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Gene Expression Profiles 
Associated with Brain Aging are 
Altered in Schizophrenia
Sarven Sabunciyan

Existence of aging associated transcriptional differences in the schizophrenia brain was investigated in 
RNA sequencing data from 610 postmortem Dorso-Lateral Pre-Frontal Cortex (DLPFC) samples in the 
CommondMind Consortium (CMC) and the psychENCODE cohorts. This analysis discovered that the 
trajectory of gene expression changes that occur during brain aging differed between schizophrenia 
cases and unaffected controls. Mainly, the identified gene expression differences between the diagnosis 
groups shrank in magnitude following 60 years of age. A differential expression analysis restricted to 
the 40 to 60 year age group identified 556 statistically significant loci that replicated and had highly 
consistent gene expression fold changes in the two cohorts. An interaction between age and diagnosis 
in the wider psychENCODE cohort was also detected. Gene set enrichment analysis discovered 
disruptions in mitochondria, RNA splicing and phosphoprotein gene pathways. The identified 
differentially expressed genes in the two cohorts were also significantly enriched in genomic regions 
associated with schizophrenia although no enrichment was observed for differentially expressed 
genes identified in the 40 to 60 year age group. This work implicates disruptions to the normal brain 
aging processes in the pathology of schizophrenia and demonstrates the need for age stratification in 
schizophrenia postmortem brain gene expression studies.

Gene expression in the postmortem schizophrenia brain has been extensively characterized by microarray and 
next generation sequencing studies1–6. The consensus from these studies is that there are many subtle expression 
differences in individual genes that likely alter the functioning of various gene pathways in schizophrenia2,4,7,8. 
The standard analysis approach employed by these studies assumes that gene expression and age have a linear 
relationship. Thus, appropriate statistical methods are used to adjust for the effect of age on gene expression. 
However, epidemiological studies consistently find excess early mortality8,9 in disease. In addition, studies that 
estimate brain age based on neuroanatomical structures10 and integrity of the white matter11,12 have found accel-
erated aging in schizophrenia. As transcriptional changes are likely to accompany neuroanatomical changes in 
the brain, the relationship between age and disease is likely to be more complex than assumed in current analysis 
pipelines. Therefore, in this work publicly available RNA sequencing data was reanalyzed to determine whether 
the transcriptome of the aging brain differs between unaffected controls and schizophrenia cases.

Results
Gene expression profiles in the aging schizophrenia brain is altered.  In order to study aging in 
schizophrenia, RNA sequencing data generated from the BA9 of the CMC and BA46 of the psychENCODE post-
mortem brain collections were reanalyzed. As CMC has the largest number of brain samples with RNA sequenc-
ing data and gene expression differences in schizophrenia have already been identified in this cohort1,13, we 
reasoned that this cohort likely has the necessary statistical power to detect differences in our analysis. Following 
the exclusion criteria (see Methods) 237 unaffected controls and 239 schizophrenia subjects between the ages of 
25 to 90 remained (Fig. 1A). In the psychENCODE cohort only BA46 samples from schizophrenia and control 
cases that were between the ages of 25 and 65 were included (See Methods). This left a total of 67 cases and 67 
control samples (Fig. 1B).

Gene count tables were generated for the CMC cohort using the Ensembl annotation for the hg19 human 
genome build and the DESeq214 package from the bioconductor project was used to identify differentially 
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expressed loci. The following statistical design that assumes an interaction between diagnoses and age was used 
(see Methods for details):

+ + + + + + +~Diagnosis Age Age: Diagnosis Gender Ethnicity PMI RIN RuvFactors

PMI refers to Post Mortem Interval whereas RIN is the RNA Integrity Number, which is an estimate of 
RNA quality15,16. RuvFactors were calculated using the RuvSeq package which is a statistical method to remove 
unwanted variation from RNA sequencing data17. Based on these criteria, Wald tests identified 7434 differentially 
expressed genes in which the adjusted p-value (corrected for multiple testing) was <0.1 and each gene on average 
had at least 20 reads per sample. Similar to previous studies, we found moderate differences in fold change in 
the statistically significant differences we identified (Fig. 2 and Supplementary Fig. 1 plots the top 100 loci with 
the lowest p-values). These graphs revealed that the difference in gene expression levels between schizophrenia 
cases and unaffected controls vary with age (Fig. 2). The maximum gene expression difference in the CMC was 
consistently between 40 and 60 years of age (Supplementary Figure 1) with the caveat that there are relatively 
few samples under the age of 40 in the CMC cohort. For many loci the expression differences at ages older than 
60 gets smaller and the direction of the change is reversed. In order to summarize the results of the differential 
expression analysis, the normalized difference between schizophrenia cases and unaffected controls was plotted 
for each locus (Fig. 3 and Supplementary Fig. 2. See Normalized Difference Plots in Methods). Briefly, schizo-
phrenia expression levels (the blue lines in Fig. 2) were subtracted from control expression levels (the red lines in 
Fig. 2) for each age. The resulting differences in expression at each age were plotted for every locus (Fig. 3 - See 
methods for details). In order to avoid over plotting, the differentially expressed loci were subdivided into those 
with a maximum difference at ages 60 or less and were 1) more expressed (3114 loci) or 2) less expressed (3369 
loci) in controls (Fig. 3) and those with a maximum difference at ages over 60 (Supplementary Fig. 2) that were 
3) more expressed (405 loci) or 4) less expressed (546 loci) in controls. These plots verified that the difference in 
gene expression between cases and controls is not constant across age. Although, the CMC cohort contains 307 

Figure 1.  Demographic Data. Histogram of diagnoses by age for (A) the CMC and (B) the psychENCODE 
Cohorts. The psychENCODE cohort has fewer samples and a narrower age range.
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samples over the age of 60 there are only 33 samples under the age of 40. Therefore, the smaller gene expression 
differences observed between cases and controls under the age of 40 needs to be interpreted with caution.

Age stratification improves consistency between studies.  As the largest expression differences 
between schizophrenia and control samples occurred consistently between 40 and 60 years of age in the CMC 
analysis, differential expression analysis for this age group in the CMC and psychENCODE cohorts was per-
formed. Eighty-two cases and 54 controls were present in the CMC and 51 cases and 48 controls were present in 
the psychENCODE cohorts. Gene count tables were generated based on the Ensembl hg19 annotation for both 
cohorts. For this analysis the interaction term was removed and the following regression formula was used:

+ + + + + +~Diagnosis Age RIN PMI Race Sex RuvFactors

The resulting analysis identified 2167 differentially expressed genes in the CMC and 4086 in psychENCODE 
that had an adjusted p-value of less than 0.1 and at least 20 reads per gene. After excluding results driven by out-
liers (using cooks distance) 556 loci replicated between the cohorts (Fig. 4, Supplementary Table 1). The p-values 
ranged from 1.25e-05 to 0.1 (mean 0.045) for the CMC cohort and 2.71e-09 to 0.1 (mean 0.027) for the psychEN-
CODE cohort whereas the absolute fold change ranged from 1.05–1.86 (mean 1.18) for the CMC and 1.04–2.16 
(mean 1.17) for psychENCODE. In order to determine the consistency of the changes between the two cohorts, 
the fold change difference in the two studies was plotted (Fig. 4A). The fold change difference between the two 
studies were highly correlated (r2 = 0.82) Boxplots were used to gage the variability between diagnosis groups 
(Fig. 4B). Gene set enrichment analysis performed using the DAVID annotation tool18 revealed that these 556 

Figure 2.  Gene Expression Differences Between Schizophrenia and Control Brains During Aging 
Representative plots of the most common gene expression trajectories found in the CMC analysis. Observed 
normalized read counts were plotted vs age and the loess function was used to fit the best line through the data 
points.

Figure 3.  Gene Expression Differences Between Controls and Schizophrenia At Each Age The normalized 
difference in gene expression between control and schizophrenia samples is plotted for ages 25 to 90 for genes 
identified to be differentially expressed in the CMC by Wald tests using DESeq2. As the values at leach locus 
are normalized to the observed maximum difference, only values between 1 and −1 are possible. In order to 
avoid over plotting, the loci were grouped into those with (A) positive maximum difference (expression higher 
in controls) occurring at age 60 or less (3114 loci), (B) negative maximum difference (expression higher in 
schizophrenia) occurring at age 60 or less (3369 loci).
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genes are mostly associated with mitochondrial functions (fold enrichment 1.88–6.48, p-value 0.0017–0.1), a 
biological pathway implicated to be involved in the pathology of schizophrenia (Table 1).

Gene set enrichment analysis implicates similar gene pathways in the CMC and The psychEN-
CODE cohorts.  Although the psychENCODE cohort was much smaller and only spanned an age range of 
25 to 65, the existence of an interaction between age and diagnosis was investigated in this cohort. Thus the 
analysis performed on the CMC cohort using the formula ~Diagnosis + Age + Age: Diagnosis + Gender + Et
hnicity + PMI + RIN + RuvFactors was repeated. The threshold for statistical significance was again set at an 
adjusted p-value of <0.1 and a minimum average read count of 20/sample. Based on these criteria we identified 
29 loci to be differentially expressed (Supplementary Table 2). Fifteen out of these loci were also differentially 
expressed in the CMC cohort (11 in the same direction). Gene set enrichment analysis on the 29 identified loci 
did not yield statistically significant results. However, a plot of the p-values for all genes tested in the psychEN-
CODE cohort revealed that there are many nominally significant genes (unadjusted p-value <0.05) that failed 
to reach the threshold of statistical significance following multiple testing (Supplementary Fig. 3) suggesting 
that this small cohort might be underpowered. Gene set enrichment analysis was performed using the DAVID 
annotation tool18 on the 2976 nominally expressed genes in psychENCODE (unadjusted p < 0.05, minimum 
mean read count 20 and outlier removal by cooks distance) and the significantly expressed loci in the CMC to 
determine whether there was any overlap between the two cohorts. Gene pathways associated with acetylation 
(p = 4.75E-57) and phosphoproteins (p = 3.55E-40) had the most significant enrichment in the CMC analysis. In 
addition multiple gene pathways associated with mitochondrial functions, splicing and ribosome activity were 
significantly enriched (Table 2, Supplementary Table 3). The 4 gene pathways that were significantly enriched in 

Figure 4.  Gene Expression Differences For the 40 to 60 Age Group. (A) The fold change differences detected in 
the psychENCODE plotted against the fold change differences detected in the CMC for the 556 loci identified 
to be significantly differentially expressed in both cohorts at the 40 to 60 year old age group. (B) Boxplots of 
differentially expressed loci selected based on significance level and/or relevance to disease. The x-axis label 
CM-C is CommonMind Control, CM-S is CommonMind Schizophrenia, PE-C is psychENCODE Control, 
PE-S is psychENCODE Schizophrenia.

Category Term Gene Count Fold Enrichment Bonferroni

SP_PIR_KEYWORDS mitochondrion 43 2.16 1.74E-03

SP_PIR_KEYWORDS transit peptide 30 2.64 1.78E-03

SP_PIR_KEYWORDS respiratory chain 11 6.48 2.84E-03

UP_SEQ_FEATURE transit peptide:Mitochondrion 30 2.67 4.61E-03

GOTERM_CC_FAT GO:0005739~mitochondrion 51 1.88 5.30E-03

GOTERM_CC_FAT GO:0070469~respiratory chain 11 5.88 5.54E-03

GOTERM_CC_FAT GO:0044429~mitochondrial part 33 2.22 1.20E-02

GOTERM_BP_FAT GO:0030198~extracellular matrix organization 13 5 1.95E-02

SP_PIR_KEYWORDS mitochondrion inner membrane 16 3.47 2.64E-02

KEGG_PATHWAY hsa05010:Alzheimer’s disease 14 3.31 3.17E-02

KEGG_PATHWAY hsa05012:Parkinson’s disease 12 3.61 5.05E-02

KEGG_PATHWAY hsa00190:Oxidative phosphorylation 12 3.56 5.75E-02

GOTERM_CC_FAT GO:0005746~mitochondrial respiratory chain 9 5.63 6.11E-02

GOTERM_CC_FAT GO:0019866~organelle inner membrane 21 2.56 7.50E-02

GOTERM_CC_FAT GO:0044455~mitochondrial membrane part 12 3.85 9.58E-02

Table 1.  Gene Set Enrichment Analysis For Differentially Expressed Loci In The 40 To 60 Year Age Group.
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the psychENCODE cohort were alternative splicing (p = 1.25E-10), splice variant (p = 5.28-09) phosphoprotein 
(p = 1.66E-07) and coiled coil pathways (p = 0.09) (Table 2).

Differentially Expressed Genes Identified In The CMC And The psychENCODE Cohorts Are 
Enriched In The 108 Regions Associated With Schizophrenia.  In order to determine whether the 
differentially expressed loci identified in the CMC and the psychENCODE cohorts are enriched near the genomic 
regions associated with schizophrenia19, Inrich analysis20 was performed. The 556 loci identified in the 40 to 60 
year age group were not enriched in genomic regions associated with schizophrenia. However, out of the 95 schiz-
ophrenia regions that contain genes (based on the Ensembl gene annotations), the differentially expressed genes 
identified in the CMC at a threshold of adjusted p-value <0.1 overlapped 54 genomic regions associated with 
schizophrenia (Inrich analysis adjusted p = 0.01, Supplementary Table 4). Repeating the Inrich analysis for dif-
ferentially expressed genes that had an adjusted p-value of <0.05 (overlapped 50 GWAS regions, Inrich adjusted 
p = 0.0024) and < 0.01 (overlapped 35 GWAS regions, Inrich adjusted p = 0.0016) improved the significance 
of the enrichment. The nominally significant psychENCODE loci overlapped 33 genomic regions associated 
with schizophrenia (Inrich p = 0.02) (Supplementary Table 5). Twenty-six out of the thirty-three regions (76% 
overlap) identified in the psychENCODE cohort were also statistically significant in the Inrich CMC analysis 
(Supplementary Tables 4 and 5).

Discussion
The process of brain aging differs significantly between schizophrenia cases and unaffected controls. The level 
of differential expression between diagnoses groups in the brain varies with age highlighting the complex affect 
aging has on disease gene expression profiles. As the largest gene expression level differences in disease for the 
CMC were in the 40 to 60 year age range, we compared this age group between the CMC and psychENCODE. 
Five hundred fifty six loci enriched in mitochondrial functions were identified that surpassed the threshold 
for multiple testing in both the CMC and psychENCODE cohorts. The consistency of fold change differences 
(r2 = 0.82) between the two cohorts provides further confidence in this finding. In comparison, the analysis of the 
entire CMC cohort yields much smaller gene expression difference compared to other cohorts - a mean of 1.09 
and a range of 1.03–1.33 fold1. The similar differences observed between the CMC and psychENCODE when the 
analysis is restricted to the 40 to 60 year age group strongly suggests that age stratification in schizophrenia gene 
expression studies is beneficial. Although the largest gene expression differences observed in the CMC data set 
was between the ages of 40 and 60, the scarcity of samples under 40 years of age prevented us from characterizing 
gene expression changes in younger subjects. Clearly, ages from late adolescence to early adulthood are extremely 
important to schizophrenia pathophysiology as disease onset occurs at this stage. However, since most psychiatric 
brain banks lack samples at these young ages, we are unable to perform a thorough analysis of a key stage in schiz-
ophrenia and are likely missing important gene expression changes associated with disease pathology. Evidence 
for a statistical interaction between age and schizophrenia was discovered in both the CMC and the psychEN-
CODE cohorts. Gene set enrichment analysis revealed disruptions in splicing and phosphoprotein pathways to be 
common to both cohorts. In addition, the differentially expressed genes identified were enriched in the genomic 
regions associated with schizophrenia. This finding was especially strong in the CMC cohort and encompassed 
more than half of all genic regions associated with disease (54 out of 95).

Modeling an interaction between age and diagnosis did not eliminate discrepant findings between the CMC 
and psychENCODE cohorts. One reason for this discrepancy may be related to the differences between the 
cohorts. The CMC project generated sequencing data on BA9 samples whereas the PsychENCODE consortium 

Category Term Gene Count Fold Enrichment Bonferroni

CommonMind

SP_PIR_KEYWORDS acetylation 1070 1.50 4.75E-57

SP_PIR_KEYWORDS phosphoprotein 2375 1.21 3.55E-40

GOTERM_CC_FAT GO:0005739~mitochondrion 458 1.58 6.12E-28

GOTERM_CC_FAT GO:0030529~ribonucleoprotein complex 250 1.82 3.61E-24

SP_PIR_KEYWORDS mitochondrion 359 1.60 9.83E-22

SP_PIR_KEYWORDS alternative splicing 2325 1.15 4.17E-21

GOTERM_CC_FAT GO:0070013~intracellular organelle lumen 647 1.36 1.38E-19

GOTERM_CC_FAT GO:0044429~mitochondrial part 266 1.67 3.02E-19

GOTERM_CC_FAT GO:0005840~ribosome 125 2.18 3.11E-19

SP_PIR_KEYWORDS ribonucleoprotein 152 2.01 3.53E-19

PsychENCODE

SP_PIR_KEYWORDS alternative splicing 1006 1.19 1.25E-10

UP_SEQ_FEATURE splice variant 1002 1.18 5.28E-09

SP_PIR_KEYWORDS phosphoprotein 957 1.16 1.66E-07

SP_PIR_KEYWORDS coiled coil 280 1.22 9.15E-02

Table 2.  Gene Set Enrichment Analysis Results*. *Only the 10 most significant results listed for 
CommonMind.
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sequenced BA46 samples. The psychENCODE cohort was also less than 3.5 times that of the CMC and may have 
been underpowered. The overlap in gene set enrichment and Inrich analysis between the CMC and the nominally 
significant genes in the psychENCODE cohorts support this notion. The fact that the psychENCODE cohort 
spanned ages between 25 and 65 as opposed to the CMC that spanned ages between 25 and 90 may have also 
contributed to the differences in these findings. Another reason for the discrepant findings is likely related to the 
heterogeneous nature of schizophrenia. As schizophrenia genetic studies required over a hundred thousand sam-
ples in order to overcome the heterogeneity problem19, expecting every loci to be differentially expressed in every 
single schizophrenia postmortem brain sample is unrealistic. It is likely that the disruption of different genes that 
belong to the same biological pathway results in similar pathology in different people. This is congruent with the 
presented gene set enrichment analysis that found disruptions in RNA splicing and phosphoprotein pathways in 
both the CMC and the psychENCODE cohorts.

This work implicates gene pathways associated with mitochondrial function, splicing and phosphoproteins 
in schizophrenia pathology. Previous schizophrenia postmortem brain studies have reported differential gene 
expression for mitochondrial genes in disease21,22. Widespread splicing deficits have also been reported in schiz-
ophrenia2,23,24 and numerous phosphoproteins such as synapsin II25 and DARPP-3226 have been implicated in 
disease pathology. It is important to note that mitochondrial changes27,28, widespread alterations in splicing pat-
terns29 and altered phosphorylation30,31 also occur in the aging brain. Potentially, the deficits observed in schizo-
phrenia might be similar to the changes that occur in the aging brain.

This notion is in line with previous studies that have found a link between aging and schizophrenia. Many 
studies have found schizophrenia patients to have lower life expectancy (for a review see8) and the suggestion has 
been made that schizophrenia might be a systematic disease of accelerated aging32. Although this work discovered 
age related changes in schizophrenia, our results do not necessarily support accelerated aging in the disease. It is 
important to note that our current understanding of brain aging at the molecular level is limited and therefore, we 
may be failing to recognize patterns associated with accelerated aging in our data. These results are also consistent 
with previous pathway analysis performed on microarray data that found transcriptional differences in the aging 
schizophrenia brain33,34. Given that inflammation is associated with old age, the findings of increased inflamma-
tion in schizophrenia35–37 might also be related to the aging disruptions we are finding. In summary, our results 
along with previous findings strongly support the existence of a link between aging and schizophrenia pathology. 
Additional postmortem brain collections that examine schizophrenia throughout the entire lifespan and are cog-
nizant of the importance of age are needed to fully explore the effects of age on gene expression in the disease.

Individuals suffering from schizophrenia have a tendency to smoke38, use recreational drugs, and consume 
excess levels of alcohol compared to the general population39. In addition, schizophrenia patients use various 
antipsychotic and other psychiatric medications that cause weight gain and other health problems40,41. These 
factors have the potential to disrupt the aging process in the brain and may account for our findings. Conceivably, 
the expression differences observed in the 40 to 60 age group are caused by such factors. However, the statistically 
significant enrichment between age dependent RNA expression changes in the brain and the 108 genomic regions 
associated with schizophrenia is intriguing. Further research is needed to determine whether some of the age 
related gene expression differences observed in the schizophrenia brain might be inherited.

Duration of illness, along with lifetime antipsychotic use are likely to affect gene expression since they are 
associated with brain volume changes in schizophrenia42,43. Duration of illness in schizophrenia is of particular 
interest as it appears to influence treatment response44,45. The effects of these factors on gene expression could 
not be assessed in the current study because this information was not available for the CommonMind collection. 
In the smaller psychENCODE cohort, which spans a narrower age range and appears to be statistically under-
powered, both duration of illness and lifetime antipsychotic use were highly correlated with age. Generally, older 
subjects with schizophrenia had lived with the disease longer and had used more antipsychotics. Given this asso-
ciation with age, an adequate assessment of the effects of disease duration or the effects of lifetime antipsychotic 
use will require comparison of early and late disease onset cases that live into old age and comparison of subjects 
at similar ages that differ in their lifetime antipsychotic use. Each of these comparisons will likely require large 
cohorts, potentially similar in size to CommonMind, because of the subtle gene expression differences that occur 
in schizophrenia. It is probable that at least a subset of the differentially expressed genes identified in the current 
study are associated with the pathology related to duration of illness and/or lifetime antipsychotic use but defin-
itive conclusions can not be made. Larger postmortem brain collections will also enable characterization of the 
associations between gene expression and disease subtypes or assessment scores, neither of which were available 
for this study. Potentially, an analysis cognizant of disease subtypes or assessment scores will be extremely ben-
eficial as it may refine the heterogenous schizophrenia classification and yield larger and more consistent gene 
expression differences.

We conclude that age is an important aspect of schizophrenia pathophysiology and special consideration 
needs to be given to age in gene expression studies of disease. Appropriate treatment of age as a variable is likely 
to aid in efforts to unravel the molecular etiology of schizophrenia and the identification of biomarkers and ther-
apeutic targets for the disease.

Materials and Methods
Samples.  Differential expression analysis was performed on the DLPFC RNA sequencing data from CMC1 
(N = 476) and the PsychENCODE46 (N = 134) projects. Details regarding the ethical approval process and rele-
vant adherence to relevant guidelines and regulations are detailed in the original publications1,46. Access to the 
RNA sequencing data was approved by the NIMH Respository and Genomic Resource Data Access Committee 
and deidentified data was downloaded. In the CMC cohort only BA9 samples from schizophrenia cases and 
unaffected controls were included. Samples from individuals with Klinefelter syndrome were excluded and only 
a single individual chosen at random from a sibling pair was included in the analysis. Samples below the age of 
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25 were excluded since there were only 3 schizophrenia samples in this age group. The age group labeled 90+ was 
also excluded since an exact age could not be assigned for the regression analysis. Samples less then 25 and more 
then 65 years of age in the psychENCODE cohort were excluded in order to have a balanced number of cases 
and controls across all age groups (the 3 samples above 65 were controls and 6 out of the 7 samples below 25 were 
schizophrenia cases). psychENCODE samples with a PMI of greater than 50 hours were also excluded in order to 
be consistent with the CMC cohort.

Differential expression analysis of schizophrenia and aging.  All analysis was performed using R 
version 3.4.3. Bam files for each corresponding study was downloaded and count tables were generated for genes 
(considering only exons) using the Ensembl hg19 annotation. Specifically, the readGAlignmentPairs command 
from the GenomicAlignments package47 was used to read the alignments from the bam files and the resulting 
data structure along with the Ensembl hg19 annotation was passed as parameters to the summarizeOverlaps 
command. The summarizeOvelaps command calculates the number of reads that span the exon intervals in the 
annotation and provide the total number of reads that are present for each gene. RUVSeq package was used to 
account for hidden batch effects and remove unwanted variation from the samples17. In order to identify loci 
that are not differentially expressed between the diagnosis groups, which is required by RUVSeq, we performed 
an initial analysis using DESeq214 in which we only considered diagnosis and age. Genes that had an unadjusted 
p-value of >0.7 were considered to be not differentially expressed and passed to the Ruvg command to calculate 
normalization factors that account for unwanted variation17. The factors calculated from RUVseq were included 
in the design formula of the DESeq analysis. Wald tests were performed in DESeq2 using the DESeq command, 
which also performs normalization on the samples, in order to identify differentially expressed genes. The statisti-
cal model used for the Wald test included an interaction term between diagnosis and age. This and all subsequent 
formulas were used as the ‘design’ parameter in DESeq2.

+ + + + + + +~( Diagnosis Age Diagnosis: Age RIN PMI Race Sex RuvFactors)

The resulting p-values were corrected (or adjusted) for multiple testing using the Benjamini & Hochberg 
method implemented in the DESeq2 package. Only loci with a corrected p-value <0.1 on average 20 read counts 
per gene were considered significantly differentially expressed. An adjusted p-value of 0.1 is recommend over 
0.05 since the multiple correction methods used to adjust the p-values are overly stringent14. We repeated the 
same DESeq2 analysis without RuvFactors and found that the age related trajectory differences are observed even 
in the absence of batch effect correction (data not shown). Cooks distance was calculated for each differentially 
expressed locus that surpassed the threshold of statistical significance in order to remove genes that appear to be 
different because of outliers. The Cooks distance cutoff threshold was identified empirically for each cohort. A 
similar analysis was performed for the 40 to 60 year old age group using the same formula as above but lacking 
the interaction term.

+ + + + + +~( Diagnosis Age RIN PMI Race Sex RuvFactors)

New normalization factors were calculated using RuvSeq for the 40 to 60 year age group (an initial DESeq2 
analysis was performed with diagnosis only and non-differentially expressed genes were identified as before).

Differential expression plots.  The raw normalized counts from the DESeq data object were extracted 
using the ‘counts’ function with the normalized parameter set to true. The obtained normalized read counts were 
plotted over age using the bioconductor ggplot2 package. We opted to not use log-transformed values in order to 
provide the most accurate representation of the data.

Normalized difference plots.  For each differentially expressed locus identified in the CMC analysis, the 
loess function in R was used to fit gene expression in control or schizophrenia samples and age. The R ‘predict’ 
function was run to calculate gene expression values for the age range 25–90 based on the results of the loess func-
tion. For each locus, the resulting values for the schizophrenia samples were subtracted from control samples and 
this value was normalized to the absolute maximum difference in all ages using the following formula:

− −(control schizophrenia)/max(abs(control schizophrenia))

Normalization meant that only values between −1 and 1 were possible. Each locus had a value of 1 or −1 at 
some age indicating the maximal gene expression difference in disease for the locus. The normalized values for 
each locus was plotted using a very thin line in order to avoid over plotting.

GWAS enrichment and gene set analysis.  Differentially expressed genes in the CMC with an adjusted 
p-value of 0.1 or less and a minimum mean read count of 20 were used for gene set enrichment and Inrich20 anal-
ysis. The DAVID 6.7 Bioinformatics Resource (https://david-d.ncifcrf.gov/) was selected for the gene set enrich-
ment analysis as it is a robust and widely used tool with over 33000 citations48. DAVID performs a competitive 
analysis using a modified Fisher’s exact test. The standard DAVID analysis49 was performed using the default 
conditions of minimum 2 genes per term and an EASE score, which is a modified and more stringent Fisher Exact 
P-value, of 0.1. The genes in the human genome were used as the background gene list. The databases included 
in the DAVID analysis were (Selected from Annotation Summary Results page that is generated by DAVID after 
gene sets are uploaded and mapped):

OMIM (https://www.ncbi.nlm.nih.gov/omim) from the Disease category; COG_ONTOLOGY (https://www.
ncbi.nlm.nih.gov/COG/), SP_PIR_KEYWORD (https://proteininformationresource.org/pirwww/dbinfo/ipro-
class.shtml) and UP_SEQ_FEATURES (https://www.uniprot.org/) from the Functional Categories category; 
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GOTERM_BP_FAT, GOTERM_CC_FAT and GOTERM_MF_FAT (https://www.ebi.ac.uk/GOA) from the 
Gene_Ontology category; BBID50, BIOCARTA (https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and 
KEGG_PATHWAY (https://www.genome.jp/kegg/) from the Pathways category; INTERPRO (https://www.ebi.
ac.uk/interpro/), PIR_SUPERFAMILY (https://proteininformationresource.org/pirwww/dbinfo/iproclass.shtml) 
and SMART (http://smart.embl-heidelberg.de/) from the Protein_Domains category.

Inrich, analysis was performed as described51 to determine whether intervals near schizophrenia associated 
loci were more likely to be associated with the identified differentially expressed genes. Only genes that fell within 
the GWAS regions were considered. Adjusted p-value <0.05 from the Inrich program was set as the threshold 
for significance. For the PsychENCODE cohort, genes with a nominal p-value of 0.05 or less and a minimum 
read count of 20 were used for the same analyses. The same genes were used for gene set enrichment analysis 
performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 web tool18. In 
the 40 to 60 age group the 556 genes that replicated between the two cohorts were subjected to DAVID and Inrich 
analyses. Gene pathways reaching a Bonferroni corrected p-values < 0.1 from the DAVID analysis are reported.

Data Availability
The CMC and the psychEncode datasets are available from the NIMH Repository and Genomics Resources 
(NRGR).

Code Availability
Analysis code used for this manuscript is available upon request and without restriction.
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