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Abstract: The conserved mitogen-activated protein kinase (MAPK) cascades play vital roles in plant
defense responses against pathogens and insects. In the current study, the expression profiles of
17 OsMPKs were determined in the TN1 and IR56 rice varieties under the infestation of brown
planthopper (BPH), one of the most destructive hemimetabolous rice pests. The virulent IR56
BPH population (IR56-BPH) and the avirulent TN1 BPH population (TN-BPH) were used to reveal
the roles of OsMPKs in the compatible (IR56-BPH infested on the TN1 and IR56 rice varieties,
and TN1-BPH infested on the TN1 rice variety) and the incompatible (TN1-BPH infested on the
IR56 rice variety) interaction. The statistical analysis revealed that rice variety, BPH population
type, and infestation period have significant effects on the transcription of OsMPKs. Out of these
genes, five OsMPKs (OsMPK1, OsMPK3, OsMPK7, OsMPK14, and OsMPK16) were found to exhibit
upregulated expression only during incompatible interaction. Six OsMPKs (OsMPK4, OsMPK5,
OsMPK8, OsMPK9, OsMPK12, and OsMPK13) were associated with both incompatible and compatible
interactions. The transcription analysis of salicylic acid, jasmonic acid, and ethylene phytohormone
signaling genes revealed their roles during the rice–BPH interactions. The upregulated expression of
OsC4H, OsCHS, and OsCHI in the incompatible interaction implied the potential defense regulatory
roles of phenylpropanoids. In both varieties, the elevated transcript accumulations of OsGST and
OsSOD, and the increased enzyme activities of POD, SOD, and GST at 1 day post-infestation (dpi),
but not at 3 dpi, indicated that reactive oxygen species (ROS) signaling might be an early event in
rice–BPH interactions. Furthermore, upregulated transcription of OsLecRK3 and OsLecRK4 was found
only during an incompatible interaction, suggesting their involvement in the BPH resistance response
in the IR56 rice variety. Lastly, based on the findings of this study, we have proposed a model of
interactions of IR56 rice with TN1-BPH and IR56-BPH that depicts the resistance and susceptibility
reactions, respectively.

Keywords: Nilaparvata lugens; MAPKs; rice–BPH interaction; IR56 rice; phytohormones

1. Introduction

The brown planthopper (Nilaparvata lugens Stål, hereafter referred to as BPH) is the most harmful
pest to rice (Oryza sativa), and causes huge crop damage and billions of dollars of economic loss in
Asia [1]. It is a typical monophagous vascular feeder that sucks the rice phloem sap, resulting in
the wilting and fatal drying of rice plants, a phenomenon known as ‘hopperburn’ [1]. Besides this,
BPH causes indirect damage to rice, as it is the carrier of the rice grassy stunt virus and the rice ragged
stunt virus [1]. The application of insecticides is the most common practice to restrict and eradicate
BPH infestations in rice. In recent years, the abuse of chemical insecticides has resulted in many
adversities, such as insecticide resistance development, insect resurgence, the elimination of natural
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enemies, and environmental hazards. Screening and breeding of cultivars that harbor planthopper
resistance genes is considered to be the most desirable and economic strategy for the control and
management of BPH [1]. The BPH-resistant sources were first identified in 1967 [2], and then, in 1970,
Bph1 (from Mudgo) and bph2 (from ASD7), the two BPH resistance genes, were identified in rice [3].
Consequently, these two genes with two other genes, Bph3 (from Rathu Heenathi) and bph4 (from
Babawee), were extensively used in breeding programs, including breeding of the IR varieties [4–7].
However, improved cultivars carrying these genes lost their resistance to BPH due to the evolution of
new biotypes (populations) [1,8–12]. At present, nine (Bph3, Bph6, Bph9, Bph14, Bph17, Bph18, Bph26,
Bph29, and Bph32) of the 34 BPH resistance genes (Bph/bph) have been cloned or characterized in
rice and its relatives [13,14]. Of them, Bph3 (a cluster of plasma-membrane-localized lectin receptor
kinases, OsLecRKs), has been considered for breeding rice cultivars with broad-spectrum and durable
insect resistance [7,10]. Recently, we established a new virulent BPH population (IR56-BPH) that
could successfully break down Bph3-mediated resistance to IR56 rice [9]. After force-feeding over
40 generations, IR56-BPH could break down the IR56 rice’s resistance (standard seedbox screening
technique, Grade 7) and exhibited a significantly increased emergence rate, indicating that IR56-BPH
had successfully evolved its virulence against IR56 rice [9]. However, the molecular mechanism
underlying the interaction between IR56-BPH and its host plant has not been well-elucidated.

The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved pathway in
eukaryotes that has three components: an MAPK kinase or MAP3K or MEKK, an MAPK kinase or
MAP2K or MEK, and an MAPK [15]. MAPK cascades have been reported to play vital roles in plant
defense responses to pathogens and insects [16–18]. Although the total numbers and nomenclature of
O. sativa MAPKs (OsMPKs) are ambiguous, only a few studies have revealed the functional roles of
OsMPKs involved in defense against insects [19–21]. For instance, OsMPK3 (named OsMPK5 by Rohila
and Yang [19]) was reported to be involved in defense against striped stem borer (Chilo suppressalis)
by modulating jasmonic acid (JA) signaling and herbivore-induced trypsin protease inhibitors levels,
but not against BPH [22]. However, OsMPK3 was also reported to be involved in resistance to BPH
and rice blast fungus Magnaporthe grisea [23]. To our limited knowledge, these reports are not sufficient
for drawing any conclusions about the roles of MAPKs in rice–BPH interactions. Apart from that,
phytohormones, including JA, salicylic acid (SA), and ethylene (ET), have been reported to regulate
plant defense responses to several biotic stresses [24–26]. Furthermore, MAPK cascades and the major
plant defense-associated phytohormones, including JA, SA, and ET, have been reported to influence
each other; the MAPKs regulate the biosynthesis and accumulation of the phytohormones, while the
phytohormones can induce the expression of MAPKs [27]. Moreover, a comprehensive analysis of
the modulatory roles of MAPKs in rice’s resistance response to BPH is necessary to find out their
molecular mechanisms in rice–BPH interactions.

In the current work, the expression profiling of 17 OsMPKs in two contrasting rice varieties, IR56
(a BPH-resistant rice variety containing Bph3) and Taichung Native 1 (TN1, a BPH-susceptible rice
variety) has been evaluated under the infestation of two BPH populations (an avirulent TN1-BPH,
which is incapable of breaking down the resistance of the rice varieties containing Bph genes, and a
virulent IR56-BPH, which has the capacity to break down Bph3-mediated resistance). The rice–BPH
interactions have been categorized into compatible and incompatible interactions depending on
the virulence of the infested BPH population type on an individual rice variety. The interactions
between TN1 rice and TN1-BPH, TN1 rice and IR56-BPH, and IR56 rice and IR56-BPH have
been considered as the compatible interactions, whereas the interaction between IR56 rice and
TN1-BPH has been considered as the incompatible interaction (Figure 1). Furthermore, the expression
profiles of the selected defense response pathway genes, including SA, JA, and ET phytohormone
signaling, phenylpropanoid synthesis, and reactive oxygen species (ROS) signaling have been
characterized under both compatible and incompatible rice–BPH interactions. Also, the activities of
key ROS-related enzymes, including peroxidase (POD) (EC 1.11.1), superoxide dismutase (SOD) (EC
1.15.1.1), catalase (CAT) (EC 1.11.1.6), and glutathione S-transferase (GST) (EC 2.5.1.18), have been
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evaluated. Additionally, the temporal expression regulation of OsMPKs that have been exposed
to exogenous phytohormones has been estimated. Lastly, a model of interactions of IR56 rice with
TN1-BPH and IR56-BPH that depicts the resistance and susceptibility reactions has been proposed.
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Figure 1. A schematic indicating the compatible and incompatible interactions among the rice varieties
and brown planthopper (BPH) populations used in this study.

2. Results

2.1. Expression Profiling of OsMPKs in Response to BPH Infestations

The effects of the rice varieties, the BPH populations, and the infestation time periods (0, 1,
and 3 days post-infestation, dpi) on the transcription of OsMPKs were analyzed by performing a
three-way analysis of variance (ANOVA) analysis (Table S1). The ANOVA analysis revealed that
rice varieties, BPH population, dpi, and their interactions (rice varieties × BPH population, rice
varieties × dpi, BPH population × dpi, and rice varieties × BPH population × dpi) had no significant
effects (p >0.05, F values are shown in Table S1) on the expression of OsMPK6, OsMPK10, OsMPK11,
OsMPK15, and OsMPK17 (Figure S1). In contrast, all main effects and interaction effects on the
expression of OsMPK3, OsMPK5, OsMPK7, OsMPK12, OsMPK13, OsMPK14, and OsMPK16 (Figure 2A,
Table S1) were significant as revealed by the three-way ANOVA analysis. Out of these significant main
and interaction effects, the effects of rice variety on OsMPK7, OsMPK14, and OsMPK16 expression,
the effects of dpi on OsMPK3 and OsMPK5 expression, and the effects of BPH population type on
OsMPK12 and OsMPK13 expression were higher as compared with the other main and interaction
effects. Further, the Tukey′s honestly significant difference (HSD) post-hoc comparisons of these seven
genes confirmed three types of upregulated expression patterns. Firstly, OsMPK3, OsMPK7, OsMPK14,
and OsMPK16 were significantly induced in the incompatible interaction, and OsMPK7 and OsMPK16
exhibited a time-dependent upregulation. Secondly, elevated mRNA levels of OsMPK5 were found in
both compatible and incompatible interactions. In addition, time-dependent upregulation was found
in the IR56-BPH-infested TN1 rice and in the TN1-BPH-infested IR56 rice. Compared with TN1 rice,
IR56 rice had higher expression levels of OsMPK5 after the TN1-BPH infestation, but lower levels of
expression after the IR56-BPH infestation. Thirdly, time-independent induced expression of OsMPK12
and OsMPK13 was observed in both compatible and incompatible interactions. Compared to those in
TN1 rice, higher mRNA levels of OsMPK12 and OsMPK13 were found in the incompatible interaction.
However, a lower mRNA level of OsMPK13 was found in IR56 rice at 3 dpi of IR56-BPH infestation.
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Figure 2. The expression profiles of the 12 OsMPKs showing significant induced expressions in the IR56
and TN1 rice varieties under infestation of TN1-BPH and IR56-BPH at 0–3 days post-infestation. Data
are denoted as mean ± standard error (SE) and analyzed by three-way ANOVA followed by Tukey’s
honestly significant difference (HSD) test. (A) OsMPKs showing significant differences in the main
(rice varieties, BPH populations, and days post-infestation) and all interaction effects. (B) OsMPKs
showing significant differences in any of the main effects or any of the interaction effects. * represents
a significant difference with TN1 rice (p < 0.05); different letters above the bars represent significant
differences (p < 0.05) among each TN1-BPH- and IR56-BPH-infested rice variety, and the control (CK,
rice not infested with BPH). No significant difference among samples was not denoted by any symbol.
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Furthermore, the expression of OsMPK1, OsMPK2, OsMPK4, OsMPK8, and OsMPK9 was
significantly affected by one of the variances and/or their interactions (Figure 2B, Table S1).
The Tukey’s HSD post-hoc comparisons confirmed the downregulated expression of OsMPK2 in
the IR56-BPH-infested IR56 rice (1 dpi), but upregulated expression of OsMPK1, OsMPK4, OsMPK8,
and OsMPK9 in both rice varieties (1 or 3 dpi). Of these induced genes, OsMPK1 was upregulated
in the compatible interaction (IR56 rice infested by TN1-BPH) at 1 dpi. OsMPK9 was upregulated in
both compatible interactions and the incompatible interaction at 3 dpi. Similarly, induced expression
of OsMPK8 was found in both compatible and incompatible interactions at 1 dpi. The expression of
OsMPK4 was time-dependently upregulated in both compatible (TN1 rice infested by IR56-BPH) and
incompatible interactions.

Briefly, the expression of five OsMPKs (OsMPK1, OsMPK3, OsMPK7, OsMPK14, and OsMPK16) in
the incompatible interaction and six OsMPKs (OsMPK4, OsMPK5, OsMPK8, OsMPK9, OsMPK12,
and OsMPK13) in both compatible and incompatible interactions was induced under the BPH
infestations (Figure 2). These results suggest that the former five OsMPKs might be involved in the
resistance response to BPH in IR56 rice against TN1-BPH, whereas their failure to achieve upregulated
expression under IR56-BPH infestation might have caused the rice’s resistance to break down.

In order to check the effect of tissue injury on the expression of OsMPKs in the TN1 and IR56
varieties, wound stress was imposed by mimicking BPH piercing (pricking the rice stems 100 times
with a fine needle; no pricked plants were considered as controls). The two-way (rice varieties
versus days post-injury, dpi) ANOVA analysis revealed no significant effects of rice varieties and dpi,
and no significant effect of rice varieties × dpi interaction, on the expression of OsMPK1, OsMPK2,
OsMPK9, OsMPK10, OsMPK12, OsMPK14, OsMPK15, and OsMPK17 (p > 0.05, F-values for all main
and interaction effects are not shown, Figure S2A). Furthermore, there was no significant effects of
rice varieties, and rice varieties × dpi interaction, on the expression of OsMPK3-5 and OsMPK11
(p > 0.05, F-values for rice varieties and interaction effects are not shown, Figure S1B), whereas a
significant effect of dpi (OsMPK3, F1,12 = 68.44, p < 0.001; OsMPK4, F1,12 = 20.42, p = 0.002; OsMPK5,
F1,12 = 135.39, p < 0.001; OsMPK11, F1,12 = 4.38, p = 0.037) was observed for the same. A statistical
analysis also revealed that no significant effect of rice varieties × dpi interaction (F2,12 = 3.59, p = 0.06),
but a significant effect of rice varieties (F1,12 = 4.76, p = 0.049) and dpi (F2,12 = 5.62, p = 0.019), was found
on OsMPK6 expression. Tukey’s HSD post-hoc comparisons confirmed a significant (p < 0.01) increase
in the mRNA level of OsMPK3 at day 1 in TN1 rice, and of OsMPK5 at 1 and 3 dpi in both rice varieties,
as compared with the control (without pricking; Figure S2B). On the contrary, there were significantly
(p < 0.01) decreased levels of OsMPK4 in both rice varieties at 3 dpi, and of OsMPK6 in TN1 rice at
1 dpi. For four OsMPKs (OsMPK7, OsMPK8, OsMPK13, and OsMPK16), the effects of rice varieties,
dpi, and rice variety × dpi interaction (p < 0.01) were statistically significant (Figure S2C). Wounding
significantly (p < 0.05) induced the transcript levels of OsMPK7 and OsMPK16 in IR56 rice, OsMPK8
in TN1 rice, and OsMPK13 in both rice varieties. After wounding, IR56 rice had higher (p < 0.01)
mRNA levels of OsMPK7 and OsMPK16 than those in TN1 rice, and vice versa for OsMPK8 and
OsMPK13. These results revealed that six OsMPKs (OsMPK3, OsMPK5, and OsMPK13 in both rice
varieties, OsMPK8 in TN1 rice, and OsMPK7 and OsMPK16 in IR56 rice) were upregulated in response
to wounding in rice, while two OsMPKs (OsMPK4 in both rice varieties and OsMPK6 in TN1 rice)
were downregulated.

2.2. Induced Expression of Genes Associated with Phytohormone Signaling and Phenylpropanoid Synthesis
under BPH Infestation

Insect herbivory and activation of MAPKs can influence the phytohormone balance and
secondary metabolite synthesis in plants [24]. A two-way ANOVA analysis of the expressions of
phenylalanine ammonia lyase 1 (OsPAL1), enhanced disease susceptibility 1 (OsEDS1), and nonexpresser of
pathogenesis-related genes 1 (OsNPR1), which are involved in SA signaling, revealed the positive role of
SA signaling in rice–BPH interactions (Table S2). In IR56 rice, infestation of TN1-BPH (the incompatible
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interaction) resulted in significant elevated transcript accumulations of OsPAL1 (F2,12 = 11.90, p = 0.001;
F2,12 = 99.03, p < 0.01) and OsEDS1 (F2,12 = 6.99, p = 0.009; F2,12 = 62.12, p < 0.01) at both 1 and 3
dpi (Figure 3A), and of OsNPR1 (F2,12 = 4.28, p = 0.039) at 1 dpi. However, IR56-BPH infestation
(a compatible interaction) did not result in any significant (p > 0.05, F value not shown) induced
expression of the three genes. Similarly, in TN1 rice, infestation of TN1-BPH or IR56-BPH (compatible
interactions) caused no significant upregulation (p > 0.05, F value not shown) of OsPAL1, OsEDS1,
and OsNPR1 at either 1 or 3 dpi (Figure 3A).Int. J. Mol. Sci. 2018, 19, x 7 of 22 
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Figure 3. Comparative expression profiles of the phytohormone signaling genes in the IR56 and TN1
rice varieties under BPH infestation. (A) salicylic acid (SA) signaling genes; (B) jasmonic acid (JA)
biosynthesis genes; (C) ethylene (ET) signaling genes. Data are denoted as mean ± SE and analyzed by
two-way ANOVA followed by Tukey’s HSD post-hoc test. Letters above the bars indicate the significant
difference (p < 0.05) in expression among the TN1-BPH- and IR56-BPH-infested rice varieties, and the
control (rice not infested with BPH). An asterisk (*) denotes the significant difference (p < 0.05) in
expression with respect to different rice varieties under the same infested BPH population at the specific
time point. No significant difference among samples is not denoted by any symbol.
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The expression of the JA biosynthesis genes allene oxide synthase 1 (OsAOS1), allene oxide synthase 2
(OsAOS2), and lipoxygenase 1 (OsLOX1) was determined in compatible and incompatible interactions.
The two-way ANOVA analysis revealed that the three genes were significantly induced in both
varieties under BPH infestation (Figure 3B, Table S2). In both rice varieties, OsAOS1 (F2,12 = 7.45,
p = 0.007), OsAOS2 (F2,12 = 39.42, p < 0.001), and OsLOX1 (F2,12 = 23.05, p < 0.01) were found to exhibit
significant upregulated expression at 1 dpi under the infestation of TN1-BPH or IR56-BPH; however,
no significant induced expression was found at 3 dpi.

The expression of 1-aminocyclopropane-1-carboxylate synthase 2 (OsACS2), ethylene-insensitive
gene 2 (OsEIN2), and ethylene-responsive transcription factor 3 (OsERF3), which are ET signaling
genes, was determined. A statistical analysis revealed that the three genes were significantly induced
during incompatible rice–BPH interactions at both 1 and 3 dpi (Figure 3C, Table S2). In IR56 rice,
infestation of TN1-BPH resulted in a significant increase in the transcription of OsACS2 (F2,12 = 7.46,
p = 0.007; F2,12 = 41.62, p < 0.01), OsEIN2 (F2,12 = 14.36, p < 0.01; F2,12 = 53.71, p < 0.01), and OsERF3
(F2,12 = 119.7, p < 0.01; F2,12 = 276.03, p < 0.01) at both 1 and 3 dpi. However, when infested with
IR56-BPH, only OsERF3 (F1,12 = 539.87, p < 0.01) was found to be significantly induced in IR56 rice
at 3 dpi, while OsACS2 and OsEIN2 showed no significant induced expression at either 1 or 3 dpi.
In contrast, none of these three genes showed any significant transcript accumulations in TN1 rice
under infestation of TN1-BPH or IR56-BPH. Briefly, the induced expression of the SA and ET signaling
genes during the incompatible, but not during the compatible, rice–BPH interactions suggests that they
have positive roles in rice’s resistance responses. Conversely, significant upregulation of JA signaling
genes at 1 dpi, but not at 3 dpi, and during both compatible and incompatible rice–BPH interactions,
suggests that JA signaling might be involved in an early response to BPH feeding in rice.

The expression of the phenylpropanoid biosynthesis pathway genes cinnamate-4-hydroxylase
(OsC4H), chalcone synthase (OsCHS), and chalcone isomerase (OsCHI) showed that all three genes
were significantly upregulated during the incompatible rice–BPH interaction. In IR56 rice, OsC4H
(F2,12 = 59.92, p < 0.01; F2,12 = 26.14, p < 0.01), OsCHS (F =162.64.7, p < 0.01; F2,12 = 109.95, p < 0.01),
and OsCHI (F2,12 = 54.08, p < 0.01; F2,12 = 37.38, p < 0.01) were found to exhibit elevated expression
levels at both 1 and 3 dpi under TN1-BPH infestation (Figure 4B, Table S2). However, under IR56-BPH
infestation (a compatible interaction), OsCHI (F2,12 = 14.64, p < 0.01) showed significant induced
expression at 3 dpi, whereas the other two genes did not show any upregulation in their expression
levels at 1 or 3 dpi. On the other hand, none of these three genes showed any significant induced
expression in TN1 rice under the infestation of either TN1-BPH or IR56-BPH. The induced expression
of OsC4H, OsCHS, and OsCHI during the incompatible interaction suggests that phenylpropanoids
have a positive role in rice–BPH interactions.

2.3. Expression Profiling and Enzyme Activity of ROS-Signaling Genes under BPH Infestation

A two-way ANOVA analysis of the expression of two ROS-responsive genes, superoxide dismutase
(OsSOD) and glutathione S-transferase (OsGST), in the TN1 and IR56 rice varieties under BPH infestation
revealed that ROS signaling is associated with rice–BPH interactions as an early response, irrespective
of the infested BPH population type. In both TN1 and IR56 rice, infestation of TN1-BPH or IR56-BPH
resulted in the significant upregulation of OsSOD (F2,12 = 25.13, p < 0.01) and OsGST (F2,12 = 18.95,
p < 0.01) at 1 dpi, whereas no significant induced expression of both the genes was observed at 3 dpi
(Figure 4A, Table S2). Furthermore, the enzyme activity of POD (F2,12 = 24.93, p < 0.01) and SOD
(F2,12 = 5.93, p = 0.016) was found to be significantly increased at 1 dpi in both the TN1 and IR56 rice
varieties, irrespective of the infested BPH population type (Figure 5, Table S2). In TN1 rice, under
TN1-BPH or IR56-BPH infestation, both POD and SOD showed no significant change in the enzyme
activity at 3 dpi as compared to the control plants. However, in IR56 rice, infestation of either TN1-BPH
or IR56-BPH caused a significant decrease in the enzyme activity of SOD (F2,12 = 65.04, p < 0.01) at
3 dpi. Furthermore, in TN1 rice, infestation by both BPH populations caused a significant increase in
GST enzyme activity (F2,12 = 87.80, p < 0.01) at 1 dpi. In IR56 rice, the infestation of IR56-BPH caused
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a significant increased activity of GST (F2,12 = 133.79, p < 0.01) at 1 dpi, while TN1-BPH infestation
resulted in no significant change in GST activity. Conversely, at 3 dpi, GST activity in both the TN1 and
IR56 rice varieties was significantly decreased (F2,12 = 83.92, p < 0.01) in response to BPH infestation,
irrespective of the population type. In addition, the enzyme activity of CAT in TN1 and IR56 rice was
found to be significantly downregulated (F2,12 = 8.42, p = 0.005; F2,12 = 8.03, p = 0.006) under TN1-BPH
infestation at both 1 and 3 dpi as compared with the control. However, infestation of IR56-BPH caused
no significant change in CAT activity in both TN1 and IR56 rice at 1 dpi, while resulting in decreased
activity at 3 dpi in TN1 rice. These results suggest that, like JA signaling, ROS might play a role in the
early responses of rice to BPH feeding.
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Figure 4. The expression profiles of phenylpropanoid biosynthesis genes and reactive oxygen species
(ROS)-responsive genes in the IR56 and TN1 rice varieties under infestation by two different BPH
populations. (A) ROS-responsive genes. (B) Phenylpropanoid biosynthesis genes. Data are denoted
as mean ± SE and analyzed by two-way ANOVA followed by Tukey’s HSD post-hoc test. Letters
above the bars indicate a significant difference (p < 0.05) in expression among the TN1-BPH- and
IR56-BPH-infested rice varieties, and control (rice not infested with BPH). An asterisk (*) denotes a
significant difference (p < 0.05) in expression with respect to the different rice varieties under the same
infested BPH population at the specific time point. No significant difference among samples are not
denoted by any symbol.

2.4. Differential Transcription of OsLecRKs in the Two Rice Varieties under BPH Infestation

A separate study in our lab revealed that both IR56 rice and TN1 rice possess three OsLecRKs
(OsLecRK1, OsLecRK3, and OsLecRK4) out of the four from the Bph3 gene cluster (unpublished data).
The transcription responses of these three OsLecRKs in both rice varieties were analyzed under
BPH infestation. In IR56 rice, the TN1-BPH infestation (the incompatible interaction) significantly
upregulated the expression of OsLecRK3 (F2,12 = 51.95, p < 0.01; F2,12 = 56.22, p < 0.01) and OsLecRK4
(F2,12 = 115.12, p < 0.01; F2,12 = 115.73, p < 0.01) at 1 and 3 dpi, whereas no significant upregulation
of OsLecRK1 (p > 0.05, F value not shown) was observed (Figure 6, Table S2). On the other hand,
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infestation with IR56-BPH did not cause any significant induced expression of any of these three
genes in IR56 rice either at 1 or 3 dpi. Similarly, in TN1 rice, infestation of TN1-BPH or IR56-BPH
(compatible interactions) induced no significant upregulation of the OsLecRKs. From the results,
it could be suggested that OsLecRK3 and OsLecRK4 play an important role in the resistance of IR56 rice
to TN1-BPH, but their activation might be hindered by IR56-BPH during the infestation, resulting in a
breakdown in the IR56 rice′s resistance.
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Figure 5. Enzyme activity of peroxidase (POD), superoxide dismutase (SOD), GST, and catalase (CAT)
in the IR56 and TN1 rice varieties under infestation of the two different BPH populations. Data are
denoted as mean ± SE and analyzed by two-way ANOVA followed by Tukey’s HSD post-hoc test.
Letters above the bars indicate a significant difference (p < 0.05) in enzyme activities among TN1-BPH-
and IR56-BPH-infested rice, and the control (rice not infested with BPH). An asterisk (*) denotes a
significant difference (p < 0.05) in enzyme activity with respect to the different rice varieties under the
same infested BPH population at the specific time point. No significant difference among samples are
not denoted by any symbol. EU stands for enzyme unit.

2.5. Expression Modulation of the BPH-Induced OsMPKs in Response to the Exogenous Treatment
of Phytohormones

Out of 11 BPH-induced OsMPKs, the exogenous treatment of SA resulted in significant activation
(p < 0.05) of two OsMPKs (OsMPK4 and OsMPK5) in both rice varieties, and of four OsMPKs (OsMPK9,
OsMPK12, OsMPK14, and OsMPK16) in IR56 rice (Figure 7A, Table S3). Similarly, treatment of
methyl jasmonate (MeJA) significantly activated three OsMPKs (OsMPK3, OsMPK5, and OsMPK13)
in both rice varieties, and of four OsMPKs (OsMPK1, OsMPK4, OsMPK7, and OsMPK9) in IR56 rice
(Figure 7B, Table S4). Likewise, two OsMPKs (OsMPK9 and OsMPK12) showed upregulated expression
in both rice varieties under exogenous treatment of ethephon, and five OsMPKs (OsMPK4, OsMPK7,
OsMPK13, OsMPK14, and OsMPK16) exhibited significant induced expression in IR56 rice (Figure 7C,
Table S5). These results showed that the number of OsMPKs triggered by the exogenous treatment of
phytohormones was higher in IR56 rice as compared to TN1 rice.
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Figure 7. An expression analysis of the BPH-induced OsMPKs under exogenous treatment with
different phytohormones in the IR56 and TN1 rice varieties. (A) Treatment of SA, (B) treatment of
methyl jasmonate (MeJA), and (C) treatment of ethephon (ET). The analysis was performed based on the
qPCR data of the 11 BPH-induced OsMPKs using the MEV program. The red color represents a positive
correlation between the OsMPK expression and phytohormone treatment, and the blue color indicates
a negative correlation between OsMPK expression and phytohormone treatment. The hierarchical
clustering has been constructed based on the Pearson Correlation metric, and the gene order has
been optimized.
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3. Discussion

In the present study, the temporal expression profiles of OsMPKs in two contrasting rice varieties
were determined in response to BPH infestation at varied virulence levels. The OsMPK expression
revealed that 11 OsMPKs (OsMPK1, OsMPK3–5, OsMPK7–9, OsMPK12–14, and OsMPK16) were
upregulated in the incompatible interaction. Of them, upregulation of OsMPK4, OsMPK5, OsMPK8,
OsMPK9, OsMPK12, and OsMPK13 was also observed in the compatible interactions. Thus, the induced
expression of these genes suggested the involvement of multiple OsMPKs in response to BPH-feeding.
Differential transcription of multiple OsMPKs, including OsMPK5, OsMPK12, OsMPK13, and
OsMPK17, has been reported in rice in response to BPH infestation [28]. Further, four MAPKs (SIPK and
WIPK in tobacco, and LeMPK1 and LeMPK2 in tomato) have been reported to be involved in defense
responses to the chewing insect Manduca sexta by regulating the expression of the downstream defense
genes, secondary metabolite genes, and phytohormone signaling [24,29]. Additionally, OsMPK3,
OsMPK6, and seven homologs (CaMAPK2–3, CaMAPK5, CaMAPK7–9, and CaMAPK15) in chickpea
have been identified to be induced in response to insect infestations [30,31]. Furthermore, nine OsMPKs
(OsMPK2, OsMPK4–5, OsMPK7–8, OsMPK12–13, OsMPK15, and OsMPK17) were reported to show
induced expression after infection of Magnaporthe grisea, whereas three OsMPKs (OsMPK5, OsMPK13,
and OsMPK17) were induced by the treatment of both virulent and avirulent fungal inoculations [32].
Activation of OsMPK4, OsMPK5, OsMPK7, OsMPK8, and OsMPK13 was found to be common between
the current study and the experimental results in that of Reyna and Yang [32]. Thus, the activation of
OsMPK5, OsMPK13, and OsMPK17 might be associated with both insect and pathogen resistance in
rice. Moreover, the induced expression of multiple OsMPKs in response to the BPH infestation in the
current study is in accordance with previously reported studies (Table 1).

Table 1. Induced expression of OsMPKs under different biotic stresses.

Gene Name Biotic Stress Type

OsMPK1 Magnaporthe grisea [33]
OsMPK2 M. grisea [32]
OsMPK3 M. grisea and BPH [23]
OsMPK4 M. grisea [32] and Chilo suppressalis infestation [34]
OsMPK5 M. grisea [32], C. suppressalis [22], and BPH infestation [28]
OsMPK6 C. suppressalis infestation [30]
OsMPK7 M. grisea [32] and Xanthomonas oryzae [35]
OsMPK8 M. grisea [32]

OsMPK12 Fungal elicitor chitosan [36], M. grisea [32], and BPH infestation [28]
OsMPK13 M. grisea [32] and BPH infestation [28]
OsMPK15 M. grisea [32]
OsMPK17 M. grisea [32] and BPH infestation [28]

The differential transcript patterns of OsMPKs during rice–BPH interactions suggests that OsMPK
expression can be correlated with the infested BPH population types. During the incompatible
interaction, a higher number of OsMPKs exhibited induced expression as compared to the compatible
interactions. These results suggest that, during the compatible interactions, the virulent BPH succeeded
in suppressing or breaking down the rice’s resistance, possibly by employing explicit effectors.
The presence of proteinaceous substances in BPH saliva suggests that the salivary secretions might
serve as a source of effectors to outrun rice defenses. For instance, the salivary protein NlSEF1
with an EF-hand Ca2+-binding domain and the endo-β-1,4-glucanase (NlEG1) were reported to
suppress rice defenses by manipulating defense signaling, including SA and JA [37,38]. Moreover, the
virulence of pathogens and the host resistance responses are usually host-specific or isolate-specific,
which function among discrete races of a pathogen and distinct genotypes or cultivars of a plant
species [39]. Further, effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS) are
host-specific in nature [40]. Thus, the IR56-BPH that had evolved its virulence against IR56 rice might
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have broken down the rice’s resistance by following a mechanism similar to ETS. In addition, changing
the host, i.e., infesting TN1 rice with IR56-BPH, and IR56 rice with TN1-BPH, might have impaired the
BPH effector-mediated ETS, and, thus, activated the cross-population responsive OsMPKs (OsMPK4,
OsMPK8, and OsMPK9) in the rice varieties.

In the current study, the analysis of the transcript accumulations of genes involved in SA, JA,
and ET signaling during the rice–BPH interactions suggested that BPH resistance in rice is possibly
modulated by interplay between SA, JA, and ET. Significant upregulation of the three SA signaling
genes OsPAL1, OsEDS1, and OsNPR1 during the incompatible interaction suggested the intrinsic role
of SA signaling in BPH resistance responses in rice. OsPAL1 is a crucial enzyme in the phenylpropanoid
pathway via which plants synthesize SA [41]. OsEDS1 plays a major role in conferring SA-dependent
resistance against pathogens, while OsNPR1 is a key gene involved in SA-mediated systemic acquired
resistance (SAR) [42,43]. Similarly, the expression of OsACS2, OsEIN2, and OsERF3 was significantly
upregulated during the incompatible interaction. OsEIN2 positively regulates ET signaling and the
production of ROS and phytoalexins, whereas OsERF3 has been reported to act as a central switch
in rice to direct plant defense responses in a herbivore-specific manner by controlling many crucial
pathways, including MAPK activation and ET, SA, JA, and H2O2 signaling [44,45]. Also, the activation
of the ET signaling pathway was observed in rice under BPH infestation that, in turn, upregulated
the transcription of the BPH-induced gene Bphi008a [28]. Induced expression of OsPAL1, OsEDS1,
and OsNPR1, along with other SA-responsive genes, was observed during the Bph14-mediated
resistance that triggered the SA signaling pathways in a resistant rice variety [46]. Similarly, expression
of OsACS1, OsEIN2, and OsERF1 was found to be elevated in a resistant rice under Meloidogyne
graminicola infection [47]. Conversely, the analysis of the expression of OsAOS1, OsAOS2, and OsLOX1
during the rice–BPH interactions revealed that induced activation of JA biosynthesis genes is an early
event during rice–BPH interactions and is independent of the BPH population type. These findings
from the current work are in accordance with some of the previously reported results, where wounding
or herbivory by chewing insects profoundly induced JA biosynthesis, whereas BPH infestation has
resulted in either a very weak JA burst or the JA signaling being negatively correlated with BPH
resistance in rice [44,48,49]. Furthermore, a cDNA microarray analysis confirmed that BPH infestation
in the resistant rice variety RH induced SA biosynthesis genes and SA levels, but not JA biosynthesis
genes or intrinsic JA levels [50]. Thus, from our experimental findings, we hypothesize that SA and ET
signaling might play an important role in the BPH resistance response in rice.

Elevated expression of the key phenylpropanoid biosynthesis genes during the incompatible
rice–BPH interaction suggested the potential role of secondary metabolite production in rice in response
to BPH infestation. Moreover, upregulated expression of OsC4H, OsCHS, and OsCHI only during
the incompatible interaction suggested a role for phenylpropanoids in BPH resistance. Increased
production of secondary metabolites, including phenolamides and p-coumaroylputrescine, has been
reported in rice under the infestation of the chewing pests Spodoptera mauritia and Parnara guttata [51].
Similarly, in response to BPH infestation, upregulation of the PAL gene and the subsequent production
of phenylpropanoids and polyphenols were reported by Liu et al. [52]. The analysis of the expression
of ROS-responsive genes and the estimation of the ROS-responsive enzyme activities during the
rice–BPH interactions suggested that the generation of ROS is an early event in rice–BPH interactions
and might be associated with the basal defense response. The upregulated expression of OsGST and
OsSOD and the increased enzyme activity of POD and SOD at 1 dpi, but not at 3 dpi, during both
compatible and incompatible rice–BPH interactions indicate that ROS accumulation is an early event
in rice–BPH interactions and not BPH-population-specific in rice.

In the current work, OsLecRK3 and OsLecRK4 exhibited induced expression only during
incompatible rice–BPH interactions, indicating their functionality in BPH resistance in IR56 rice.
Similar expression patterns were reported for OsLecRK1-3 in RH rice under BPH infestation [7].
Further, the LecRKs belong to a specific pattern recognition receptor (PRR) family and are upstream
of MAPKs [53]. In our study, the induced expression of OsLecRKs during the incompatible rice–BPH
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interaction suggested potential OsLecRK and OsMPK interactions in the BPH resistance response.
In Arabidopsis, AtLecRK-IX2 regulated the activation of AtMAPK3 and AtMPK6 in response to flg22
treatment [53]. In pepper, CaLecRK-S.5, which confers broad-spectrum resistance, regulated the
activation of CaMK1 and CaMK2 [54]. Thus, we propose that OsLecRKs possibly regulate rice’s
resistance against BPH infestation by activating downstream MAPKs. However, more in-depth
experiments, including interaction studies between OsLecRKs and OsMPKs, are needed to confirm
their association with respect to BPH resistance in rice.

The differential expression of the BPH-induced OsMPKs in response to exogenous treatment of
signal molecules, including SA, JA, and ET, revealed their potential role in mediating different hormone
signals in rice. Two OsMPKs (OsMPK4 and OsMPK9) were found to be induced in IR56 rice by the
treatment of all three phytohormones, suggesting that they have prospective roles in influencing SA,
JA, and ET interplay. Similar results were reported by Reyna and Yang [32], where exogenous treatment
of different signaling molecules induced the expression of blast fungus responsive OsMPK5, OsMPK12,
and OsMPK13. Plant MAPKs have been reported to regulate multiple phytohormone signaling
pathways, and some of them act as the nexus for two or more hormone signaling pathways [55].
OsMPK3 and OsMPK6 have been reported to act as the nexus in the interplay of auxin and cytokinin [56].
Moreover, the discrimination in the number of OsMPK-induced expressions by the exogenous
phytohormone treatments between TN1 rice and IR56 rice might be because additional OsMPKs
are involved in phytohormone signaling in the resistant rice as compared to the susceptible one.

In our attempt to elucidate the functionality of the induced OsMPKs during the rice–BPH
interactions, we performed a chemical inhibition (non-specific and broad-spectrum) of the rice MAPKs
by using a mixture of PD98059 and Genistein. PD98059 is a selective inhibitor of MEK1 and MEK2; thus,
it can suppress the activation of downstream MEK1- or MEK2-dependent MAPKs [57]. On the other
hand, Genistein is a non-specific MAPK inhibitor (kinase inhibitor) that can suppress the activation
of MAPKs in plants [58]. Application of the mixture of PD98059 and Genistein resulted in the
transient downregulation of all five candidate OsMPKs (OsMPK1, OsMPK3, OsMPK7, OsMPK14, and
OsMPK16) (Figure S3A). The BPH bioassays with TN1-BPH or IR56-BPH on the inhibitor-mix-treated
plants of both TN1 and IR56 rices were found to be non-significant as compared with the controls
(untreated) (Figure S3B,C). The possible reason behind this might be because of the transient nature
of the chemical inhibition of MAPKs. The use of the inhibitors transiently suppressed the expression
of MAPK; however, their restored expression in the plants might have conferred resistance to BPH
infestation. Thus, targeted mutation of specific OsMPKs can further clarify their roles in the rice–BPH
interactions. Moreover, repeated treatments (alternative day) of the inhibitor mix to prolong the
MAPK inhibition resulted in fatal drying of the mock plants (chemical-treated, no BPH) of both rice
varieties. Thus, the results obtained from this experiment were considered to be inconclusive, and
loss of function studies have been planned to determine the roles of the candidate OsMPK in the
rice–BPH interactions.

From the experimental findings in the study, we propose a transcriptional-level model depicting
the IR56 rice’s resistance mechanism against TN1-BPH, and the resistance breakdown in IR56 rice
by IR56-BPH (Figure 8). In IR56 rice, the activation of OsLecRKs in response to TN1-BPH could
possibly be achieved by the recognition of the damage-associated molecular patterns (DAMPs),
herbivore-associated molecular patterns (HAMPs), or effectors. For instance, oligogalacturonides,
oligomers of alpha-1,4-linked galacturonosyl residues, are one of the well-studied DAMPs that
are released from plant cell walls upon degradation by insect feeding and can elicit plant defense
responses [59]. OsLecRKs activation then might induce the downstream OsMPKs via production of
intermediate factors or signal molecules [60,61]. The activated MAPK cascade might then, in turn,
activate the phytohormonal defense’s regulation and other downstream transcriptional reprogramming
to confer resistance against BPH. SA induces the deposition of callose in phloem cells and the
production of a trypsin inhibitor to discourage BPH feeding, whereas ET results in the production of a
green volatile that deters BPH feeding [1,46]. The activation of a secondary metabolite biosynthesis
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pathway, such as phenylpropanoids, results in the production of important compounds, such as
lignin and phytoalexins, which help to mitigate BPH pressure [61]. However, when IR56 rice was
infested with IR56-BPH, none of the OsLecRK were found to be induced, suggesting that IR56-BPH
can suppress the PRR-mediated immune response in rice, possibly by the use of other explicit
effectors. The chitin elicitor binding protein (CEBiP)-mediated immunity in rice against M. oryzae was
suppressed by secreting the effector Secreted LysM Protein1 (Slp1) [62]. Furthermore, infestation of
IR56-BPH in IR56 rice successfully suppressed the induced expression of all BPH-responsive OsMPKs
except OsMPK5, which was activated during TN1-BPH infestation. In addition, none of the SA
or ET signaling genes were found to be activated during IR56-BPH infestation, and the same was
observed for the phenylpropanoid biosynthesis genes. Taken together, these results suggest that
IR56-BPH could have broken down the resistance of IR56 rice by suppressing the transcription of many
defense-responsive pathways, including the MAPKs. Silencing of LecRKs had resulted in a reduced
hypersensitive response, secondary metabolite production, and MAPK expression in Arabidopsis [54].
On the one hand, incompatible rice can tackle BPH infestation either by the identification of effectors,
the initiation of a hypersensitive response, the activation of downstream defense pathways, including
MAPKs, phytohormone biosynthesis, or secondary metabolite production, or by a cocktail of these
responses. On the other hand, suppressing these plant defense mechanisms by ETS or by a similar
mechanism, the virulent BPHs outrun the rice’s resistance in the compatible interactions. Currently,
the identification of such effector molecules in IR56-BPH is in progress in our lab, and the results may
enable us to add more insights to our proposed transcriptional model. Besides the transcriptional
mechanism, post-transcriptional mechanisms (alternative splicing, RNA processing, RNA silencing,
et al.), post-translational modifications (protein phosphorylation, ubiquitination, sumoylation, et al.),
and cross-connections among these three mechanisms will demonstrate further and superimpose
complexity levels in the response to environmental changes. Future attempts at rice engineering could
exploit insights from a deeper comprehension of rice–BPH interaction.
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TN1-BPH and the breakdown of resistance in the IR56 rice variety by IR56-BPH. E: effectors;
SM: secondary metabolites; ET: ethylene; SA: salicylic acid; ETS: effector-triggered susceptibility;
IF: intermediate factors; GLV: green leaf volatiles; SAR: systemic acquired resistance. The solid lines
indicate established regulatory connections, while the dashed lines represent a possible connection
between different genes and factors.
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4. Materials and Methods

4.1. Plant Materials

Two indica rice varieties IR56 and TN with a contrasting BPH resistance nature were used in this
study. Pre-germinated seeds were planted in mud beds and grown under natural light and temperature
conditions in a net house. Single tillers from two-month old seedlings were transplanted to mud-filled
plastic cups (diameter 12 cm, height 15 cm) and kept in a temperature-controlled greenhouse (28 ± 2 ◦C,
80 ± 5% relative humidity (RH)). After 10 days of transplantation, the rice plants were used for the
experiments. The BPH resistance of both rice genotypes included in this study was validated in our
laboratory prior to the current research.

4.2. Insect Materials

TN1-BPH and IR56-BPH were used to perform the BPH bioassays in this study. BPH colonies
initially collected from rice fields in Hangzhou, China, were maintained on TN1 rice or IR56 rice in a
climate-controlled chamber (26 ± 2 ◦C, 80 ± 5% RH) for more than 7 years at the China National Rice
Research Institute (CNRRI). Both these populations differ in their respective virulence levels.

4.3. BPH Bioassays

Each rice plant with a single tiller was individually infested with 4 newly emerged adult female
adults, and were confined in a transparent plastic cage (diameter 10 cm, height 60 cm) equipped with a
net (with holes of diameter 0.5 mm). As per the aforementioned procedures, the two BPH populations
were infested on both the IR56 and TN1 rice varieties, separately. Plants with no BPH treatment from
each variety put inside a plastic cage served as a control for this experiment. Wound stress imposition
was performed as described by Lu et al. [26] with a slight modification. Briefly, the lower stem portion
(2 cm from the base) of each rice plant was pierced 100 times with a fine needle to induce wound stress.
Plants with no piercing served as a control for this experiment. Samples were collected after 1 and
3 dpi, immediately frozen in liquid nitrogen, and stored at −80 ◦C for further use. The BPH assay
experiments were performed with 3 independent biological replicates.

For the BPH bioassay in the chemical MAPK inhibition experiment, 40 third instars of TN1-BPH
or IR56-BPH were transferred into a single pot having 10 rice plants of each rice variety. The assays
were performed in a confined space by the use of a plastic cage as described above. BPH survival rates
were calculated for each day of infestation by counting the number of alive BPH nymphs and dividing
this number by the total number transferred. The BPH survival rates were determined for 1–8 days of
infestation. The BPH assay experiments were performed with 3 independent biological replicates.

4.4. Chemical Treatments

Exogenous phytohormone treatments were performed as described in Nahar et al. [63] with
necessary modifications. Briefly, the rice plants were individually sprayed with 100 µM MeJA
(Sigma-Aldrich, St. Louis, MO, USA), 200 µM SA (Sigma-Aldrich, St. Louis, MO, USA), and 500 µM
ethephon (Sigma-Aldrich, USA) until runoff to induce JA, SA, and ET treatments, respectively.
Rice plants sprayed with 0.1% ethanol (v/v) served as a control for the MeJA and ethephon treatments.
Rice plants sprayed with water served as a control for the SA treatments. Plant samples were collected
at 1 and 3 days post-hormonal treatments, frozen immediately with liquid nitrogen, and stored at
−80 ◦C until further use. The experiment was performed with 3 independent biological replicates.

Treatments with PD98059 and Genistein were peformed as described in Bjornson et al. [58]
with necessary modifications. Breifely, the rice plants were individually sprayed with a mixture of
PD98059 (Sigma-Aldrich, St. Louis, MO, USA) and Genistein (Sigma-Aldrich, St. Louis, MO, USA) of
40 µM concentration dissolved in 0.5% (v/v) dimethyl sulfoxide (DMSO) to induce MAPK inhibition.
Rice plants sprayed with only 0.5% (v/v) DMSO served as a control for the experiment. The experiment
was performed with 3 independent biological replicates.
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4.5. RNA Isolation and cDNA Synthesis

Plant samples collected at the respective time points were ground to powder in a pre-chilled
sterilized mortar and pestle with sufficient liquid nitrogen, and were used to isolate total RNA using
the TransZol Up reagent (Transgen, Beijing, China) according to the manufacturer’s instructions.
The concentration and quality of isolated RNA were determined by a NanoDrop ND-1000
spectrophotometer (Thermo-Fischer Scientific, Waltham, MA, USA) and by 1% (w/v) agarose gel
electrophoresis. First-strand cDNA was synthesized from isolated RNA by using a Transcript one-step
gDNA removal and cDNA synthesis supermix kit (Transgen) as per the manufacturer’s instructions.

4.6. Quantitative Real-Time PCR (qPCR)

Seventeen OsMPKs sequences were retrieved by using their RAP-DB IDs (Table S6) and by
following the nomenclature prescribed by Rohila and Yang [19]. Primers for all 17 OsMPKs and other
defense-related genes were designed using Primer-BLAST. The qPCR was performed with a total
volume of 10 µL of reaction mixture containing 5 µL of SYBR Green PCR mix (Transgen), 0.2 µL each
of the specific forward and reverse primers (10 µM) (Table S6), 0.2 µL of passive reference dye (ROX)
(Thermo-Fischer Scientific, Waltham, MA, USA), 2 µL of template cDNA, and 3.4 µL of nuclease-free
water. The qPCR reaction was carried out on an ABI 7500 real-time PCR system (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s instruction. Three independent biological
samples for each reaction, and three technical replicates for each biological sample, were used for
the qPCR analysis. The constitutively expressed housekeeping gene OsUbq from rice was used as an
endogenous control [50]. The relative expression was evaluated using the 2−∆∆Ct method [64].

4.7. Enzyme Activity Assays

The enzyme activities of POD (EC 1.11.1), SOD (EC 1.15.1.1), CAT (EC 1.11.1.6), and GST
(EC 2.5.1.18) were determined in BPH-infested and control plants by using POD, SOD, CAT, and GST-ST
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) by following the manufacturer’s
instructions. One unit of POD activity was defined as the amount of enzyme required for a change of
0.001 in absorbance per minute. One unit of SOD activity was defined as the amount of enzyme
required to inhibit 50% of the photochemical reduction of nitroblue tetrazolium. One unit of
CAT activity was defined as the amount of enzyme required to change the absorbance value by
0.001 per minute at 405 nm. One unit of GST activity was defined as the amount of enzyme required
to produce 1 mmol of 2,4-dinitrobenzene-glutathione conjugate per minute. All of the enzymatic
assays were performed with three independent biological replicates, and each replicate included three
technical replicates.

4.8. Statistical Analysis

The statistical analyses were carried out using Data Processing System software [65]. Data are
reported as mean ± SE. For the OsMPK expression experiment, data were analyzed by three-way
ANOVA (using rice variety, BPH population, and infestation period as the main factors), and for all
other experiments, data were analyzed by two-way ANOVA followed by Tukey’s HSD post-hoc test.
The statistical significance level was set for p-values <0.05 or 0.01.

5. Conclusions

In the current work, the differential roles of OsMPKs in two contrasting rice genotypes under BPH
infestation at different virulence levels have been investigated. The findings from the study suggested
that multiple factors, including rice variety, BPH population type, and infestation period have
significant effects on the expression of the OsMPKs. Further, five OsMPKs (OsMPK1, OsMPK3, OsMPK7,
OsMPK14, and OsMPK16) were found to be exclusively involved in the incompatible rice–BPH
interaction. OsMPK4, OsMPK8, and OsMPK9 exhibited induced expression when infested with
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cross-population BPH. An analysis of the expression of phytohormone signaling genes revealed that
rice resistance to BPH might be mediated by the SA and ET signaling pathways. Further, an analysis
of the transcription of phenylpropanoid biosynthesis genes suggested that BPH resistance might be
realized by the boosted production of secondary metabolites. Although ROS play a vital role in insect
herbivory resistance, our findings suggested that ROS accumulation in response to BPH feeding is an
early response in rice. Additionally, an analysis of ROS-related enzyme activities in BPH-infested plants
further strengthened this hypothesis. Lastly, we have proposed a conceptual model of interactions
of IR56 rice with TN1-BPH and IR56-BPH that depicts the resistance and susceptibility reactions,
respectively. Additional functional characterizations by deducing the interaction dynamics, and a loss
of function analysis, will enable more insights into the role of OsMPKs in rice–BPH interactions.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
4030/s1.
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ERF3 Ethylene-responsive transcription factor
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