the range of mQTL on Chromo-
somes I and IV, 14 ILs were used. Six of these ILs had anN2 genetic
background: WN212, WN215, WN217, WN218, WN251, and
WN252 (Doroszuk et al. 2009). Eight of these ILs had a CB4856 ge-
netic background: CBN017, CBN019, CBN020, CBN021, CBN079,
CBN080, CBN081, and CBN089 (Sterken 2016). The sequenced
genotypes of WN212, WN217, WN251, and WN252 have been
published in Thompson et al. (2015); the sequenced genotypes
of the strainsWN218, and the CB4856 genetic-background strains
are included in this article (Supplemental Table S9).

E. coli OP50 was obtained from the Caenorhabditis Genetics
Center (CGC), RNAi bacterial clones are E. coli HT115 strains, in-
cluding those to knockdown acox-1.1, acox-1.3, acox-1.4, gpdh-1,
T27F6.6, ech-7, lagr-1, Y87G2A.2, scrm-2, nhr-82, nhr-265, nhr-81,
nhr-165, nhr-217, nhr-77, nhr-174, nhr-169, nhr-276, and ces-2,
which were obtained from the Ahringer library.

Strain culturing and experiments

Nematodes were cultured and maintained at 20°C on nematode
growth media (NGM) agar plates. Culture conditions in all exper-
iments were the same unless indicated otherwise. For metabolite
profiling of 199 RIL strains, N2, and CB4856, age-synchronized
worms were obtained by alkaline hypochlorite treatment of gravid
adults grown on E. coli OP50 lawn, 2000 eggs of each strain were
then seeded onto NGM plates and cultured for 2.5 d, allowing de-
velopment to young adults. For heritability analysis of FAs and
AAs,we collectedworms in triplicates from51RIL strains, inwhich
the genome composition contains high recombination (together
with N2 and CB4856). To narrow down the QTL peak for C14:1
on Chromosome I and the one for C18:2 on Chromosome IV,
we prepared worm samples in four replicates for the ILs.

To investigate candidate genes, wemeasured FA profiles of N2
worms with RNAi of candidate genes. RNAi experiments were per-
formed from hatch in all cases, on NGMi plates (containing 2 mM
IPTG and 25 mg/mL carbenicillin). Two thousand Bristol N2 eggs
were seeded ontoNGMi plates with a bacterial lawn of either E. coli
HT115 (RNAi control strain, containing an empty vector) or RNAi
clonesmentioned in the previous section. After 2.5 d, young adult
worms were collected and freeze-dried until FA extraction.

Whole-genome sequence library prep and analysis for

CB4856-background ILs

DNA was isolated from 100 to 300 µL of packed worms using the
Qiagen blood and tissue kit (catalog no. 69506). Following the
ATL lysis step, 4 µL of 100mg/mLRNAsewas added to each sample
and allowed to incubate for 2 min at room temperature. DNA con-
centration was determined using the Qubit dsDNA BR Assay Kit
(Thermo Fisher Scientific; catalog no. Q32850). For each strain, a
total of 0.75 ng of DNA was combined with 2.5 µL transposome
(Illumina; kit no. FC-121-1011) diluted 35× in 1× Tris buffer (10×
Tris buffer: 100 mM Tris-HCl at pH 8.0, 50 mM MgCl2) in a 10
µL final volume on ice. This reaction was incubated at 55°C for
10min. The amplification reaction for each strain contained (final
concentrations): 1× Ex Taq Buffer, 0.2 mM dNTPs, 1 U Ex Taq
(Takara; catalog no. RR001A), 0.2 µM primer 1, 0.2 µM primer 2,
and 5 µL of tagmentation material from the previous step in a 25
µL total volume. Each strain had a unique pair of indexed primers.
We first made a master mix containing buffer, water, dNTPs, and
Ex Taq and then aliquoted the appropriate volume of this mix
into each well. We added the specific primer sets to each well
and finally the tagmentation reaction. The amplification reaction
was incubated in a thermocycler with the following conditions:

72°C for 3 min (1 cycle); 95°C for 30 sec (1 cycle); 95°C 10 sec,
62°C 30 sec, and 72°C 3 min (20 cycles); and 10°C hold. We com-
bined 8 µL from each amplification reaction to generate a pool of
libraries. A portion of the libraries was electrophoresed on a 2%
agarose gel. DNA was excised and gel purified using Qiagen’s gel
purification kit (catalog no. 28706). The libraries were sequenced
on the IlluminaHiSeq 2500 platformusing a paired-end 100-bp re-
action lane. Alignment, variant calling, and filtering were per-
formed as previously (Cook et al. 2016). CB4856-background IL
genotypes were called using the VCF file and a hidden Markov
model as described previously (Cook et al. 2016; Cook and
Andersen 2017).

Metabolomics—fatty acid extraction and MS analysis

Sample preparation for FA extraction was followed as mentioned
in our previous study (Gao et al. 2017a). A synchronized popula-
tion of 2000 young adults was washed off the plates in M9 buffer,
and the worm pellet was washed with dH2O for three times and
then collected in a 2-mL Eppendorf tube and freeze-dried over-
night. Dried worm pellets were stored at room temperature until
use. Dry worm pellets were resuspended in 250 µL ice-cold 0.9%
NaCl solution and homogenized with a 5-mm steel bead using a
TissueLyser II (Qiagen) for two times of 2.5 min at frequency of
30 times/sec, followed by a tip sonication (energy level: 40 joule;
output: 8 watts) for two times on ice water. Protein quantification
was performed with BCA assay.

Worm lysate (up to 150 µg protein) was transferred in a 4-mL
FA-free glass vial, and 1 mL of freshly prepared 100% acetonitrile
(ACN)/37% hydrochloric acid (HCl) (4:1, v/v) was added to the ly-
sate, together with deuterium-labeled internal standards. FA sam-
ples were hydrolyzed by incubating at 90°C for 2 h. After the
vials cooled down to room temperature, 2 mL of hexane was
added to the samples and mixed by vortexing for 5 sec followed
by a centrifugation step at 1000g for 1 min. The upper layer
was transferred to an FA-free glass tube and evaporated at 30°C
under a stream of nitrogen. FA residues were dissolved in 150 µL
chloroform-methanol-water (50:45:5, v/v/v) solution containing
0.0025% aqueous ammonia and then transferred to a Gilson vial
for ESI-MS analysis.

We added deuterium-labeled internal standards to each
sample, including 17,17,18,18,18-D5-C18:0 (5.04 nmol, CDN iso-
tope, Canada), 3,3,5,5-D4-C24:0 (2.52 nmol, Organic Synthesis
Laboratory of VU Medical Center) and 3,3,5,5-D4-C26:0 (0.25
nmol, Organic Synthesis Laboratory of VU Medical Center); we
also ran additional five samples with increasing amount of a FA
mixture (C18:0, C24:0, andC26:0) tomake a five-point calibration
curve. In these additional five samples, above-mentioned internal
standards were also added (Gao et al. 2017a).

Metabolomics—amino acid extraction andUPLC-MS/MS analysis

We used the same worm homogenate as mentioned and prepared
for FA analysis. As described previously, AAs were extracted by
transferring worm lysate (contains 50 µg of protein) to a 2-mL
Eppendorf tube, and 1 mL of 80% ACN plus 20 µL of internal
standardmixturewas added to the lysate andhomogenized by vor-
texing (Gao et al. 2017a). Samples were centrifuged, and the super-
natant was transferred to a 4-mL glass vial and evaporated under a
stream of nitrogen at 40°C. After evaporation, AA residue was dis-
solved in 220 µL of 0.01% (v/v in MQ water) heptafluorobutyric
acid. Then the suspension was transferred to a Gilson vial for
UPLC-MS/MS analysis.

As standards, an internal standard mixture (Cambridge
Isotope Laboratories) containing 68 nmol DL-alanine-2,3,3,3-D4,
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44 nmol DL-glutamic acid-2,4,4-D3, 40 nmol L-leucine-5,5,5-
D3, 28 nmol L-phenylalanine-ring-D5, 34 nmol L-valine-D8,
34 nmol L-methionine-(methyl-D3), 26 nmol L-tyrosine-ring-
D4, 22 nmol L-tryptophan-(indole-D5), 46 nmol DL-serine-2,3,3-
D3, 48 nmol proline-D7, 24 nmol L-arginine-2,3,3,4,4,5,5-D7, 28
nmol L-glutamine-2,3,3,4,4-D5, 32 nmol L-lysine-4,4,5,5-D4, 26
nmol L-citrulline-ureido-13C, 28 nmol L-ornithine-3,3,4,4,5,5-
D6, 42 nmol L-isoleucine-D10, and 46 nmol DL-aspartic acid-
2,3,3-D3 was added to each sample. For the calculation of AA
concentrations, an additional sample was prepared by adding 50
µL standard mixture containing all AA with a concentration of
250 µmol/L to the internal standard (20 µL, same composition
as mentioned above) and analyzed together with the RIL samples.

Batch correction and data normalization

The 199 RILs were grown in five time-separated batches alongside
with the parental strains N2 and CB4856. Metabolites were mea-
sured in five batches of FA and AA measurements. A subset of 51
RILs and the two parental strains were grown in three additional
time-separated biological replicates and weremeasured in an addi-
tional batch of FA and AA measurements. In total, these experi-
ments yielded 400 samples after quality control (enough input
material). More specifically, FA and AA measurements for N2
and CB4856 were repeated seven times; seven RILs were repeated
five times, 44 RILs four times, 27 RILs two times, and 121 RILs
one time. There are two reasons for these numbers. First, the exper-
iment was conducted on the 199 RILs (along with parental strains)
and then replicated on a subset of 51 RILs (three additional biolog-
ical replicates, along with parental strains). Second, for some sam-
ples in the experiment on the 199 RILs, we were not sure whether
there was enough material. Therefore, these were repeated in an-
other batch. However, after measuring FA and AA levels, the qual-
ity was found to be sufficient (and corresponding to the other
sample); therefore, we found it most prudent to include both sam-
ples. For other samples, however, the initial sample did not pro-
vide enough material and had to be discarded. Details on FA and
AA measurement batches and biological replicates are included
in the raw data table (Supplemental Table S2).

Because of reliability detection limits of the MS platform, FA
measurements with a concentration below 0.03 nmol/mg of pro-
tein were removed from the analysis, as were AA concentrations
below 0.4 nmol/mg of protein (Gao et al. 2017a). In case of herita-
bility estimates andmQTLmapping, only reliably detectedmetab-
olites were considered; those detected in more than 100 samples.
Since the measurements of the FA concentrations and the AA con-
centrations were conducted in the same sample, the amount we
measured was expressed as a ratio of the total composition. This
was calculated independently for FAs and AAs using

Rx,i = Mx,i
∑M

i

,

where R is the fraction of metabolite i (one of 40 FAs or one of 19
AAs) of all the metabolites (either FAs or AAs) measured in sample
x. M is the concentration of metabolite i of sample x.

The fractions were batch corrected by

Rx,i,cor = Rx,i − (�Rx,batch − �Rx,total),

where R is the is the fraction of metabolite i in sample x, of which
the difference between the batch average and the total average is
subtracted. For evaluation of the fold-differences in metabolite
abundances, a batch correction on the untransformed metabolite
abundances was conducted using the same formula with the abso-
lute metabolite concentrations as input.

Thereafter, the metabolite levels were expressed as a z-
score by

Zx,i =
Rx,i,cor − mR,i

sR,i
,

where Z is the z-score ofmetabolite i of sample x, and µ is themean
for that metabolite and σ is the standard deviation. This transfor-
mation was used in the further analysis. Outliers were removed if
the trait value exceeded µ±2∗σ as measured per strain.

Statistical analysis

Software used

The data was analyzed in “R” (version 3.3.3, x64) using custom
written scripts (R Core Team 2017). The code required for analysis
is made available via GitLab (https://git.wur.nl/mark_sterken/
Metabolomics) and as Supplemental Code. In the analysis, the
tidyverse package was used for organizing the data (www.
tidyverse.org); most plots were made using ggplot2 (Wickham
2009).

Correlation analysis

The traits were analyzed for correlation by calculating the Pearson
correlation between metabolites (FAs and AAs independently) on
the metabolite levels.

Transgressive segregation

Transgressive segregation was calculated as in Brem and Kruglyak
(2005), which is a method also applied in a metabolomics study
in yeast (Breunig et al. 2014). In short, to determine for which
traits the RIL panel displayed transgressive segregation, we first cal-
culated the mean trait value over all observations for the parental
lines (separately for N2 and CB4856). Second, the standard devia-
tion (σ) was calculated for the N2 and CB4856 observations sepa-
rately; the pooled σ was used for transgression calculations.
Transgressive segregation was calculated as the number of RILs of
which the mean trait value exceeded μ±2∗σ, where the parent
with the lowest μ determines the low threshold and the parent
with the highest μ determines the high threshold.

The significance of transgression was determined by permu-
tation, where the trait values were randomized over the strain des-
ignations. Subsequently, the same test as described above was
executed. The permutation was repeated 1000 times for each trait,
where after the obtained values were used as the by-chance distri-
bution; the FDR=0.05 threshold was taken as the 50th highest
value.

Heritability estimation

The heritability of the metabolite levels was calculated over a sub-
set of RIL strains for which repeated measurements were conduct-
ed (51 RILs, n≥3) and for metabolites that were consistently
detected (more than 100 observations). Using an ANOVA explain-
ing the metabolite variation over the strains, the broad-sense her-
itability was calculated as

H2
RIL = Vstrain

Vstrain + Vres
,

where H2 is the broad-sense heritability, Vstrain is the variation ex-
plained by strain, and Vres is the residual variation. The signifi-
cance of the heritability was calculated by permutation, where
the trait values were randomly assigned to strains. Over these per-
mutated values, the variance captured by strain and the residual
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variance were calculated. This procedure was repeated 1000 times
for each trait. The obtained values were used as the by-chance dis-
tribution, and an FDR=0.05 was taken as the 50th highest value.

In the parental strains (n=11 for both N2 and CB4856) the
heritability was calculated by ANOVA, using

h2
P = 0.5× Vparent

0.5× Vparent + Vres
,

where h2 is the heritability,Vparent is the variation explained by the
parental genotypes, andVres is the residual variation. The factor 0.5
corrects for the overestimation of the additive variation in inbred
strains (Hegmann and Possidente 1981). The same permutation
approach as for the broad-sense heritability was applied, taking
the FDR=0.05 threshold as significant.

Quantitative trait locus (QTL) mapping

QTL were mapped using custom scripts in R (Supplemental Code).
The metabolite levels were fitted in a single-marker model,

Zi,j = xj + ej,

where Z is the z-score averaged over all strain replicates for metab-
olite i (one of 39 FAs or one of 19 AAs that were reliably measured
in >100 strains) of RIL j (n=199). This was explained over the ge-
notype (either CB4856 or N2) on marker location x (x= 1, 2, …,
729) of RIL j.

For ninemetabolites,multiplemQTLwere identifiedwith the
single-markermodel; to verify that thesemQTLwere not caused by
linkage and were indeed independent, themQTL peaks were fitted
to an additive multiple marker model,

Zi,j = x1,j + x2,j + · · · + xn,j + ej,

where Z is the z-score averaged over all strain replicates for metab-
olite i (one of three FAs with multiple mQTL: C18:2, C20:1, or
C23:1; or one of six AAs with multiple mQTL: Gln, Leu, Met,
Orn, Phe, or Tyr) of RIL j (n=199). This was explained over the ge-
notype (either CB4856 or N2) on marker location x1, x2,…, xn (x=
1, 2, …, 729) of RIL j, which were identified in the single-marker
mapping (maximum number of markers was three).

A full two-locus interaction model was fitted for all meta-
bolites,

Zi,j = x1,j + x2,j + x1,j × x2,j + ej,

where Z is the z-score averaged over all strain replicates for metab-
olite i (one of 39 FAs or one of 19 AAs that were reliably measured
inmore than 100 strains) of RIL j (n =199). This was explained over
the genotype (either CB4856 or N2) onmarker location x1, x2, and
the interaction effect between x1 and x2 (x=1, 2, …, 729) of RIL j.
For the traits where a significant interaction was found (C15:1,
C16:1, C24:5, Gln, Ala, and Asp), a full ANOVAmodel containing
all the additive and interaction terms was used to determine the
amount of variation explained by the additive and interaction
terms. The effect sizes were calculated by a full linear model.

QTL threshold determination and power analysis

In order to account for multiple testing in the single-marker map-
ping, the genome-wide significance threshold was determined via
permutation. Here the z-scores per metabolite were randomly dis-
tributed over the genotypes. This permutated data set was thereaf-
ter used in the same single-marker model for QTL mapping. This
procedure was repeated for 100 randomized data sets. From these
randomized mappings, an FDR was determined based on multiple

testing under dependency (Benjamini and Yekutieli 2001),

FDS
RDS

≤ m0

m
× q× log (m),

where false discovery (FDS) is the outcome of the permutations
and real discovery (RDS) is the outcome of the expression QTL
(eQTL) mapping at a specific significance level. The value of m0,
the number of true null hypotheses tested, was 56-RDS, and for
the value of m, the number of hypotheses tested, the number of
metabolites (56) was taken. The q-value was set at 0.05. In this
way, a −log10(p) > 3.7 was found. The eQTL confidence interval
was determined by a 1.5 drop in the −log10(p) value as measured
from the eQTL peak.

The statistical power in the single-markermapping at the FDR
thresholdwas determined by simulation. Using the geneticmap of
the 199 strains used in this study, QTL were simulated for each
marker location. Per location, 10 QTL were simulated, explaining
5%–80% of the variation (in increments of 5%). In order to simu-
late technical noise, we introduced random variation based on a
standard normal distribution (σ=1, μ=0). The simulated peak
size was set correspondingly (e.g., 50% explained variation corre-
sponds to a peak size of two in the simulated noise). Based on
the set permutation threshold [−log10(p) > 3.7], the number of cor-
rectly detectedQTL, the number of false positives, and the number
of undetected QTL were counted. From the simulation, we also in-
ferred the precision of themapping by evaluating the effect size es-
timation and the QTL location [based on a −log10(p) drop of 1.5].
The detailed results of the analysis can be found in Supplemental
Table S5.

The significance threshold in the interaction model was de-
termined on the marker–marker interaction with markers that
were more than 50 markers apart (or located on different chromo-
somes). The p.adjust function in R was used to calculate the FDR.

Introgression line analysis

The ILs were grown in four time-separated biological replicates,
which were measured in one batch of FA and AA measurements.
The transformed metabolomics data on C14:1 and C18:2, ob-
tained in eight ILs covering the C14:1 mQTL and six ILs covering
the C18:2 mQTL, were compared to the genetic background par-
ent. This means that the ILs with the CB4856 genetic background
were compared to CB4856, and the ILs with the N2 genetic back-
ground were compared to N2. For both loci separately, we tested
the differences in C14:1 and C18:2 abundance using a Student’s
t-test, explicitly testing the hypothesis formed from the RIL data.
Therefore, for C14:1 the CB4856-background ILs were tested for
lower trait levels compared to the genetic background strain, and
the N2-background ILs were tested for higher trait levels compared
to the genetic background strain. For C18:2 the CB4856-back-
ground ILs were tested for higher trait levels compared to the ge-
netic background strain, and the N2-background ILs were tested
for lower trait levels compared to the genetic background strain.
The significances were adjusted for multiple testing using the
Benjamini and Hochberg correction, as implemented in the p.ad-
just function in “R” (Benjamini and Hochberg 1995).

Candidate gene identification

The polymorphisms between N2 and CB4856 were obtained from
the Supplemental Table of the CB4856 reference genome paper
(Thompson et al. 2015). These were summarized per gene in three
classes: (1) polymorphisms with a high impact on the coding se-
quence, (2) polymorphisms in the regulatory regions, and (3) poly-
morphisms with a low impact on the coding sequence. The first
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group consisted of nonsynonymous substitutions, stops gained or
lost, exon deletions, in-frame insertions/deletions, frameshifts,
and fully deleted genes. The second group consisted of polymor-
phisms in the 3′ and 5′ untranslated region, and presence in one
of the highly divergent regions. The third group consisted of syn-
onymous substitutions.

The metabolic pathways of FA synthesis were obtained from
KEGG using the Bioconductor KEGGREST package (Kanehisa
et al. 2017; http://bioconductor.org/packages/KEGGREST/). Spe-
cifically, the lipidmetabolismpathways inC. eleganswere obtained
(Supplemental Table S10). This list was expanded by adding likely
lipid metabolism genes identified in a comparative study on lipid
metabolism genes in C. elegans (Zhang et al. 2013). As also regula-
tory genes could be potential candidates, the genes of C. elegans
with an ontology term containing the word “transcription factor”
were downloaded from WormBase (WS258) (Lee et al. 2018).

Data access

The sequencing data for genotyping of the introgression lines have
been submitted to the NCBI Sequence Read Archive (SRA; https://
www.ncbi.nlm.nih.gov/sra) under accession number SRP154243.
The MS data are available at the NIH Common Fund’s Meta-
bolomics Data Repository and Coordinating Center (supported
by NIH grant, U01-DK097430) website, the Metabolomics
Workbench, http://www.metabolomicsworkbench.org, where
they have been assigned Project ID PR000676. The data can
be accessed directly via their Project DOI: 10.21228/M8968S
(https://doi.org/10.21228/M8968S).
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