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Abstract

Motivation: Standard genome-wide association studies, testing the association between one

phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two

ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical

power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing

problem.

Results: Here we present a new method, multivariate gene-based association test by extended

Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated

individuals. Through extensive simulation, we show that under most trait-generating genotype–

phenotype models MGAS has superior statistical power to detect associated genes compared with

gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression),

and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False

Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple

genes; of these 44 regions, 30 were not reported in the original analysis.

Conclusion: MGAS allows researchers to conduct their multivariate gene-based analyses effi-

ciently, and without the loss of power that is often associated with an incorrectly specified geno-

type–phenotype models.

Availability and implementation: MGAS is freely available in KGG v3.0 (http://statgenpro.psych

iatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP

(https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/

sophie_van_der_sluis.
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1 Introduction

Standard genome-wide association studies (GWAS) involve the uni-

variate regression of one trait on a large number of genetic variants

(single nucleotide polymorphisms, i.e. SNPs), while adapting the

nominal a criterion level for the extensive multiple testing (typically

a¼5�10�8). This analysis is limited in two important ways. First,

genes, not SNPs, are the functional unit in the genome (Huang et al.,

2011; Li et al., 2011). Although SNPs may have different allele fre-

quencies and linkage disequilibrium (LD) structure across human

populations, genic function is highly consistent. Furthermore, analy-

sing genes rather than SNPs decreases the multiple testing problem,

and relaxing the significance threshold in gene-based analyses

improves the statistical power of GWAS studies (Petersen et al.,

2013).

Second, traits of interest are often multivariate in nature, i.e.

multiple phenotypes are measured to cover the full extent of a trait.

For instance, cognitive ability is usually measured through test bat-

teries covering various cognitive abilities (e.g. vocabulary, memory).

Similarly, diagnostic interviews and clinical questionnaires cover a

collection of symptoms to deal with the symptomatic heterogeneity.

In the GWAS context, this multivariate information is generally

reduced to a univariate score, i.e. a univariate full-scale IQ score, or

a binary case–control index. Reducing multivariate to univariate

data nearly always results in loss of information. Specifically,

whether univariate composite scores exhaustively summarize all

information in the multivariate data (i.e. are sufficient statistics)

depends on the true trait-generating genotype–phenotype model, i.e.

the model that describes how the multiple phenotypes and genes

jointly generate the observed trait (Van der Sluis et al., 2010, 2013).

(Specifically, in factor analytic terms, sum scores are only sufficient

statistics if (a) all correlations between the phenotypes are explained

by one latent trait or factor, (b) all phenotypes have identical factor

loadings, (c) all phenotypes have identical residual variances [i.e. the

phenotypes adhere to a so-called Rasch (1980) model], and the

genetic effect is on the latent factor (illustrated in Fig. 1A). In

all other cases, the sum score is not a sufficient statistic and conduct-

ing association analysis on the sum score will result in a considerable

loss in power to detect genetic effects (Van der Sluis et al., 2010).

Noteworthy: the variance–covariance structure of data generated

through a network model may closely mimic the variance-

covariance structure of data generated through a 1-factor model

(Van der Sluis et al., 2013; Van der Maas et al., 2006), implicating

that factor analytic results are not sufficient to determine the true

trait-generating model.) Various simulation studies have shown that

overreliance on the unidimensional trait-generating model, and

the associated use of univariate composite scores, can result in con-

siderable loss of statistical power to detect genetic variants

(Medland and Neale, 2010; Minica et al., 2010; Van der Sluis et al.,

2010, 2013).

Gene-based methods for the univariate trait setting are available

(e.g. GATES, VEGAS, JAG, Li et al., 2011; Lips et al., 2012; Liu

et al., 2010; Ruano et al., 2010), as are multivariate methods for the

genome-wide SNP-based setting [e.g. MultiPhen, canonical correla-

tion analysis (CCA), i.e. multivariate analysis of variance

(MANOVA) with the SNP-effect treated as covariate, TATES and

JAMP: Ferreira and Purcell, 2009; O’Reilly et al., 2012; Van der

Sluis et al., 2013; http://ctglab.nl/software/]. However, to date, only

two recently published methods (Basu et al., 2013; Tang and

Ferreira, 2012) incorporates both. In fact, the rapid multivariate

multiple linear regression (RMMLR) method proposed by Basu

et al. is essentially equivalent to the multivariate gene-based CCA/

MANOVA proposed by Tang and Ferreira, leaving only one

MANOVA-based method. MANOVA (and thus RMMLR),

however, is known to be powerful specifically if the genetic variant

affects only one or a few of multiple correlated phenotypes, but

power decreases when the variant affects all or many of the

phenotypes (Cole et al., 1994; Medland and Neale, 2010;

Minica et al., 2010). Here, we present a multivariate gene-based

genome-wide analysis tool that is based on an extended Simes

test (Li et al., 2011), MGAS (Multivariate Gene-based Association

test by extended Simes procedure). MGAS combines P-value

information obtained in standard univariate genome-wide

SNP-based association software to arrive at a multivariate gene-

based P-value PMGAS. The standard GWAS can thus be considered

an MGAS preprocessing step. MGAS is implemented in knowledge-

based mining system for genome-wide genetic studies (KGG v3.0), is

freely available (http://statgenpro.psychiatry.hku.hk/limx/kgg/

download.php), and has a user-friendly graphical interface for load-

ing P-value files and genetic and phenotypic correlational informa-

tion, and for visualizing results and annotating sequence variants

and interesting genes.

2 Methods and results

2.1 The MGAS algorithm
Suppose m phenotypes and n SNPs located in one gene. Regular

GWAS software [For data including unrelated individuals: e.g.

PLINK, Mach2dat/DSL, SNPtest, Gen/ProbABEL and FaST-LMM

(Purcell et al., 2007; Aulchenko et al., 2007, 2010; Li et al., 2009,

2010; Marchini et al., 2007; Lippert et al., 2011).] tests the m�n

univariate phenotype-SNP associations using a statistically appro-

priate method (e.g. linear or logistic regression depending on the

measurement scale of the phenotypes). MGAS subsequently com-

bines the resulting, ascendingly ordered, P-values p1. . .pm� n to

obtain one overall, multivariate gene-based P-value PMGAS as

follows:

PMGAS ¼ min
qepj

qej

� �
(1)

Here, qe denotes the effective number of independent P-values

within a gene. Whereas the total number of P-values equals m�n,

the effective number is corrected for the fact that the P-values

are dependent, i.e. correlated due to both the correlations between

the phenotypes and the correlations between the SNPs. Parameter

qej denotes the effective number of P-values among the top j

P-values, where j runs from 1 to m�n, and pj denotes the jth

P-value in the list of ordered P-values. PMGAS is thus the smallest

weighted P-value associated with the null hypothesis that there

are no associations between the m phenotypes and the n SNPs

within the gene, and the alternative hypothesis that at least one of

the m phenotypes is associated to at least one of the n SNPs in the

gene.

Let p1 and p2 denote the P-values associated with the test of the

association between phenotype m1 and SNP n1, and between pheno-

type m2 and SNP n2. The correlation between p1 and p2 depends on

the observed correlations between the SNPs rn1n2, and the observed

correlation between the phenotypes rm1m2. An estimate of the effec-

tive number of P-values among the top j P-values, qej, is obtained

through eigenvalue decomposition of the correlation matrix U
among the m�n ascendingly ordered P-values. This correlation

matrix is not observed, but can be accurately approximated from

the n�n SNP correlation matrix, X, and the m�m phenotypic
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correlation matrix, R (see Section 2.2 later). Specifically, qej is

calculated as:

qej ¼ j�
Xj

i¼1

I kið Þ ki � 1ð Þ (2)

where j denotes the number of top j P-values, ki denotes the ith

eigenvalue, and I(ki) is an indicator function, which takes on value 0

if ki�1 and value 1 if ki>1:

I kið Þ ¼
0; ki � 1

1; ki > 1

(
(3)

The effective number of P-values qej is thus calculated as the

observed number of P-values j minus the sum of the difference between

ki and 1 for those eigenvalues> 1. If all j P-values are uncorrelated (i.e.

if the phenotypes m and/or SNPs n involved in the statistical tests giv-

ing rise to the j P-values, are uncorrelated), then all j eigenvalues equal

1, and qej¼ j�0¼ j. Conversely, if the j P-values are perfectly corre-

lated (i.e. if the phenotypes m and the SNPs n are perfectly correlated),

then the first eigenvalue equals j, all other eigenvalues equal 0, and

qej¼ j� (j�1)¼1 (i.e. testing the association of perfectly correlated

phenotypes with perfectly correlated SNPs yields only one unique unit

of information). In practice, we expect that qej will generally be smaller

than j but larger than 1, since the phenotypic correlations and the SNP

correlations likely take on values between 0 and j1j. Finally, qe is a spe-

cial case of qej, i.e. qe¼qej when j¼m�n, i.e. when the selection of

P-values j covers all m�n P-values.

It is important to note that as qe is by definition �qej, the weighted

pj is always � the unweighted pj. This weighting procedure has three

consequences. First, when all P-values are large (i.e. non-significant

tests), the originally largest P-value can sometimes be selected by the

MGAS procedure as PMGAS, i.e. as the smallest weighted P-value that

is selected as the multivariate gene-based P-value. Because for the larg-

est P-value the weight qe/qej¼1, and qe/qej>1 for all other P-values,

the largest P-value before weighting can become the smallest P-value

after weighting when all P-values were high to begin with. Second,

because for most P-values qe/qej>1, weighted P-values can

become>1, especially when the unweighted P-values are large to begin

with. However, PMGAS cannot exceed 1. Third, the search for the

smallest weighted P-value can stop once qepj/qej is�pjþ 1: as the

weight qe/qej is always �1, no subsequent weighted P-values will

be�qepj/qej. This rule saves computation time for calculating the effec-

tive number of independent tests.

2.2 Approximation of P-value correlations
The m�n correlation matrix between the P-values is not observed in

practice. Following Li et al., 2011 we used simulation to derive the

mathematical relationship between the observed SNP-correlations X
and observed phenotypic correlation R on the one hand, and the corre-

lations between the P-values U on the other, under the assumption of

no genetic association (i.e. under the null hypothesis). Assuming two

correlated bi-allelic SNPs and two correlated phenotypes, genotype

and phenotype data were simulated for N¼4000 subjects for every

combination of allele frequencies (assuming Hardy–Weinberg equili-

brium), LD coefficient r, and phenotypic correlation q. For each LD

coefficient r, the SNP haplotypes were randomly generated by refer-

ence to a categorical distribution. For quantitative phenotypes, pheno-

typic scores were randomly drawn from a bivariate normal

distribution N �
0

0

" #
;

1 q

q 1

" # !
, and a linear regression model

(Wald test) was used to evaluate the statistical association between

each phenotype and each SNP. For qualitative phenotypes, the bivari-

ate Bernouilli distribution with correlation q was used to produce pairs

of dichotomous phenotypic scores for each subject, and a logistic

regression model (v2 test) was used to evaluate the association between

each phenotype and each SNP. Allele frequencies, r, and q were

increased from the smallest values to the largest values with steps of

0.05 to generate a series of data points. For each setting, 10 000 data-

sets were generated, yielding 10 000 sets of P-values from which the

correlation between P-values could be estimated. Our simulations then

showed that the correlation matrix of the m�n P-values U could be

accurately approximated using a sixth-order polynomial function fea-

turing the Kronecker multiplication of the observed SNP-correlation

matrix X and observed phenotypic correlation matrix R, with coeffi-

cient of determination R2¼0.995:

U ¼ f R� X ¼ Xð Þ
� 0:3867X6 þ 0:0021X5 � 0:1347X4 � 0:0104X3 þ 0:7276X2

þ 0:0068X

(4)

Fig. 1. Schematic representation of six trait-generating genotype–phenotype

models. (A) 1-factor model with all SNPS within a gene affecting the latent

factor, and through the latent factor all underlying phenotypes. (B) 1-factor

model with all SNPs within a gene affecting one underlying phenotype

directly. (C) 4-factor model with all SNPS within a gene affecting only one of

the four latent factors, and all phenotypes underlying that factor. (D) 4-factor

model with all SNPS within a gene affecting one underlying phenotype

directly. (E) Network model in which all phenotypes are equally and bidirec-

tionally related, yielding a phenotypic variance–covariance matrix mimicking

that of a 1-factor model. All SNPs within a gene affect one phenotype directly

and all related phenotypes indirectly. (F) Network model distinguishing four

clusters of phenotypes; all phenotypes are bidirectionally related, with rela-

tions being stronger within, compared with between, clusters, yielding a phe-

notypic variance–covariance matrix mimicking that of a 4-factor model. All

SNPs within a gene affect one phenotype directly and all related phenotypes

indirectly. See Supplementary Material for specific simulation settings
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Neither sample size nor allele frequencies affected the accuracy

of this approximation (see Supplementary Fig. S1).

MGAS as implemented in KGG v3.0 calculates the expected

matrix U using the user-provided correlation matrices R and X. The

first can be calculated from the raw phenotype data, while the latter

can either be calculated from the actual genotype data or can be

obtained from reference genotype data in HapMap (http://hapmap.

ncbi.nlm.nih.gov) or the 1000 Genomes Project (http://www.

1000genomes.org/). KGG v3.0 facilitates the building of X from

both observed and reference data.

2.3 MGAS running time: the divide-and-conquer

algorithm
To speed up computation of PMGAS for a gene with a large number

of SNPs and many phenotypes, we developed a divide-and-conquer

algorithm. The m�n weighted P-values are partitioned into K clus-

ters according to their expected correlations using a cutoff of

c¼0.50. The P-value of each block is calculated by the extended

Simes test (Li et al., 2011), and the SNP determining the blockwise

P-value is marked as the key SNP of that block. The block-wise

P-values are then combined by the same extended Simes test again

to produce the multivariate gene-based P-value PMGAS in which the

correlations between the key SNPs are used to correct for the

dependency of the K block-wise P-values. This algorithm avoids

computationally intensive algebraic operation in large correlation

matrices [e.g. with 20 phenotypes and a gene covering 200 SNPs,

the correlation matrix in the analysis has dimensions

(20�200)� (20�200)]. Depending on the number of phenotypes

and SNPs per gene, building the genomic correlation matrix and

running the MGAS analysis takes 15 min (9 phenotypes and 328

836 SNPs, see empirical example later) to 2 hr (20 phenotypes and

2.4 million SNPs) on an ordinary desktop computer with Intel(R)

Core(TM) i7-3770, CPU 3.40 GhZ, RAM 8.00 GB and 64-bit

Windows 7.0 Enterprise 2009.

2.4 Type I error rate and power: simulation
2.4.1 Simulation settings

To examine the Type I error rate and the power of MGAS to detect

associated genes, multivariate genotype–phenotype data were simu-

lated for 2000 unrelated subjects (see Supplementary Information

for details). Phenotype data included 20 standard normally distrib-

uted phenotypes. The covariance structure of the phenotypic data

was either a unidimensional common factor model (Fig. 1A and B),

a 4-common factor model (Fig. 1C and D) or a network model in

which correlations between phenotypes are the result of direct,

mutual relations between the individual phenotypes (Fig. 1E and F;

the relevance of network models for psychological traits like cogni-

tion, depression and personality has been demonstrated; Borsboom

et al., 2011; Cramer et al., 2010, 2012; Van der Maas et al., 2006).

Network data were generated such that the associated phenotypic

covariance structure either mimicked a unidimensional factor model

(i.e. all phenotypes mutually affect each other to a similar extent;

Fig. 1E), or a 4-factor model (i.e. four clusters of phenotypes are

specified; Fig. 1F). Within and between factors or clusters, pheno-

types correlated 0.56 and 0.13, respectively. In these six phenotypic

settings, the effects of all SNPs within a gene were either modeled at

the latent level (Fig. 1A and C), or directly on one specific phenotype

(Fig. 1B–F).

Genetic data included a small gene (10 SNPs) or a larger gene

(60 SNPs, assuming equal coverage) with varying numbers of dis-

ease-susceptibility loci (DSL, i.e. a SNP that is causally related to

one or more phenotypes), and LD blocks. Table 1 shows an over-

view of all simulation settings (see also Supplementary Tables S1a–e

for a visual representation of the LD structure and a detailed

description of all simulation settings).

In all simulations, the minor allele frequency of all SNPs was

0.2. Within and between LD blocks, LD measure r was set to 0.9

and 0, respectively. The simulated regression weights of DSL were

chosen to account for 0.5% of the phenotypic variance in small gen-

es and 1% in large genes (see Section 2.5 later). Note that in the uni-

variate regression of one phenotype on a DSL, the effect of the DSL

can be larger than simulated when the DSL is in high LD with other

DSL (i.e. the effect is augmented because of the correlation of the

DSL to other DSL in the same LD block: see Supplementary

Information Simulations). Hence, power comparisons should only

be made within each scenario, not between scenarios.

In each scenario, data were analysed in five ways, all yielding a

gene-based P-value. First, the sum score, calculated across all 20

phenotypes, was regressed on all SNPs within a gene, and the

P-values from these univariate tests were submitted to the GATES-

sum procedure. Second, this sum score was submitted to a multiple

regression model, in which all SNPs within a gene were included as

predictors. Third, MANOVA was conducted with all 20 phenotypes

as dependent variables, and all SNPs within a gene as predictors

(Tang and Ferreira, 2012). In both multiple regression and

MANOVA, fixing all predictor effects to zero simultaneously yields

a gene-based test with the number of degrees of freedom equal to

the number of SNPs in a gene. Note that for these simulation set-

tings (i.e. unrelated individuals, no covariates and an additive codo-

minant SNP), MANOVA is equivalent to CCA (Tang and Ferreira,

2012) and the RMMLR method (Basu et al., 2013). Fourth, as vari-

ous studies (e.g. Cole et al., 1994; Medland and Neale, 2010;

Minica et al., 2010; Galesloot et al., 2014) have shown that

MANOVA featuring one predictor (i.e. SNP) has excellent power to

pick up trait-specific effects (i.e. only one of multiple correlated

Table 1. Overview simulation settings

Number of

LD blocks

Number

of DSL

Opposite

effects

Small gene Scenario 1 1 0

(10 SNPs) Scenario 2 (IV) 1 1 No

Scenario 3 (X, XI) 1 1 Yesa

Scenario 4 (V) 1 2 No

Scenario 5 1 2 Yesb

Scenario 6 (VI) 1 4 No

Scenario 7 1 4 Yesb

Scenario 8 (VII) 2 1 No

Scenario 9 (VIII) 2 2 No

Scenario 10 (IX) 2 2 Yesb

Large gene Scenario 11 8 0

(60 SNPs) Scenario 12 (I) 8 1 No

Scenario 13 (II) 8 8 No

Scenario 14 (III) 8 8 Yesb

Note. DSL: disease susceptibility locus. Roman numerals refer to the power

results in Figure 2A.
aIn latent factor models (Fig. 1A and C), the one DSL affected half of the

phenotypic indicators of a factor positively and the other half negatively. In

unclustered networks (Fig. 1E), the one DSL affected one phenotype posi-

tively and another phenotype in the network negatively. In clustered networks

(Fig. 1F), the one DSL affected either two phenotypes in the same cluster, or

two phenotypes in different clusters, in opposite directions.
bHalf of the DSL in a gene conveyed a positive effect, the others a negative

effect of the same magnitude (Fig. 1A and C) or phenotypes (Fig. 1C–F).
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phenotypes is affected), and SNPs with opposite effects, we per-

formed a combination of MANOVA and GATES (i.e. GATES-

MANOVA). That is: given m phenotypes and n SNPs, n multivariate

SNP-based MANOVAs with all m phenotypes as dependent varia-

bles and each SNP separately as predictor, produced n P-values that

were combined to one multivariate gene-based P-value using

GATES. Finally, all m phenotypes were individually regressed on all

n SNPs, and the m�n P-values from these univariate tests were sub-

mitted to the MGAS procedure. Importantly, the first two methods

summarize the multivariate phenotypic information into one com-

posite score, while the latter three methods preserve the multivariate

nature of the phenotypic input.

For all six trait-generating genotype–phenotype models, we

simulated and analysed 2000 datasets using the freely available pro-

gram R (R Development Core Team, 2011), and we counted the

number of times that gene-based P-values indicated significance

given a¼0.05.

2.4.2 Simulation results

Type I error rates were correct for all methods in all scenarios

(Supplementary Tables S2–S7 for precise power and Type I error

estimates), bar a small tendency toward inflation (�0.063) for

MGAS over multiple simulation runs (not shown) when analysis

concerned a large gene in the clustered network scenario (Fig. 1F),

suggesting that MGAS can be slightly liberal in this scenario. To

study the Type I error rate for smaller a levels, we ran the scenario

illustrated in Figure 1A 100 000 times for a small gene and obtained

values of 0.01017, 0.00134 and 0.00011 for a¼0.01, 0.001 and

0.0001, respectively, suggesting correct Type I error rates for more

stringent a-levels. In addition, we used real genome-wide genetic

data of N¼4763 subjects from the Northern Finland Birth Cohort

(NFBC1966, Sabatti et al., 2009, see Section 2.6 later), simulated 10

sets of 9 phenotypes, of which the correlational structure mimicked

the observed correlations of the NFBC1966 metabolic phenotypes

(see Supplementary Table S8), and performed 10 whole-genome

multivariate gene-based association analyses using MGAS. These

analyses showed that both small (�10 SNPs) and larger (>10 SNPs)

genes had empirical Type I error rates very close to the nominal

alpha bar some stochastic fluctuation (Table 2), suggesting that

MGAS has correct Type I error rate regardless of LD pattern and

gene size. Indeed, qq-plots of the thus obtained MGAS P-values

against a uniform distribution showed no aberrations (see

Supplementary Fig S2).

Power results and Type I error rates for all scenarios are in

Supplementary Tables S2–S7. Figure 2 depicts power results for the

six trait-generating genotype–phenotype models, except for the sce-

narios including multiple opposite-effect DSL from the same LD

block (Scenarios 5 and 7 in Table 1) since none of the five methods

had reasonable power (max 9%) to detect these.

As expected (Medland and Neale, 2010; Minica et al., 2010;

Van der Sluis et al., 2010, 2013), the methods that use phenotypic

sum scores rather than the multivariate information (i.e. GATES

and multiple regression, represented in red and orange, respectively)

perform well when the true trait-generating model is a unidimen-

sional factor model with the gene-effect on the latent factor, because

only in that specific case the phenotypic sum score is a sufficient sta-

tistic (Figs 1A and 2A). That the phenotypic sum score is not a suffi-

cient statistic under the other five simulated genotype–phenotype

models is evident from the power results of GATES and multiple

Table 2. Empirical Type I error rates in 10 genome scans using

MGAS

Nominal a

0.01 0.001 0.0001

Small genes �10 0.0107 0.00116 0.000112

Larger genes >10 0.0128 0.00151 0.000108

Note. Type I error rates of MGAS for small genes (�10 SNPs) and larger

genes (>10 SNPs) obtained in 10 whole-genome scans of real genomic data

and nine simulated phenotypes with realistic correlational structure.

Fig. 2. Radial power plots for six trait-generating genotype–phenotype mod-

els (A–F) and various genetic situations (I–XI). (A) 1-factor model with gene

effects on the latent factor. (B) 1-factor model with gene affecting only one

phenotype directly. (C) 4-factor model with gene effect on only one of four

latent factors. (D) 4-factor model with gene affecting only one phenotype

directly. (E) Network model mimicking 1-factor model with gene affecting one

phenotype directly and all related phenotypes indirectly. (F) Network model

mimicking 4-factor model with gene affecting one phenotype directly and all

related phenotypes indirectly. I–III represent results for the large gene (60

SNPs): (I): eight LD blocks, one DSL; (II): eight LD blocks, eight DSL; (III): eight

LD blocks, eight DSL of opposite effect. IV–XI represent result for a small

gene (10 SNPs): (IV): one LD block, one DSL; (V): one LD block, two DSL; (VI):

one LD block, four DSL; (VII): two LD blocks, one DSL; (VIII): two LD blocks,

two DSL; (IX): two LD block, two DSL of opposite effect; (X): one LD block,

one DSL conveying opposite effects on different phenotypes (that in network

models resided in the same cluster); (XI): one LD block, one DSL conveying

opposite effects on phenotypes in different clusters. Specific power results

and Type I error rates for all scenarios are in Supplementary Tables S2–S7.

Because MGAS has less power to detect larger genes (see Supplementary

Material), small genes and large genes were simulated to explain 0.5 and 1%

of the variance, respectively. Power results of the five methods are thus not

directly comparable between scenarios (see Supplementary Material)
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regression: the power to detect DSL-harboring genes hardly ever

exceeds 20%, and is often close to 5% as expected under the null

hypothesis of no genetic signal.

From previous studies (Cole et al., 1994; Galesloot et al., 2014;

Medland and Neale, 2010; Minica et al., 2010) MANOVA is

known to be particularly powerful when one predictor (e.g. SNP)

affects only one of multiple highly correlated phenotypes (Fig. 2B

and D), or when that one predictor affects correlated phenotypes in

opposite directions (scenario X in Fig. 2). Indeed, GATES-

MANOVA has the best power in these scenarios, with MGAS as

second best (MGAS has 0–22% less power, with a median of

�12%). When the gene affects multiple phenotypes simultaneously

(i.e. pleiotropy, Fig. 2A and C), MGAS outperforms GATES-

MANOVA (�1 to 45% more power, median 22%), but when the

genotype–phenotype data have a network structure, MGAS and

GATES-MANOVA perform similarly, except, as expected, when

one DSL affects highly correlated phenotypes oppositely (power dif-

ferences range between �28 and 10%, with a median of 0).

In general, MGAS outperforms all other gene-based methods,

except when the trait-generating genotype–phenotype model is a

unidimensional factor model with the gene-effect on the

factor (Fig. 2A), in which case it is sometimes slightly outperformed

by the GATES procedure (MGAS has �9% less, to 95% more,

power, with a median of 6%). MGAS outperforms MANOVA and

multiple regression considerably in this scenario (compared with

multiple regression: 0–95%, median 12%; compared with

MANOVA: 0–76%, median 52%), and for all other trait-generating

genotype–phenotype models, MGAS has (much) more power than

GATES-sum, MANOVA and multiple regression (calculated across

all other five genotype–phenotype scenarios; compared with

GATES-sum: 5–94%, median 45%; compared with multiple regres-

sion: 7–95%, median 45%; compared with MANOVA: �0.04 to

77%, median 22%). Although MANOVA including all (highly cor-

related) SNPs as predictors often outperforms GATES and multiple

regression, it is always less powerful than MGAS.

Overall, all methods have less power to detect genes harboring

multiple small-effect DSL, unless these are in high LD, in which case

MGAS and GATES-MANOVA show sufficient power.

Yet, none of the currently included methods can pick up genes

with small-effect DSL that are in high LD but show opposite effects

(Scenarios 5 and 7 in Table 1).

2.5 Particulars MGAS
Since MGAS revolves about selection of the best SNP (i.e. the SNP

with the smallest weighted P-value), it is not directly sensitive to

increased numbers of DSL within one gene. We note, however, that

‘indirectly’, MGAS does favor genes with multiple DSL because the

weights qe/qej [see Equations (1) and (2)] generally decrease quickly.

For instance, assuming 10 phenotypes that correlate 0.53 and a gene

harboring 10 SNPS that correlate 0.3, the first four weights equal

88.44, 44.94, 31.04 and 23.70. Assuming a¼0.01, to implicate a

gene with one DSL, that DSL must thus have a P-value<0.01/

88.44¼0.00011, while to implicate a gene harboring four DSL, the

Table 3. Top genes/regions identified by MGAS

Gene PMGAS Chrom SNP GeneFeature BMI CRP DBP GLU HDL INS LDL SBP TG

CETP 2.64E� 27 16 rs5882 Exonic 0.0334 0.2277 0.8921 0.7482 0.0123 0.6682 0.9856 0.7947 0.2581

CETP rs7499892 Intronic 0.0533 0.3716 0.2021 0.0581 2.29E�16 0.6125 0.8722 0.7906 0.6591

CETP rs1532624 Intronic 0.1196 0.3991 0.7190 0.1250 2.97E�22 0.0855 0.2530 0.8547 0.0190

CETP rs3764261 Upstream 0.7867 0.2128 0.5447 0.2744 6.97E�29 0.5155 0.1550 0.9677 0.0776

CETP rs4784744 Intronic 0.9047 0.2958 0.3813 0.6869 0.0015 0.0104 0.0309 0.6400 0.0094

CRP 4.79E�21 1 rs2794520 Downstream 0.5436 2.92E�22 0.5156 0.5865 0.2572 0.3577 0.5440 0.2896 0.6739

CRP rs2808630 Downstream 0.7177 0.1592 0.6079 0.8536 0.4855 0.5051 0.6753 0.7260 0.5424

PSRC1 3.66E�11 1 rs646776 Downstream 0.1401 0.2212 0.6273 0.8053 0.1416 0.0778 2.19E�12 0.5509 0.5495

PSRC1 rs14000 3UTR 0.1916 0.09687 0.0892 0.2581 0.6445 0.1435 0.1921 0.5668 0.6507

CELSR2 1.07E�10 1 rs646776 Downstream 0.1401 0.2212 0.6273 0.8053 0.1416 0.0778 2.19E�12 0.5509 0.5495

CELSR2 rs14000 3UTR 0.1916 0.0969 0.0892 0.2581 0.6445 0.1435 0.1921 0.5668 0.6507

CELSR2 rs4970833 Intronic 0.4169 0.4745 0.903 0.1187 0.0869 0.9570 0.0002 0.1492 0.0062

CELSR2 rs585362 Upstream 0.4312 0.1302 0.9314 0.6189 0.1309 0.5631 0.0008 0.9039 0.2540

CELSR2 rs608196 Intronic 0.5951 0.0257 0.2761 0.2334 0.6895 0.5521 0.2932 0.8240 0.7671

CELSR2 rs611917 Intronic 0.6200 0.9362 0.6067 0.2556 0.3181 0.4759 2.49E�07 0.7242 0.4669

CELSR2 rs437444 Exonic 0.9746 0.0124 0.2472 0.0730 0.0753 0.5549 0.2433 0.0343 0.6468

GCKR 9.72E�09 2 rs780090 Upstream 0.4083 0.6039 0.077 0.7938 0.9573 0.9804 0.0014 0.9441 0.0012

GCKR rs1260326 Exonic 0.4920 0.0731 0.5136 0.3899 0.1862 0.4225 0.3074 0.3802 3.56E�10

GCKR rs780092 Intronic 0.7381 0.8739 0.9692 0.4828 0.2053 0.8628 0.6050 0.4487 0.0028

GCKR rs780094 Intronic 0.8774 0.1497 0.3194 0.2858 0.3188 0.2942 0.4940 0.1694 0.2486

G6PC2 1.38E�08 2 rs3821117 Intronic 0.2223 0.4850 0.7182 0.6035 0.4264 0.2869 0.7342 0.1685 0.9942

G6PC2 rs560887 Intronic 0.6882 0.4081 0.9984 5.69E�10 0.7242 0.9469 0.5264 0.9864 0.5293

G6PC2 rs491443 Downstream 0.7258 0.3268 0.4481 0.03655 0.7391 0.9486 0.9368 0.4742 0.6680

HNF1A-AS1 2.48E�08 12 rs2254779 ncRNA 0.5124 0.1338 0.2373 0.9861 0.7389 0.9154 0.6181 0.2521 0.9738

HNF1A-AS1 rs7953249 Downstream 0.5548 1.44E�09 0.4425 0.9052 0.4757 0.5462 0.2955 0.6843 0.9386

HNF1A 5.55E�08 12 rs1169302 Intronic 0.3462 1.20E�07 0.8893 0.0273 0.1185 0.4196 0.3375 0.1404 0.7278

HNF1A rs2464196 Exonic 0.5168 4.78E�09 0.6792 0.8519 0.7413 0.2968 0.3052 0.6581 0.7054

HNF1A rs1169300 Intronic 0.6507 2.01E�09 0.6845 0.8948 0.8545 0.3737 0.1907 0.7302 0.6947

HNF1A rs735396 Intronic 0.7766 2.13E�07 0.9390 0.9274 0.9260 0.1533 0.1433 0.9335 0.2894

HNF1A rs1169307 Intronic 0.8254 2.76E�05 0.7082 0.7806 0.0823 0.7835 0.3745 0.813 0.9292

Note. Top genes/regions identified by MGAS (multivariate gene-based P-value PMGAS< 1.0E�07: see Supplementary Table S9 for the entire list of False

Discovery Rate controlled significant genes). Abbreviations metabolic phenotypes: body mass index (BMI), C-reactive protein (CRP), diastolic blood pressure

(DBP), glucose (GLU), high-density Lipoprotein (HDL), insulin (INS), low-density lipoprotein (LDL), systolic blood pressure (SBP) and triglycerides (TG).
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P-value of the DSL with the weakest signal only needs to be <0.01/

23.70¼0.0004, i.e. can be approximately four times higher.

At the same time, because the weights qe/qej are based on eigen-

value decomposition, a gene represented by multiple DSL in high

LD can be easier to detect than a gene represented by multiple DSL

(same signal) in low LD. For instance, while the first four weights

qe/qej are 35.66, 19.68, 13.59 and 10.38 when 10 phenotypes corre-

late 0.53 and 10 SNPs correlate 0.9, they equal 88.44, 44.94, 31.04

and 23.70 when the 10 SNPs correlate only 0.3. Assuming the same

number of SNPs representing a gene and DSL with the same effect

size, MGAS thus more easily detects genes with DSL that are part of

an LD block. This is also illustrated by the relatively high power of

MGAS in scenarios V and VI, compared with IV, in Figure 2A–F.

However, adding highly correlated, non-causal SNPs to represent a

gene more comprehensively quickly decreases the power of MGAS

to detect the gene: because j in Equation (2) increases when one adds

SNPs, the weights qe/qej increase, thereby decreasing the probability

that weighted P-values will be below a chosen criterion level a. For

instance, assuming 10 phenotypes correlating 0.53 and a gene with

60 SNPs divided over six LD blocks (10 SNPs per block, LD¼0.9

within, and LD¼0 between blocks), the first four weights equal

213.94, 115.61, 79.20 and 60.24. If one was to select one SNP per

block such that the gene is represented by six unrelated SNPs, the

weights would drop to 49.85, 27.51, 19.00 and 14.51, respectively.

That is: when adding highly correlated SNPs to the analysis, power

only increases if these SNPs are actually DSL that convey an inde-

pendent association signal. In practice, however, we do not know

which SNPs are such DSL. Therefore, while imputation and

sequencing yield dense genotype files, the power of MGAS (as of

other SNP-based and gene-based tests) to detect associated genes

will generally improve if one uses LD-based pruned data in the

analysis since most SNPs are not DSL [a similar conclusion was

reached for univariate gene-based tests by Petersen et al. (2013),

who showed that inclusion of non-causal intra-genic variants often

dilutes the signal of gene-based tests]. However, as always, the proc-

ess of LD-based pruning implies a trade-off between gaining power

by reducing the number of redundant tests, and losing power by

potential pruning of real genetic signal. Whether P-value based

pruning is suited for procedures like MGAS that are based on

P-value selection, or maybe introduces bias through capitalization

on chance, requires further study.

2.6 Implementation: metabolism data
To illustrate the usefulness of MGAS, we re-analysed nine quantita-

tive metabolic traits measured in the population-based NFBC1966

(N¼4763; Sabatti et al., 2009), obtained from the dbGaP database.

Data were available for triglycerides (TG), high-density lipoprotein

(HDL), low-density lipoprotein (LDL), glucose (GLU), insulin

(INS), C-reactive protein (CRP), body mass index (BMI) and systolic

and diastolic blood pressure (SBP, DBP), and 328 836 SNPs, whose

genomic positions were retrieved using SnpTracker (http://statgen-

pro.psychiatry.hku.hk/limx/snptracker). To run MGAS, KGG v3.0

requires a phenotypic correlation matrix and a file containing the P-

values from the statistical association test between each SNP and

each of the nine phenotypes. Phenotypic correlations, corrected for

the covariates used in the original genome-wide analysis, were calcu-

lated from the original phenotype data downloaded from dbGaP

(Supplementary Table S8). To follow the original analyses and

results as closely as possible, we used the original P-value files pro-

vided by the authors and available in dbGaP (i.e. the P-values from

the original 9, PCs and covariates corrected, genome-wide analyses).

Combining these nine P-value files, we had information on 328 836

SNPs, 180 520 of which were located within genes, covering 21 153

genes in total. In KGG v3.0, SNPs were mapped onto genes defined

by the RefGene database with 5 kb boundary extensions on both

sides. When an SNP was located in overlapping regions of multiple

genes, the SNP was assigned to all involved genes. The LD structure

within each gene was determined in KGG v3.0 by reference to the

HapMap LD data (http://hapmap.ncbi.nlm.nih.gov/downloads/ld_

data/latest/).

To illustrate the added value of a test that is both multivariate

and gene-based, we also conducted multivariate SNP-based analysis

using TATES (Van der Sluis et al., 2013) and univariate gene-based

analysis using GATES (Li et al., 2011) for comparison. TATES

was conducted on the original P-values and thus concerned multi-

variate analysis of the nine continuous metabolic trait measures

(genome-wide significant Bonferroni corrected a¼1.52�10�07).

The NFBC1966 data do not contain univariate metabolic syndrome

case/control status scores. Therefore, to conduct the univariate gene-

based method GATES, we created a univariate composite score

reflecting the number of endorsed metabolic risk factors using five

standard clinical diagnostic criteria to identify metabolic syndrome

(see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1880831/).

These criteria are: TG�1.70; HDL males<1.04, HDL females

HDL<1.30; GLU�6.1, BMI�25 and blood pressure�130/85.

For each participant, we established whether they met the criteria

(yes/no, coded as 1/0) and then calculated the sum of endorsed crite-

ria. This sum, ranging from 0 to 5 (42.9, 32.9, 15.7, 6.7, 1.6 and 0.1

% of the participants met 0, 1, 2, 3, 4 or 5 of the criteria, respec-

tively), was then treated as a continuous dependent variable in a

genome-wide analysis that we conducted in PLINK (Purcell et al.,

2007), including, like in the original analyses, sex, use of oral con-

traception, pregnancy status and the first two PCs of a multidimen-

sional scaling analysis as covariates (the first two PCs were used as

covariates by the original authors as a proxy for geographical origin

of the subjects). GATES analyses were also performed on the indi-

vidual risk factors, i.e. the dichotomized variables TG, HDL, GLU,

BMI and blood pressure, and on the nine continuous metabolic

traits separately.

Using an original Benjamini False Discovery Rate (Benjamini

and Hochberg, 1995) controlled genome-wide threshold of

a¼1.80�10�04, MGAS identified 32 genome-wide significant

genes and 12 genome-wide significant regions harboring multiple

genes (Supplementary Table S9; qq-plots in Supplementary Figs S3

and S4). Of these 44 regions, 30 were not reported in the original

analysis, but 39 have been identified before in unrelated studies on

the separate metabolic traits according to the Catalog of Published

Genome-wide Association Studies (http://www.genome.gov/gwastu

dies; Supplementary Table S10). Inspection of the univariate

SNP-based P-values underlying the multivariate MGAS P-values

showed that while the top regions (P<1.0�10�07; Table 3) were

only implicated in one of the nine metabolic traits, other regions

showed associations of varying strength to multiple metabolic traits

(e.g. APOB: PMGAS¼1.13�10�06, associated to HDL, LDL and

TG; TOMM40/PVRL2: PMGAS¼1.47�10�06, associated to LDL,

TG and CRP). Three of the five regions newly identified by MGAS

were previously associated to disorders of which treatment/progno-

sis is known to be related to metabolism (see Supplementary Table

S10). For instance, the region harboring GLT8D1, GNL3,

SNORD19B and SNORD69 (here associated to GLU and LDL) has

been associated to major psychiatric mood disorders (Goes et al.,

2012; McMahon et al., 2010; Sklar et al., 2011), and lipid and glu-

cose abnormalities are reported in a considerable proportion of
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patients using atypical or second-generation antipsychotics

(Pramyothin and Khaodhiar, 2010).

MGAS identified more genes compared with the multivariate

SNP-based method TATES (20 genome-wide significant SNPs with

P<1.52�10�07 covering 10 genetic regions: Supplementary Table

S11) and the univariate gene-based method GATES conducted on

the sum of endorsed risk factors (Supplementary Table S12).

GATES analyses based on the nine individual continuous metabolic

phenotypes (Supplementary Table S13), however, yielded results

largely similar to those obtained with MGAS (comparison in

Supplementary Table S14), except that the MGAS P-values are

properly corrected for the phenotypic correlations and multiple

testing.

3 Discussion

We have shown that the new multivariate gene-based method

MGAS has correct Type I error rate and performs well under a vari-

ety of trait-generating genotype–phenotype models. With respect to

power, MGAS often outperforms other gene-based methods that do

not require permutation, like the univariate methods GATES, multi-

ple regression and the multivariate MANOVA [which, with our sim-

ulation settings, is equivalent to CCA (Tang and Ferreira, 2012) and

RMMLR (Basu et al., 2013)].

MGAS, based on P-value information obtained in standard soft-

ware like PLINK, has several important advantages. First, simulta-

neous analysis of phenotypes that have different measurement scales

(e.g. continuous, ordered categorical, dichotomous) is unproble-

matic. Second, standard GWAS software deals with quality control

in a genome-wide setting, covariates and population structure or

stratification. MGAS, subsequently using the P-values resulting

from these specialized packages, benefits from the strengths of such

software. Third, MGAS is relatively fast as the method does not

require permutation. Fourth, for the simulated genotype–phenotype

models, MGAS often proved the most powerful gene-based meth-

ods, especially for the detection of pleiotropic genes (Fig. 1A and C).

Only when the gene affects that part of one specific phenotype

that shows no relation to other phenotypes in the analysis (i.e. gene-

effect on the residual, Fig. 1B and D) is MGAS outperformed

by GATES-MANOVA. As a powerful method, MGAS more easily

detects genes that show relatively weak associations with one or

multiple traits. This was nicely illustrated by our real data example,

in which we identified 30 regions that were not reported in the

original analysis.

It is important to note that, like all other multivariate gene-based

methods included in our simulations, MGAS has difficulty detecting

genes that harbor multiple DSL in high LD, with contrasting effects

(Scenarios 5 and 7 in Supplementary Tables S2–S7). Although con-

trasting effects of SNPs in high LD, located within one gene, may

indeed exist, e.g. as a balancing mechanism, the scope of this sce-

nario, and thus of this shortcoming, is probably limited. Yet, multi-

variate gene-based methods that can detect such contrasting effects

are currently lacking.

We close with some final remarks concerning the practical use of

MGAS. First, MGAS, like TATES, cannot be used to analyse data

collected in multiple, non-overlapping samples (e.g. trait A was

measured in sample I, and trait B in sample II) because the resulting

P-values will not show the expected correlations resulting from both

the phenotypic correlations and the LD structure in the genome.

Also, those P-values might be based on samples of different size,

obtained using variable recruitment strategies, and might originate

diverging analytic choices with respect to data cleaning and inclu-

sions of covariates. Second, KGG v3.0 facilitates estimation of the

genetic correlation matrix from a reference population like

HapMap: actual genotypes of study samples do not need to be avail-

able. However, when the LD structure of the reference population

differs from the LD in the actual study sample, MGAS can be

liberal or conservative: we refer to Li et al. (2011) for an extensive

discussion. Third, the phenotypic correlation matrix used in MGAS

should be corrected for the same covariates that are used in the uni-

variate association analyses that provide the input for MGAS (i.e.

the original phenotypic scores need to be regressed on these cova-

riates and the correlations between the residuals feature as input

for MGAS).

Traits that have to date yielded few results in GWAS are often

believed to be genetically complex, i.e. they involve many genes of

small effect. However, genome-wide studies of complex traits have

so far almost invariably relied on composite scores like sum scores

or case–control dichotomies, thereby assuming the true trait-gener-

ating genotype–phenotype model to be a 1-factor model with the

gene-effects on the factor (Fig. 1A). Our previous (Van der Sluis

et al., 2010, 2013) and current simulations show that the abundance

of null-results in the GWAS literature is not only in line with the

hypothesis that many traits are genetically complex: the difficulty to

identify associated genes could also indicate that the trait-generating

genotype–phenotype model is misspecified. Here we showed that

MGAS, which is exploratory in the sense that it does not require

researchers to commit to one trait-generating genotype–phenotype

model before conducting the association analysis, has excellent

power under various trait-generating models. As such, MGAS

allows researchers to conduct their multivariate gene-based analyses

efficiently, and without the loss of power that is often associated

with an incorrect trait-generating genotype–phenotype model.
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