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DeepLMS: a deep learning 
predictive model for supporting 
online learning in the Covid‑19 era
Sofia B. Dias1,6, Sofia J. Hadjileontiadou2,6, José Diniz1 & Leontios J. Hadjileontiadis3,4,5*

Coronavirus (Covid-19) pandemic has imposed a complete shut-down of face-to-face teaching to 
universities and schools, forcing a crash course for online learning plans and technology for students 
and faculty. In the midst of this unprecedented crisis, video conferencing platforms (e.g., Zoom, 
WebEx, MS Teams) and learning management systems (LMSs), like Moodle, Blackboard and Google 
Classroom, are being adopted and heavily used as online learning environments (OLEs). However, as 
such media solely provide the platform for e-interaction, effective methods that can be used to predict 
the learner’s behavior in the OLEs, which should be available as supportive tools to educators and 
metacognitive triggers to learners. Here we show, for the first time, that Deep Learning techniques 
can be used to handle LMS users’ interaction data and form a novel predictive model, namely 
DeepLMS, that can forecast the quality of interaction (QoI) with LMS. Using Long Short-Term Memory 
(LSTM) networks, DeepLMS results in average testing Root Mean Square Error (RMSE) < 0.009 , and 
average correlation coefficient between ground truth and predicted QoI values r ≥ 0.97 (p < 0.05) , 
when tested on QoI data from one database pre- and two ones during-Covid-19 pandemic. DeepLMS 
personalized QoI forecasting scaffolds user’s online learning engagement and provides educators with 
an evaluation path, additionally to the content-related assessment, enriching the overall view on the 
learners’ motivation and participation in the learning process.

New designs of educational processes that include online learning have been flourishing in the last decades; 
some characteristic examples1–3 include affective (a-), blended (b-), collaborative (c-), mobile (m-), game (g-), 
transformative (t-), Cloud (Cl-), and ubiquitous (u-) learning, among others. Online learning improves access 
to education and training, aiming at reducing temporal and spatial problems that can be met in the traditional 
form of education4,5. In parallel, online learning has become one of the fastest growing industries, with a market 
growth rate over 900% since 2000, which is expected to reach in 2025 an impressive total market value of $325 
billion6. Furthermore, as to the production and provision of online learning courses, the latter, when compared 
against the conventional Face-to-Face (F2F) ones, have an average consumption of 90% less energy and 85% 
fewer CO2 emissions produced per student7.

Online learning, though, asks for the combination of different delivery methodologies to contribute towards 
the optimization not only of the learning development, but also of deployment costs and time8. In this context, 
a key-factor that adds value to the quality of the learning experience is the quality of interaction (QoI) within an 
online learning environment (OLE). Apparently, effective integration of technology is needed9 to support QoI 
within OLEs. Hence, efficient blending of strategic decisions, adequate available resources, and quick thinking 
in implementation are necessary for the development of efficient online learning. Nowadays, this becomes more 
visible, when the worldwide emergency of the pandemic Coronavirus disease (Covid-19) impacts approximately 
600 million learners across the Globe (https​://en.unesc​o.org/covid​19/educa​tionr​espon​se, accessed 19/10/2020), 
rigorously shifting traditional F2F teaching/learning to online one10.

Learning Management Systems (LMSs) frame a digital learning environment where the user’s learning behav-
ior and it’s evaluation need to be efficiently amended11. LMSs (e.g., Moodle, https​://moodl​e.org/) are actually 
embedded within OLE, which usually offer quick access, huge data management and a variety of Web-based 
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tools12,13. As Herrington et al.14 state, the degree of interactions that take place within an educational context 
of reference is an essential predictor of its success. The QoI of the learner, within the LMS, is a strong efficacy 
indicator of the design and its ability to sustain online learning communities15–18. In particular, designed pro-
cedures within the learning environment can activate and sustain interactions towards learning. Then, upon 
these interactions19, knowledge can be extracted concerning the student’s preferred learning patterns while 
interacting with leaning resources, and/or while collaborating in groups. In this respect, empirical findings 
suggest that the commitment to the course workflow20, the connection time21 and the total number of accesses 
to the system22 are very important. Moreover, LMS-based online records can also be used to map individual- 
and population-level social jet lag, showing the potentiality of the LMS to provide behavioral information in 
terms of learning and attention deficits23, or emergence of novel relationships between social structure and 
performance24. From an educational data mining and learning analytics perspective, LMS was used to provide 
user track data within the online learning context, which were used as additional sources of information in: i) 
early detection of at-risk students on distance learning modules25,26, ii) findings as to learning dispositions27,28, 
iii) learning success and performance prediction29–39, and iv) learner behavior and goal attainment in Massive 
Open Online Courses (MOOCs) prediction40. Nonetheless, no evaluation of the QoI was performed, beyond 
merely descriptive statistics of the users’ interactions and their relation with the users’ performance, which were 
the main focus of the analysis.

The aforementioned place the need on the analysis of user’s LMS-based interactions related with their quality, 
so the latter could be used to explain the true nature of the users’ behavior when interacting within a LMS. So far, 
relevant research focused on QoI tends to examine LMS data statistics, including learner-teacher discussions and 
exchanges in online forums, to investigate the dimension, depth and category of interactions occurred41. A more 
extended and quantitative approach in QoI analysis was introduced by Dias and Diniz42. Their model, namely 
FuzzyQoI, considers the users’ (professors’ and students’) interactions, based on LMS use, and, by translating 
the knowledge of the experts in the field to fuzzy constructs, quantitatively estimates, a normalized index of the 
users’ QoI. As a result, the latter, can be used to identify users’ LMS interaction trends and provide personalised 
feedback to users. Another approach to evaluate the human interaction processes on a LMS-based online learn-
ing course was proposed by Dzandu and Tang43. They used a semiotic framework as guide to identify syntactic, 
semantic, pragmatic and social context gaps or problems, focusing on only the human information interaction 
issues. Nevertheless, their approach was based on simple questionnaires, missing out the dynamic characteristics 
of LMS interactions. In an further effort, Dias et al.44 suggested the use of a Fuzzy Cognitive Map (FCM) as a 
means to efficiently model the way LMS users interact with it, by estimating their QoI within a b-learning context. 
Their FCM-QoI model was used to analyse the QoI influential concepts’ contribution to self-sustained cycles 
(static analysis) and corresponding alterations, when the use of the LMS time period is considered (dynamic 
analysis), demonstrating potential to increase the flexibility and adaptivity of the QoI modeling and feedback 
approaches. In the work of Cerezo et al.45, identical students’ LMS Moodle logs behaviours were grouped con-
cerning effort, time spent working, and procrastination, in order to investigate the students’ asynchronous 
learning processes, matching their behaviours with different achievement levels. Although this approach tries to 
shed light upon the role of the LMS interaction in the students’ achievements, it lacks generalisation power and 
evaluates the LMS-based QoI mainly from the grading of the students’ achievements and not from the actual 
interaction quality per se.

The current work explores, for the first time, the predictive power that can be drawn from the analysis of 
the LMS-based QoI using Deep Learning. The proposed enhancement of LMS, namely DeepLMS, fills the gap 
in predictive use of LMS-based QoI to early inform effective feedback providers, i.e., educators, policy makers, 
relevant stakeholders, so to apply any corrective measure to increase the efficiency of the educational processes. 
In addition, DeepLMS acts as a metacognitive triggering tool to the learners, as it provides them with a predic-
tion of their LMS-based QoI, so to reflect on their current QoI and proceed with any necessary personal cor-
rective actions. By adopting a Long Short-Term Memory (LSTM) artificial Recurrent Neural Network (RNN) 
architecture46, a LSTM-based predictor was employed to form the QoI prediction model of DeepLMS, trained 
and tested on experimental LMS-based QoI data drawn from three databases, i.e., DB142, DB2, and DB3, that 
come from both the pre- (DB1) and during- (DB2, DB3) Covid-19 pandemic periods, and refer to different 
countries, sociocultural and educational settings. The derived experimental results across DB1-DB3 show efficient 
predictive performance of the DeepLMS to accurately predict the daily QoI values, despite any temporal and/or 
educational setting differences. An illustration of the DeepLMS-based QoI prediction process is depicted in Fig. 1.

Results
As the three examined databases come from different countries (Portugal, United Arab Emirates, Greece), and 
refer to different time periods, i.e., pre- (DB1) and during-Covid-19 pandemic (DB2, DB3), and systemic settings, 
i.e., macro: Higher-Educational Institution (HEI)’s level (DB1), meso: course level (DB2), and micro: focused 
discipline level (DB3), the performance of the proposed DeepLMS approach is separately presented per database.

DB1‑related performance.  Figure  2 depicts the predictive performance of the DeepLMS upon some 
excerpts of the QoI time series derived from the DB1 75 Professors (P#2, P#33, P#35, P#60, P#65, and P#70). 
In particular, the left column of Fig. 2 shows the QoI data used for training (from day 1 until day 323 where the 
vertical solid line lies) and for testing (day 324 until the day 358), whereas the right column zooms into the test-
ing QoI data (blue solid line) and the DeepLMS predicted QoI (red dashed line). Moreover, in the right column 
of Fig. 2, the estimated correlation coefficient r between the testing and the estimated QoI data (see “Methods” 
section) for each case is also superimposed. These cases of QoI were selected to showcase the predictive perfor-
mance of DeepLMS on QoI time series that have various patterns across the whole duration of the two academic 
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semesters (358 days). In particular, for the case of P#2, an almost periodic pattern is noticeable, where the altera-
tion between QoI = 0.11 and QoI = 0.5 is visible. Nevertheless, this is not evident in the rest of the cases, where 
there are sparse alterations of QoI with various frequency alterations between QoI = 0.11 and QoI = 0.5 values. 
As the LSTM network is capable of forgetting data that are not useful for its predictive performance, the predic-
tive results shown in the right column of Fig. 2 and the corresponding r values, justify the efficient predictive 
performance of the proposed DeepLMS approach. One step further, in the right column of Fig. 2 for the case of 
P#55, out of all of the changes in slope across the depicted subfigures, this is the only one that contains a proac-
tive prediction value, i.e., not just reacting to the QoI change (blue solid line) with a slight lag due to the use of 
the recurrent LSTM model.

Similarly to Fig. 2, Fig. 3 depicts the predictive performance of the DeepLMS upon some excerpts of the 
QoI time series derived from the DB1 1037 Students (S#55, S#60, S#155, S#310, S#612, and S#775). The same 
configuration as in Fig. 2 is also followed in Fig. 3, where again various cases of the QoI time series distribution 
across the two academic semesters are shown. The solid line at day 323 separates the data used for the training 
from the ones used for testing. Moreover, the estimated correlation coefficient r per case is also depicted. From 
the results presented in Fig. 3, the same level of high predictive performance of DeepLMS seen in Fig. 2 is sus-
tained for the case of Students.

Figure 4 illustrates the distribution of the DeepLMS performance indices (see “Methods” section) across the 
whole set of QoI data per user type (DB1 Professors (75): Fig. 4a–c; DB1 Students (1037): Fig. 4d–f. In particu-
lar, the distribution of the Root Mean Square Error (RMSE) between the testing and the estimated QoI data is 
depicted in Fig. 4a,d for the case of DB1 Professors and Students, respectively. Moreover, the distribution of the 
correlation coefficient r between the testing and the estimated QoI data is depicted in Fig. 4b,e for the case of 
DB1 Professors and Students, respectively. Furthermore, the distribution of the correlation coefficient rd between 
the derivative of the testing and the derivative of the estimated QoI data is depicted in Fig. 4c,f for the case of 
DB1 Professors and Students, respectively. The median and the 95% Confidence Interval (CI) of the estimated 
RMSE, r and rd are tabulated in Table 1. From both Fig. 4a,d and Table 1, it is clear that the testing RMSE lies 
in quite satisfactory levels across the two users’ groups of DB1, showing an efficient predictive performance by 
the DeepLMS. This is further justified by the very strong correlation identified both between the amplitude of 
the testing and predicted QoI values (Fig. 4b,e, Table 1) and the trend of the testing and predicted QoI values 
(Fig. 4c,f, Table 1). The number of outliers (red crosses in Fig. 4 lying outside > 1.5 times the interquartile 
range, i.e., the box-plot whiskers) does not really affect the overall predictive performance of the DeepLMS, as 
expressed by the corresponding high median values and low 95% CIs (Table 1). Moreover, the difference in the 
number of outliers between Fig. 4a–f comes from the distinct difference in the number of users per group (DB1 
75 Professors vs. 1037 Students).

DB2‑related performance.  Similarly to the results presented in the previous subsection for DB1, Fig. 5 
depicts the predictive performance of the DeepLMS upon the QoI time series derived from the DB2 3 Profes-
sors (Fig. 5-top panel: P#1, P#2, and P#3) and from some excerpts from the DB2 180 Students (Fig. 5-bottom 
panel: S#25, S#39, S#58, S#158, S#171, and S#172). In both panels, the left column of Fig. 5 shows the QoI data 
used for training (before the vertical solid line) and for testing (after the vertical solid line), whereas the right 
column zooms into the testing QoI data (blue solid line) and the DeepLMS predicted QoI (red dashed line). 
Analogously to Figs. 2 and 3, the estimated correlation coefficient r between the testing and the estimated QoI 

Figure 1.   The DeepLMS-based QoI prediction concept. A schematic representation of the proposed DeepLMS 
functionality, with the LMS Moodle user’s interaction metrics ( M1, . . . ,M110 ; see Supplementary Table S1) 
categorized into 14 input parameters ( C1, . . . ,C14 ; see Supplementary Table S1) fed to the FuzzyQoI model42, 
outputting the estimated QoI(k) at instance k. The latter is then inputted to the trained LMST network (see 
“Methods” section) to predict the ˆQoI(k + 1) at instance (k + 1) . Both QoI(k) and ˆQoI(k + 1) are compared and 
their difference (dQoI(k)) is used to inform the user’s feedback path.
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data for each case is also superimposed on the right column of Fig. 5. As it can be seen from Fig. 5, the QoI time 
series involved in the testing part tends to converge to a constant value ( QoI = 0.11 ), whereas in the training QoI 
data there are notable alterations of QoI between QoI = 0.11 and QoI = 0.5 values. This difference in QoI values 
can potentially be attributed to the fact that the last days of the course were devoted to the demo presentation of 
students’ projects; hence, the focus was mostly placed on hands-on activities rather than LMS interactions. From 
the results depicted in Fig. 5, it is evident that the DeepLMS captures such change in the QoI values, exhibiting 
efficient performance in predicting the underlying trend.

Consonantly to Figs. 4 and 6 illustrates the distribution of the DeepLMS performance indices, i.e., RMSE, 
r, and rd , across the whole set of QoI data per user type (DB2 Professors (3): Fig. 6a–c; DB2 Students (180): 
Fig. 6d–f). The corresponding values of the median and 95% CI of the estimated RMSE, r, and rd for the Dee-
pLMS performance when using DB2 QoI data are tabulated in Table 1. From both Fig. 6 and Table 1, it is clear 
that DeepLMS sustains its efficient predictive performance reported in the case of DB1 also in the case of DB2, 
exhibiting quite satisfactory performance metrics across the two users’ groups of DB2. Apparently, the differences 
between DB1 and DB2 performance metrics are due to the different number of users per database (see Table 2); 
however, they are both quite acceptable.

DB3‑related performance.  Figure 7 depicts the predictive performance of the DeepLMS upon the QoI 
time series derived from the DB3 1 Professor (Fig. 7-top panel: P#1) and from some excerpts from the DB3 52 
Students (Fig. 7-bottom panel: S#13, S#18, S#23, S#27, S#29, and S#40), presented at the same format as in Fig. 5. 
As it can be seen from Fig. 7, the QoI time series involved in the testing part, unlike the ones depicted in Fig. 5, 
exhibit alterations between QoI = 0.11 and QoI = 0.5 values similar to the ones observed in the training QoI 
data, resembling also the patterns followed in Figs. 2 and 3. This can potentially be explained by the difference in 

Figure 2.   Predictive performance of the DeepLMS on QoI time series from DB1 Professors. The left column 
shows the QoI data from DB1 P#2, P#33, P#35, P#60, P#65, and P#70, used for training (from day 1 until day 
323 where the vertical solid line lies) and for testing (day 324 until day 358), whereas the right column zooms 
into the testing QoI data (blue solid line) and the DeepLMS predicted QoI (red dashed line). Moreover, the 
estimated correlation coefficient r between the testing and the estimated QoI data (see “Methods” section) for 
each case is also superimposed in the right column plots.
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the way the focused discipline related to DB3 was evaluated during the exams period, as it involves more online 
research-based activities, rather than the hands-on ones seen in DB2. From the results depicted in Fig. 7, it is 
clear that the DeepLMS takes into account the QoI characteristics from the training period and successfully 
predicts the various QoI patterns seen in the testing period.

The distribution of the DeepLMS performance indices, i.e., RMSE, r, and rd , across the whole set of QoI data 
for the case of DB3 Students (52) is illustrated in Figs. 8a–c, respectively. The distribution for the case of DB3 
Professors was omitted, as there is only one Professor involved within the DB3. The corresponding values of 
the median and 95% CI of the estimated RMSE, r, and rd for the DeepLMS performance when using DB3 QoI 
data are tabulated in Table 1. The results presented both in Fig. 8 and Table 1, confirm efficient predictive per-
formance of the DeepLMS when using QoI data from DB3, similarly to the cases of DB1 and DB2. Apparently, 
the different number of users per database (see Table 2) contributes to the differences seen in the DeepLMS 
performance metrics across DB1, DB2 and DB3; yet, in all cases, the DeepLMS predictive performance can be 
considered quite satisfactorily.

Discussion
In the unprecedented era of Covid-19, an alteration in the landscape for online education is clearly manifested 
by the hundreds of thousands of educators and learners setting out to academic cyberspace and OLEs. This is a 
paradigmatic change, a ‘black swan’ moment47, as the unforeseen event of Covid-19 pandemic ushers the edu-
cational practices in video conferencing platforms (e.g., Zoom, WebEx, MS Teams) and LMS-based uses. Surely, 
there is a high variability in the way educators act online (often for the first time) for offering remote instruction 
to their students outside the physical classroom. The abrupt ending of in-person classes leading to online set-
tings can speed up the adoption of OLEs as learning mediators. Nevertheless, this instructional change, in such 

Figure 3.   Predictive performance of the DeepLMS on QoI time series from DB1 Students. The left column 
shows the QoI data from DB1 S#55, S#60, S#155, S#310, S#612, and S#775, used for training (from day 1 until 
day 323 where the vertical solid line lies) and for testing (day 324 until day 358), whereas the right column 
zooms into the testing QoI data (blue solid line) and the DeepLMS predicted QoI (red dashed line). Moreover, 
the estimated correlation coefficient r between the testing and the estimated QoI data (see “Methods” section) 
for each case is also superimposed in the right column plots.
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a compressed time frame, has the risk to solely create an insipid copy of today’s best online learning practices. 
Possibly, this is due, in part, to the lack of investment in online education modality by many educational insti-
tutions and/or to underestimation of online learning as a core aspect of their learner experience48. However, 
led by top universities, a noticeable change began a few years ago, as fully digital academic experiences started 
flourishing49. The current crisis due to Covid-19 is accelerating this trend, revealing the need for Higher Educa-
tion Institutions (HEIs) to promote faculty’s digital skills. The latter can be facilitated by the construction of a 
technological backbone, to mitigate the effects of this crisis and to welcome the online teaching/learning within 
a digital era. These digital competences can amalgamate the short-term response to crisis into an enduring digital 
transformation of education contexts.

Figure 4.   Distribution of the DeepLMS predictive performance indices across users’ groups of DB1. (a) Box-
plot of the distribution of RMSE between the testing and the estimated QoI data for the case of DB1 Professors, 
(b) box-plot of the distribution of the correlation coefficient r between the testing and the estimated QoI data 
for the case of DB1 Professors, (c) box-plot of the distribution of the correlation coefficient rd between the 
derivative of the testing and the derivative of the estimated QoI data for the case of DB1 Professors; (d-f) same 
as (a–c), respectively, yet for the case of DB1 Students. Each box-plot visualises the interquartile range (height 
of rectangle), spanning the first (bottom) to the third quartile (top), the median value (horizontal red line inside 
the rectangle), the minimum and maximum values (ends of “whiskers” below and above the box, respectively) 
still within the interquartile range, and outlier values (individual red crosses below and above “whiskers”). 
Additional DeepLMS predictive performance indices are tabulated in Table 1.

Table 1.   DeepLMS and baseline FCM-QoI44 predictive performance indices across the whole set of QoI data 
per database and users’ group. The number in parenthesis denotes the number of members per users’ group; 
95%CI denotes the 95% Confidence Interval; RMSE corresponds to the Root Mean Square Error, whereas r and 
rd (only for the DeepLMS case) correspond to the correlation coefficient between the testing and the estimated 
QoI data and between the derivative of the testing and the derivative of the estimated QoI data, respectively. 
N/A denotes the non applicable case, as the baseline FCM-QoI model was only applied to DB144, which, 
though, has the highest number of LMS users. For the case of DB3-Professor, the RMSE, r, and rd values are 
provided, instead of the mean ± 95%CI ones, as there is only one Professor involved in DB3. Clearly, based 
on the estimated metrics, an efficient predictive performance of the proposed DeepLMS scheme is noticed, 
compared to the baseline FCM-QoI model44 predictive performance.

Database

Users’ Groups

DeepLMS FCM-QoI44

Median±95 % CI Median ± 95%CI

User Type RMSE r rd RMSE r

DB1
Professors (75) 0.0065 ± 0.0022 0.98 ± 0.06 0.87 ± 0.08 0.0360 ± 0.012 0.4045 ± 0.02

Students (1037) 0.0086 ± 0.0012 0.99 ± 0.01 0.86 ± 0.02 0.0264 ± 0.003 0.5363 ± 0.01

DB2
Professors (3) 0.0043 ± 0.0095 0.96 ± 0.03 0.66 ± 0.34 N/A N/A

Students (180) 0.0038 ± 0.0046 0.94 ± 0.01 0.74 ± 0.04 N/A N/A

DB3
Professor (1) 0.0172 0.99 0.90 N/A N/A

Students (52) 0.0039 ± 0.0098 0.99 ± 0.08 0.90 ± 0.09 N/A N/A
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In this disrupted educational landscape, the issues of how instructors and colleges treat student evaluation 
and how institutions treat student evaluations of professors have surfaced. Educators face a challenge/opportu-
nity in trying to evaluate quality, even as the educational activity they are evaluating is mutating, in real time. 
DeepLMS comes into foreground as a means to offer quantitative metrics of the user’s LMS-based QoI, as an 
alternative to conventional evaluation metrics. The efficient predictive performance of the DeepLMS, as justified 
by the experimental results derived from three databases, involving pre- and during-Covid-19 pandemic data, 
establishes a reliable basis to construct a motivational, personalized feedback to the LMS users, so to readjust 
their interaction with the LMS, as an effort to increase the related QoI. The latter refers to the efficient engagement 
of the user with the online part of the learning process (nowadays almost the sole one), and provides educators 
with an evaluation path, in parallel to the content-related assessment, that could enrich their overall view about 

Figure 5.   Predictive performance of the DeepLMS on QoI time series from DB2 Professors and Students. 
The left column-top panel shows the QoI data from the three DB2 Professors, i.e., P#1, P#2, and P#3, used 
for training (from day 1 until day 68 where the vertical solid line lies) and for testing (day 69 until day 76), 
whereas the left column-bottom panel shows the QoI data from excerpts of DB2 Students, i.e., S#25, S#39, S#58, 
S#158, S#171, and S#172, for the same training and testing periods. The right column (both panels) zooms 
into the testing QoI data (blue solid line) and the DeepLMS predicted QoI (red dashed line), including also the 
estimated correlation coefficient r between the testing and the estimated QoI data for each case.
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learner motivation and participation in the learning process. Moreover, based on the estimated dQoI(k) and its 
segmentation setting (see “Methods” section), personalized feedback can be provided to users that helps them get 
the most out of their interaction with the LMS and the related online material, and can have a significant impact 
on overall learning performance outcomes50. Many forms of representation of the segmented dQoI(k) value can 
be employed (e.g., text, graphs, audiovisual); in all of them, however, a personalization in the way the feedback 
is communicated to users should be incorporated. For example, when dQoI(k) ∈ [−1,−0.8] , a text message of 
‘Serious alert! Your QoI is expected to significantly fall!’, can be used as an intense warning; alternatively, it can be 
more constructive in the form of ‘From now on, please try to be more focused and more active in the online part 
of your course’. The former textual feedback is a descriptive interpretation of the dQoI(k) value per se, whereas 
the latter is a proactive interpretation that motivates learners to act constructively. This need for personalised 

Figure 6.   Distribution of the DeepLMS predictive performance indices across users’ groups of DB2. (a) Box-
plot of the distribution of RMSE between the testing and the estimated QoI data for the case of DB2 Professors, 
(b) box-plot of the distribution of the correlation coefficient r between the testing and the estimated QoI data for 
the case of DB2 Professors, (c) box-plot of the distribution of the correlation coefficient rd between the derivative 
of the testing and the derivative of the estimated QoI data for the case of DB2 Professors; (d–f) same as (a–c), 
respectively, yet for the case of DB2 Students. Additional DeepLMS predictive performance indices are tabulated 
in Table 1.

Table 2.   Characteristics of the databases used. DB: Database; HEI: Higher-Educational Institution; FMH: 
Faculdade de Motricidade Humana; KUST: Khalifa University of Science and Technology; AUTH: Aristotle 
University of Thessaloniki; PT: Portugal; UAE: United Arab Emirates; GR: Greece. The characteristics of the 
LMS users show balanced groups per sex, in both user types (Professor/Student), and almost a doubled mean 
age in the Professors compared to Students, as expected. Overall, more than 647,000 LMS interactions are 
considered in the construction of the related QoI values.

DB# HEI (Country) Time period start:end (days) Covid-19 Scale User type No. Sex male/female Age range (mean ± std) (yrs) LMS interactions

DB1 FMH
(PT)

26/8/2019:
18/8/2010
(358)

Pre HEI
Level

Professors 75 36/39 24-54
(47.19 ± 8.8) 94,288

Students 1037 466/571 18-48
(25.05 ± 5.9) 516,487

Total 1112 502/610 610,775

DB2 KUST
(UAE)

17/3/2020:
31/5/2020
(76)

During Course
Level

Professors 3 1/2 28-42
(33.60 ± 7.3) 1218

Students 180 82/98 18-20
(18.36 ± 0.52) 8428

Total 183 83/100 9646

DB3 AUTH
(GR)

29/3/2020:
25/9/2020
(181)

During Discipline
Level

Professor 1 1/0 54 683

Students 52 32/20 22-25
(23.23 ± 1.16) 26,373

Total 53 33/20 27,056

Grand
Total 1348 618/730 647,477
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interpretation stems from the fact that learners, usually, chose different paths to respond to learning challenges. 
For example, the ones with a positive orientation view feedback (either positive or negative) as information to be 
assimilated and accommodated. However, the ones with a negative orientation, perceive negative feedback as a 
‘crushing blow’ and reflection of their poor ability51; most of such learners easily give up50. Hence, the adaptation 
of the feedback path could better support the ultimate aim in feedback provision, which allows learners to take 
over the function of assessing themselves and others52.

Within the aforementioned context, yet from a more integrated perspective, the proposed DeepLMS approach 
can be augmented to become an ideal mechanism/feedback to support various stakeholder groups in the domain 
of education (including department heads, teachers, administrators, technical support staff, and learners). This 
can be achieved by aggregating the individual predictive user outputs. This process could lead to effective tech-
nology-enabled learning. Amongst its attributes, it should include a focus on enduring learning outcomes. This 
endurance is reinforced by the DeepLMS through its focusing on the QoI prediction, whose dynamic feedback 
to LMS users, gradually etches in them the optimized LMS interaction as an enduring learning outcome.

From the results presented in Figs. 2, 3, 4, 5, 6, 7 and 8 and Table 1, the proposed DeepLMS seems independ-
ent of the group type, as it shows a similar predictive performance both in Professors’ and Students’ QoI predic-
tion (Wilcoxon rank sum test for DB1: p = 0.070 ). In addition, cross-country/scale/time-period statistical 
analysis has resulted in non-significantly statistical differences of the performance of DeepLMS for different 
sociocultural and temporal settings (Wilcoxon rank sum test for RMSE(DB1,DB2) : p = 0.207;RMSE(DB1,DB3) :
p = 0.219;RMSE(DB2,DB3) : p = 0.387). The same holds for the factors of sex and age, as linear regression tests 
did not show any influence of both on the prediction of QoI for Professors ( {sex, age}P−DB1 : {p = 0.363, p = 0.113} ) 

Figure 7.   Predictive performance of the DeepLMS on QoI time series from DB3 Professor and Students. The 
left column-top panel shows the QoI data from the one DB3 Professor, i.e., P#1, used for training (from day 1 
until day 163 where the vertical solid line lies) and for testing (day 164 until day 181), whereas the left column-
bottom panel shows the QoI data from excerpts of DB3 Students, i.e., S#13, S#18, S#23, S#27, S#29, and S#40, 
for the same training and testing periods. The right column (both panels) zooms into the testing QoI data 
(blue solid line) and the DeepLMS predicted QoI (red dashed line), including also the estimated correlation 
coefficient r between the testing and the estimated QoI data for each case.
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and Students ( {sex, age}S−DB1 : {p = 0.415, p = 0.167}; {sex, age}S−DB2 : {p = 0.465, p = 0.673}; {sex, age}S−DB3 :

{p = 0.508, p = 0.693} ). Note that the statistics related to Professors were estimated for DB1 only, as the number 
of Professors in DB2 (3) and DB3 (1) is limited. Moreover, DeepLMS seems insensitive to the sparsity of the 
interaction, as it efficiently models the user’s LMS-based various interaction patterns, as expressed in the QoI 
time-series morphology across time (Figs. 2, 3, 5, 7). These patterns are governed by various academic calendar 
activities, e.g., lectures, mid-term exams, final exams, winter/spring/summer breaks, and/or external ones, espe-
cially for DB2 and DB3, as the lockdown due to Covid-19 pandemic (DB2: 26/3-24/4/2020; DB3: 11/3-4/5/2020) 
lies within their time duration (see Table 2). In spite of these, the DeepLMS acknowledges such data evolution, 
resulting in adequate predictive performance due to the ability of its embedded LSTM forecasting model to 
outperform classical time series methods in cases with long, interdependent and sparse time series53. Clearly, 
the aforementioned results show increased generalization power in the performance of DeepLMS. Extending 
the demographics analysis in the bias domain, as Table 2 shows, the distribution of Male/Female was quite bal-
anced, both in Professors and Students, along with their age, without any heterogeneity that would potentially 
produce data bias in LSTM learning. Hence, no historical bias (as no socio-technical issues were involved), no 
representation bias (sufficient number of users were involved and the significant spread of QoI data comes from 
users across three countries, with five courses with 30-40 different disciplines each course (macro level: DB1), 
one course (meso level: DB2) and one discipline (micro level: DB3)), no measurement bias (data were captured 
from users that all had equal access to the LMS Moodle pages after logged in), no evaluation bias (the evaluation 
was performed on an equal basis and with the same objective measures of (RMSE, r) as in the baseline algorithm 
(FCM-QoI44)), no population bias (user population represented in the datasets is coming from a real-life setting 
(University) end expresses the original target population), no Simpson’s Paradox (the data were homogeneous 
and there were no subgroups in Professors’ and Students’ groups), no sampling bias (uniform sampling across 

Figure 8.   Distribution of the DeepLMS predictive performance indices across the DB3 Students. (a) Box-plot 
of the distribution of RMSE between the testing and the estimated QoI data for the case of DB3 Students, (b) 
box-plot of the distribution of the correlation coefficient r between the testing and the estimated QoI data for 
the case of DB3 Students, (c) box-plot of the distribution of the correlation coefficient rd between the derivative 
of the testing and the derivative of the estimated QoI data for the case of DB3 Students. Additional DeepLMS 
predictive performance indices are tabulated in Table 1.
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all groups), no user-interaction bias (the LMS Moodle metrics involved in the production of the QoI are 112 (see 
Table S1) and provide a high variety to the user to interact with the LMS Moodle), and no self-selection bias (the 
data were analyzed after the users interacted with the LMS and they were totally unaware of the research; hence, 
they could not influence the results by selective self-participation). Consequently, there is no unfairness arising 
from biases in the data. Taking the bias issue further, another source of unfairness could potentially arise from 
the learning algorithm involved itself. To avoid such event, some techniques54 could be explored to try to trans-
form the data (pre-processing), so that the underlying discrimination is removed, or incorporating changes into 
the objective function or imposing a constraint (in-processing), or accessing a holdout set, which was not 
involved during the training of the model, and reassign the initially assigned labels by the model based on a 
function (post-processing). In the DeepLMS case, although no data bias was identified, in a broader perspective, 
flexibly fair representation in DeepLMS learning could be introduced in its future edition by creating a layer that 
disentangles the information that relate with sensitive attributes (e.g., demographics) and create a targeted learn-
ing for such sensitive latent variables, which potentially can bias the model, and incorporate such knowledge in 
a debias process (e.g., as in55,56) at the higher QoI prediction layer.

When performing a relevant comparative analysis between the DeepLMS performance and the most related 
FCM-QoI model44, that it is also based on the same QoI data drawn from the FuzzyQoI model42, it seems that the 
proposed DeepLMS achieves higher overall performance, when compared to the testing output of FCM-QoI. In 
particular, based on the predictive performance of both the DeepLMS and the FCM-QoI44 tabulated in Table 1, 
it is apparent that the DeepLMS exhibits lower testing RMSE and higher r values in its predictive output, when 
compared with the ones from the FCM-QoI model44. From a structural comparison, DeepLMS overcomes the 
training limitation of the FCM-QoI, i.e., its training is based on the mean values of QoI across users provided 
by the FuzzyQoI model; this, however, merges the specific characteristics of each user to an average behavior44. 
On the contrary, the DeepLMS provides personalised predictions for the QoI of each user across the academic 
semesters.

From a more general perspective, DeepLMS aligns with the previous efforts that incorporate LSTM-based 
predictions in the context of online education, yet not at the exact same specific problem settings as in DeepLMS. 
Hence, the latter is well-positioned with the approaches related to: i) cross-domains analysis, e.g., MOOCs impact 
in different contexts57, as DeepLMS could be easily adapted to a micro analysis of the QoI per discipline/course 
and transfer learning from one discipline to another at the same course (or courses with comparable content), 
as shown here with the application of DeepLMS to DB1-DB3, in a similar manner that was applied in MOOCs 
from different domains57; ii) combination of learning patterns in the context domain with the temporal nature 
of the clickstream data58, and identification of students at risk59, as DeepLMS could be combined with an auto-
encoder to capture both the underlying behavioral patterns and the temporal nature of the interaction data at 
various levels of the predicted QoI (e.g., low (<0.5) QoI (at risk level)); iii) predicting learning gains by incor-
porating skills discovery60,61, as DeepLMS could provide the predicted QoI as an additional source of the user 
profile to his/her skills and learning gains; iv) user learning states and learning activities prediction from wearable 
devices62, as DeepLMS could easily be embedded in the expanded space of affective (a-) learning, and inform a 
more extended predictive model that would incorporate the learning state with the estimated QoI; v) increasing 
the communication of the instructional staff to learners based on individual predictions of their engagement 
during MOOCs63,64, as DeepLMS could facilitate the coordination of the instructor with the learner based on 
the informed predicted QoI; and vi) predicting the learning paths/performance65 and the teaching paths66, as 
the DeepLMS could be extended in the context of affecting the learning/teaching path by the predicted QoI.

Despite the promising results of the proposed DeepLMS towards prediction of the user’s LMS-based QoI, 
certain limitations exist. In particular, no correlation analysis with the content evaluation outcome from, e.g., 
quizzes, mid-/final exams, was undertaken. In fact, this was left for a future endeavor, as the focus here was to 
explore the predictive performance of the DeepLMS in LMS-based QoI prediction, fostering the role of the latter 
as an additional, to conventional grading, assessment field. Moreover, the data used here refer to one (2009/2010) 
or half (2020) academic year; thus, exploration of the DeepLMS application and further validation of its predictive 
performance upon follow-up data, i.e., monitoring of the same users across sequential academic years, would 
shed light upon the consistency in the predictive performance of the DeepLMS across longer time periods.

The efficient performance of the DeepLMS was validated on real data, incorporating adequate number of 
users and LMS data logs from different countries and educational settings. Since the structure and training of the 
proposed DeepLMS are not restricted to a specific course content, actually they were tested on human kinetics 
(DB1), engineering design (DB2), and advanced signal processing (DB3) educational contents, it could easily be 
expanded to the analysis of LMS data coming from various fields, e.g., Social Sciences, Medical and/or Engineer-
ing Education67. This would allow for the exploration of any dis/similarities and correlations in the LMS users’ 
QoI, from an institutional perspective. Moreover, as the Covid-19 pandemic shifted the use of LMS Moodle to 
Secondary Education Institutions (SEIs), as well, the DeepLMS could be used for comparing the LMS-based QoI 
across younger student groups and explore the age-related trends in LMS-based interaction.

As part of our future work on DeepLMS, we aim to perform a fusion of other measures of user’s quality in the 
online learning context at both SEIs and HEIs. This includes prediction of the Quality of Collaboration (QoC)68 
and Quality of Affective Engagement (QoAE)1,69, in an effort to predict, in a holistic way, the various components 
that play significant role in the learning process, i.e., interaction, collaboration and affectiveness1. The incorpora-
tion of Deep Learning-based predictions of QoC and QoAE, in parallel to the QoI ones, extends the work of the 
authors70–72 from the concept of affective/blended/collaborative-teaching/learning (a/b/c-TEACH, http://abcte​
ach.fmh.ulisb​oa.pt/) to the a/b/c/d(eep)-TEACH one. In the midst of the Covid-19 pandemic, such an AI-based 
scaffolding helps educators and learners move from quick fixes, and their possible consequence of regressing to 
poor practice, to maximum efficiency of the online learning tools available and truly support learning. Finally, 
as distinct time periods of pre-, during- and post-Covid-19 lockdown have been formed, the analysis of LMS 

http://abcteach.fmh.ulisboa.pt/
http://abcteach.fmh.ulisboa.pt/
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data that emerged during these three periods seems promising, in particular for the identification of any effect 
on the QoI per se and its related prediction via the proposed DeepLMS model. This analysis will allow for further 
evaluation of the DeepLMS model predictive robustness against effects caused by time-related disruptors, such 
as Covid-19, in the context of education; ongoing efforts towards such direction are reported in73.

Methods
The proposed DeepLMS approach explores the predictive power of Deep Learning in estimating the user’s LMS-
based QoI within an online learning context, from his/her historical QoI data. This efficient QoI prediction feeds 
the feedback path (see Fig. 1), in an effort to provide metacognitive stimulus to learners and timely inform the 
educators as to their possible lack of motivation and course focus and/or adoption of unstructured online course 
interaction, alerting for preventive and corrective interventions. The performance of the DeepLMS was evaluated 
on QoI data estimated from > 647.000 LMS Moodle interactions, as described below.

Dataset.  The LMS Moodle data used in DeepLMS were drawn from three databases, i.e., DB1, DB2 and 
DB3. The users’ characteristics and their contribution in LMS interactions per database, along with the related 
HEI, country, time period, Covid-19 association, and scale, are tabulated in Table 2. In particular, DB1 refers 
to the data included in the work of Dias and Diniz42, with 610,775 in total users’ LMS interactions, across two 
academic semesters (358 days) of the 2009/2010 academic year. All users started to use LMS Moodle in that 
academic year. These contributions were provided by the users (75 Professors and 1,037 Students) within five 
b-learning-based undergraduate courses, i.e., Sport Sciences, Ergonomics, Dance, Sport Management and Psy-
chomotor Rehabilitation, offered by a public HEI (Faculdade de Motricidade Humana, Portugal). DB2 includes 
overall 9,646 users’ LMS online learning interactions drawn from Khalifa University of Science and Technology 
(KUST), Abu Dhabi, UAE, during the Spring semester of 2020 (76 days). These contributions were provided 
by the users (3 Professors and 180 Students) during the course of Engineering Design. The latter is a freshman 
course on the basic principles of engineering design, applied on solving real-life problems via projects. DB3 
includes overall 27,056 users’ LMS online learning interactions drawn from a discipline in the area of Advanced 
Signal Processing at the Department of Electrical and Computer Engineering (ECE), Aristotle University of 
Thessaloniki (AUTH), Greece, taught at the 4th year of ECE studies, during the Spring semester and Summer/
Fall exam periods of 2020 (181 days). The LMS contributions come from one Professor and 52 Students; the 
discipline is focused in techniques and algorithms of advanced signal processing, as a means to propose efficient 
solutions in research problems. The set of the available 110 LMS Moodle metrics ( M1 −M110 in Fig. 1; see Sup-
plementary Table S1) logged by the users were corresponded to 14 categories ( C1 − C14 in Fig. 1; see Supple-
mentary Table S1) that formed the inputs to the FuzzyQoI model42. The latter outputted the QoI estimations per 
user across the whole time-span of the analysis, which was kept the same across all databases, i.e., 358 days as in 
DB1, by using linear interpolation in the cases of DB2 and DB3; yet, displaying the initial length (DB1: 76 days; 
DB3: 180 days) in all resulted illustrations (Figs. 2, 3, 5, 7). These QoI daily estimations were used as ground-
truth inputs to an LSTM-based predictor (Fig. 1) for training and testing (see relevant subsections below). More 
details of the QoI estimation from the FuzzyQoI model can be found in the work of Dias and Diniz42.

It should be noted that all data used here were de-identified (any information that would allow individual’s 
identity was stripped out). DB1 data come from the two authors’ (S.D and J.D) previous work42, where they had 
ethics clearance for research purpose use; hence, no ethical approval is needed for their reuse here. The use of 
DB2 data was approved by the KUST Ethics Committee (Protocol #: H20-021, 17.6.2020), whereas access to DB3 
for research purpose use was granted by the AUTH eLearning Administrator to the last author (L.H), who was 
the responsible Professor of the related discipline.

DeepLMS predictive performance evaluation.  The predictive performance of the DeepLMS was sepa-
rately evaluated for the two user types, i.e., Professors and Students (Table 2), analyzing their testing data in terms 
of: (a) the RMSE between the QoI values from the FuzzyQoI model42, i.e., QoIFuzzyQoI , and the ones predicted 
by the DeepLMS, i.e., QoIDeepLMS , (b) the correlation coefficient r between the QoIFuzzyQoI and QoIDeepLMS , in 
order to evaluate the correctness in the estimation of the QoIFuzzyQoI values, and (c) the correlation coefficient rd 
between the derivative of the QoIFuzzyQoI and the derivative of the QoIDeepLMS , in order to evaluate the correct-
ness in the estimation of the QoIFuzzyQoI dynamics trend (increase/decrease). In both r and rd estimations, the 
value of p ≤ 0.05 was used for adopting them as statistically significant. Finally, the distributions of (a)-(c) across 
the whole set per user type were estimated (displayed as boxplots), in order to evaluate the overall predictive 
performance of the proposed DeepLMS approach.

User’s feedback path triggering.  For the triggering of the user’s feedback path (Fig.  1), 
the difference, at instance k, between the QoIFuzzyQoI (k) and ˆQoI

DeepLMS
(k + 1) is estimated, i.e., 

dQoI(k) = ˆQoI
DeepLMS

(k + 1)− QoIFuzzyQoI (k) , considering the use of an already trained LSTM net-
work. As all estimated QoI values are normalized within [0,1], the estimated dQoI(k) ranges between 
[−1, 1] . Positive dQoI(k) values can be used for a rewarding user’s feedback, whereas negative dQoI(k) val-
ues can be used for a warning one. Segmentation of the dQoI(k) range [−1,1] to different subsets, e.g., 
[−1,−0.8), [−0.8,−0.5), [−0.5,−0.3), [−0.3,−0.1)[−0.1, 0.1), [0.1, 0.3), [0.3, 0.5), [0.5, 0.8) and [0.8,  1], could 
allow for flexibility in the granularity of the feedback construction.

Long short‑term memory networks.  An LSTM network is a subclass of RNNs46, trying to circum-
vent RNNs’ inability to learn to recognise long-term dependencies in the data sequences. Hochreiter and 
Schmidhuber74 addressed the latter by presenting the LSTM unit, whereas LSTM networks are constructed by 
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combining several layers of LSTM units. Figure 9 shows the structure of an LSTM unit, and its sequence across 
time. Each LSTM unit consists of three gates that operate on the input vector, xt , to generate the cell state, Ct , 
and the hidden state, ht . From a physical interpretation, the cell state can be viewed as the memory of the cell, 
while the gates control the flow of information in and out of the memory. In addition, the input gate determines 
the incorporation of new information, the forget gate determines which information should be discarded, and 
the output gate controls the information that passes along to the next layer. Following the interconnections pre-
sented in Fig. 9, the following formulas per category of the variables hold: 

1.	 Gating variables: 

2.	 Candidate (memory) cell state variable: 

3.	 Cell and hidden state variables: 

where {W, U} and b are the learnable weights and bias of the LSTM layer, respectively, for the input and the 
recurrent connections for the input/output/forget gates and cell state; ◦ is the element-wise product of two vec-
tors; σ is a sigmoid function given by σ(x) = (1+ e−x)−1 to compute the gate activation function, whereas the 
hyperbolic tangent function (tanh) is used to compute the state activation function.

Implementation issues.  The final network was implemented in Matlab 2020a (The Mathworks, Natick, 
USA), and trained using the Adaptive Moment Estimation (Adam) optimizer75. The final selection of the hyper-
parameters of the network was based on the results from early test runs with different settings; the one which 
provided most promising predictive performance was finally chosen. In particular, the final network consisted of 
four layers, i.e., the sequence input layer, the LSTM layer with 1200 hidden units, the fully connected layer and 
the regression output layer, and was trained for 300 epochs. With this selection, the estimated training RMSE 
was converging to values less than 0.001 across the 300 iterations (Fig. 10). To prevent the gradients from explod-
ing, the gradient threshold was set to 1. The initial learn rate was set to 0.005 and the learn rate was dropped after 

(1)ft = σ(Wf xt + Uf ht−1 + bf )

(2)it = σ(Wixt + Uiht−1 + bi)

(3)ot = σ(Woxt + Uoht−1 + bo)

(4)C̃t = tanh (Wcxt + Ucht−1 + bc)

(5)Ct = ft ◦ Ct−1 + it ◦ C̃t

(6)ht = ot ◦ tanh (Ct)

Figure 9.   Overview of an LSTM neural processing unit. Structural characteristics of an LSTM unit and its 
sequence across time. xt is the input data, ht is the hidden state, it , ot , and ft are gates controlling the flow of 
information, and Ct is the cell state. The x  and +  operators represent the element-wise product ( ◦ ) and 
summation, respectively, whereas σ denotes the sigmoid function of σ(x) = (1+ e−x)−1.
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150 epochs by multiplying the initial rate by a factor of 0.2. The size of the mini-batch used for each training 
iteration to evaluate the gradient of the loss function and update the weights was set equal to 128.

A common issue that should be considered during training any kind of neural network is overfitting, due 
to the highly flexible nature of the network. In order to reduce the negative effects of overfitting, apart from the 
dropout process described above, regularisation techniques can also be applied to reduce the generalization 
error. In this vein, the L2 norm regularization was also adopted here76. This technique, also known as Tikhonov 
regularization and ridge regression in statistics, is a specific way of regularizing a cost function with the addi-
tion of a complexity-representing term. In the case of L2 regularization in neural networks, the term is simply 
the squared Euclidean norm of the weight matrix of the hidden layer of the network. L2 regularization usually 
results in much smaller weights across the entire model. An additional parameter, � , is added to allow control 
of the strength of the regularization; here the value of � = 0.0005 was used.

Training and testing.  The model was trained and tested on a High Performance Computing infrastructure 
at KUST, Abu Dhabi, UAE (equipped with 84 Nodes, 168 Processors, 2016 Cores, 21.5 TB Mem, 23+ TB NFS), 
using 24 Ivy Bridge processing nodes (2x Intel Xeon E5-2697 v2, 12Core 2.7GHz, 256 GB Memory/300 GB Local 
storage), running in parallel. Training was realized using the first 90% of the QoI sequence per user, whereas 
testing was applied on its last 10%. At each time step of the input sequence, the LSTM network learnt to predict 
the value of the next time step (see Fig.1).

Data availability
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