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Abstract

Background and objectives

Diagnosis of Pulmonary Rifampicin Resistant Tuberculosis (RR-TB) with the Drug-Suscepti-

bility Test (DST) is costly and time-consuming. Furthermore, GeneXpert for rapid diagnosis

is not widely available in Indonesia. This study aims to develop and evaluate the CUHAS-

ROBUST model performance, an artificial-intelligence-based RR-TB screening tool.

Methods

A cross-sectional study involved suspected all type of RR-TB patients with complete sputum

Lowenstein Jensen DST (reference) and 19 clinical, laboratory, and radiology parameter

results, retrieved from medical records in hospitals under the Faculty of Medicine, Hasanud-

din University Indonesia, from January 2015-December 2019. The Artificial Neural Network

(ANN) models were built along with other classifiers. The model was tested on participants

recruited from January 2020-October 2020 and deployed into CUHAS-ROBUST (index

test) application. Sensitivity, specificity, and accuracy were obtained for assessment.

Results

A total of 487 participants (32 Multidrug-Resistant/MDR 57 RR-TB, 398 drug-sensitive)

were recruited for model building and 157 participants (23 MDR and 21 RR) in prospective

testing. The ANN full model yields the highest values of accuracy (88% (95% CI 85–91)),

and sensitivity (84% (95% CI 76–89)) compare to other models that show sensitivity below

80% (Logistic Regression 32%, Decision Tree 44%, Random Forest 25%, Extreme Gradi-

ent Boost 25%). However, this ANN has lower specificity among other models (90% (95%

CI 86–93)) where Logistic Regression demonstrates the highest (99% (95% CI 97–99)).
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This ANN model was selected for the CUHAS-ROBUST application, although still lower

than the sensitivity of global GeneXpert results (87.5%).

Conclusion

The ANN-CUHAS ROBUST outperforms other AI classifiers model in detecting all type of

RR-TB, and by deploying into the application, the health staff can utilize the tool for screen-

ing purposes particularly at the primary care level where the GeneXpert examination is not

available.

Registration

NCT04208789.

Introduction

Rifampicin Resistant Tuberculosis (RR-TB) is the single drug-resistant (DR) type where a

mutation in the rpoB gene occurs. This becomes a focus on tuberculosis elimination, along

with isoniazid and fluoroquinolone resistance [1]. Around half a million RR-TB cases around

the world were diagnosed in 2018 [2]. Management of RR-TB is essential as it is linked to

severe type of resistance, as reported that 78% of RR-TB belongs to MDR [2]. Pulmonary

tuberculosis patients can spread the droplet easier than the extrapulmonary manifestation

through a cough. Hence, a pulmonary RR-TB possesses a greater risk to be transmitted and

rises a concern in public health.

Delayed diagnosis is associated with delayed treatment and severe clinical presentation but

the diagnosis of drug-resistant tuberculosis is complex and prone to a procedural error. The

existing rapid molecular test based on Nucleic Acid Amplification (NAAT) and Line Probe

Assays reduce the waiting time, specifically in detecting RR-TB such as a study of Xpert perfor-

mance in India [3]. This modality has been proven to save Daily Adjusted Life-Years (DALYs)

particularly in TB-HIV patients [4]. But this is not without a problem. First, a low-resource set-

ting is unable to perform this test as it needs particular requirements and maintenance includ-

ing facility, devices [5], and human resources. Second, the pre-analytic procedure also affects

the outcome, including the treatment of the sample/sputum, and a different source of speci-

mens shows various results [6]. The phenotypic drug-susceptibility test (DST), considered the

gold standard, is susceptible to errors such as incorrect inoculum preparation and different in
vitro resistance criteria [7]. These high-cost and complex technologies, therefore, are one of

the challenges in diagnosis.

The use of artificial intelligence (AI) has been acknowledged in the medical field including

the use of machine learning and deep learning for clinical decision making and gain concern

to alleviate the burden of disease screening. The scoring method to classify the disease is one of

the approaches applied in the diagnosis algorithm. But the concern is, there are some varia-

tions of the criteria, and the diagnostic performance (sensitivity, and specificity) is lower than

expected, such as TB Scoring in children [8]. The classifiers were then introduced including

Logistic Regression, Support Vector Machine, Gradient Boost, Decision Tree, and Neural Net-

work. The latter has gained interest as it has some advantages which outperform the other

models [9]. The two most common Neural Network models are the Artificial Neural Network

(ANN) model and Convolutional Neural Network (CNN) model. The multidimensional input
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such as image is commonly used in CNN whereas the ANN provides better performance in

data or pattern recognition [10].

Clinical and demographic information plays a pivotal role in disease prediction and can be

used for classification purposes, specifically for DR-TB classification. However, fewer studies

are concerned about the use of these data as a predictor for decision-making due to scarcity

and reliability. But nowadays, the data could be obtained from medical records and the exten-

sive use of electronic records ensure sustainable data availability. Several previous models were

developed based on clinical data using logistic regression, classification tree, or even ANN [11,

12]. However, several critical issues were found including a smaller data set and no validation

with new participants. This study aims to develop a pulmonary RR-TB model classifier and

deploy it to the application called CUHAS-ROBUST (Chulalongkorn-Hasanuddin Rifampicin

Resistant Tuberculosis Screening Tool) using clinical and demographic parameters as the pre-

dictor. The authors assume that this application will possess a similar screening ability of any

type of RR-TB (including the RR-TB occur with other Drug-Resistant TB such as MDR-TB)

compared to existing rapid tests using the phenotypic DST as the reference standard.

Methods

Study design, data collection, and eligibility

This study is based on the diagnostic study using the cross-sectional approach. The data collec-

tion procedure was conducted in two steps. The initial step was intended for model building.

The authors targeted medical records from the hospital managed under the Faculty of Medi-

cine, Hasanuddin University, Indonesia. Patients who underwent phenotypic drug-suscepti-

bility tests (DST) for tuberculosis (TB) from January 2015-December 2019 were recruited.

This data was consecutively collected and sorted for eligibility from January-February 2020.

All suspected drug-resistant tuberculosis (DR-TB) cases with the International Classification

of Disease (ICD)-10. A.16 and A.15 refer to as pulmonary tuberculosis was extracted from

electronic medical records. The age limit was at least 18 years old (as the people above this age

can cooperate with the diagnostic procedure) with complete sputum DST results and parame-

ters information. The authors excluded those patients who received prompt treatment which

belongs to RR/MDR-TB drug regimen, confirmed by the information written on the TB form.

This initial treatment is mainly given due to the long delay of DST results [13] and may mask

the true DR-TB especially in low-resistance MDR [14]. For testing purposes, all participants

with suspected DR-TB referred from the primary health care to the same hospital from Janu-

ary-October 2020 were tested with DST and model for CUHAST-ROBUST.

Parameter definition

Based on associated factors of DR-TB particularly MDR [15] and other plausible mechanisms,

the authors obtained information from the medical records of the eligible participants. This

comprises of age at examination, gender, education level, universal health coverage, employ-

ment status, history of previous TB treatment, previous contact with positive DR-TB case,

Brinkman Index for smoking assessment [16], history of drug abuse, alcohol consumption

within the last one year, history of immunosuppressive therapy for more than 6 weeks [17],

presence of Chronic Obstructive Pulmonary Disease (COPD), and the number of other

chronic diseases besides diabetes mellitus (DM) and COPD. In clinical practice, these data

were assessed in history taking and physical examinations by a physician, and other medical

staff according to clinical pathways (such as American Diabetic Association for DM [18], or

Global initiative of Lung Disease (GOLD) [19] for COPD. The authors collected other
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information including the body mass index (BMI), Human Immunodeficiency Virus (HIV)

status, HbA1c, and sputum smear result before DST.

The HIV status is a mandatory test for any suspected drug-resistant cases. The rapid test of

the anti-HIV antibody was conducted, followed by the Enzyme-Linked Immuno-Absorbent

Assay (ELISA) for positive results [20]. The HbA1c is an examination that represents the aver-

age blood glucose within the last three months, conducted under the NGSP (National-Glyco-

hemoglobin Standardization Program) standard [21]. As for sputum smear, this procedure

was done using the Ziehl-Neelsen technique [22] and categorized based on the number of

bacilli (negative, scanty, 1+ to 3+) [23]. These procedures were conducted in the Department

of Clinical Pathology and Microbiology and confirmed by two or more staff to reduce inter-

rater reliability issues. Laboratory technicians underwent the scheduled quality control pro-

grams every six months.

The authors obtained radiology data of Chest X-Ray and Computed Tomography (CT)

scans including the number of cavitary, and extension of the lesion which were interpreted by

two radiologists. The latter variable was defined as the segmentation of lung with pathogno-

monic lesion including cavitary, consolidation, nodules, fibrotic line, and atelectasis as these

lesions are associated with DR-TB [24]. Lung was divided into three sections, yielding a total

of six segments. One cavitary and nodule in the upper right lung is considered as one segment,

but one cavitary in the upper right and left lungs considered as two segments. A detailed vari-

able explanation is available in S2 Table.

Reference standard

The phenotypic drug-susceptibility tests (DST) result was preferred over the GeneXpert as this

is the standard diagnosis for Rifampicin-Resistant Tuberculosis (RR-TB) despite it is a time-

consuming procedure [25]. The GeneXpert relies on the detection of the rpoB gene which is

associated with RR-TB but has a sensitivity and specificity of 87.5% and 100% according to a

study comparing a pulmonary sample of phenotypic versus DST in India [26]. The Lowenstein

Jensen (LJ) has been implemented as the standardized method and less susceptible to cross-

contamination, compare to the liquid method [27]. A proportion method is a protocol imple-

mented over the last five years in these centers. Compared to the critical concentration

method, the latter method is prone to underdiagnosis due to different responses of minimum

inhibitory concentration in comparison with the standard strain [28]. A standard procedure

for treating the sputum and DST process was applied. Two samples of the morning and ran-

dom sputum were digested with 1% N-acetyl-L-cysteine and 2% sodium hydroxide. The N-

acetyl-L-cysteine reduces the viscosity of mucoprotein solutions in-vitro, and the sodium

hydroxide reduces any contamination of culture [29]. All samples were mixed with the solu-

tion, vortexed, and incubated for 15 minutes. Centrifugation was conducted and the deposit

ready to be inoculated. A 0.2 ml of suspension was embedded in the LJ medium. The initial LJ

culture is conducted to identify whether there is a presence of Mycobacterium tuberculosis

among all samples collected. The technician observes any growth, daily within the first week,

and once per week until 8 weeks. The absence of growth indicates there is an error in the pro-

cedure (from sample collection to culture) or the patient is not infected with Mycobacterium

tuberculosis. The culture with positive growth was then tested for DST with rifampicin con-

centration 1μg/mL [30]. The cutoff of this method for resistance is >1% [31].

Model development for index test

The parameters were selected and assessed for completeness. Participants with insufficient

information were excluded. The full model with 19 parameters (consists of a group of age,
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gender, education level, health insurance coverage, current employment status, history of drug

abuse, contact with DR-TB, HbA1c level (with cutoff 6.5), history of previous TB treatment,

HIV status, Brinkman Index, alcohol drinking, prolonged immunosuppressants use, number

of chronic diseases, BMI level, COPD, sputum smear level, number of cavitation and extension

of the lesion) and models with eight parameters were created (short model). The short model

omits parameters with higher recall bias, leaving only age, gender, BMI, HbA1c, number of

cavitary, sputum smear level, and extension of the lesion in the lung segment as the predictors.

A discretization of the variables was performed to boost the model performance [32] and to be

relevant with the associated factors including a group of age (cutoff 40 years old), BMI, and

HbA1c (cutoff 6.5). Another model was developed using variables that had significant bivariate

associations (S1 Table).

The model building was aimed to create a binary classifier for RR-TB. Any other DR-TB

that includes rifampicin-resistant, such as Multidrug (MDR)-Resistant TB were also defined as

positive results. Other than these cases were treated as negative, including non-rifampicin-

resistant.

The Artificial Neural Network (ANN) is commonly used in medical classification and is

based on how the neuron cells transmit the information. This model transfers the input to hid-

den layers with certain weights and activation functions. and the model can adjust for error

through propagation [33]. The ANN models were constructed using the R program [34], a

summary of model construction, and mathematical models are written as S3 Table). Normali-

zation was conducted using the min-max function. To assess the appropriate training size for

ANN, the authors evaluated the training size and ROC (Receiver-Operating Characteristic)

value, and the prior train-test splitting was appropriate to converge the ROC value (S1 Fig). A

seed was set followed by splitting the data from the initial stage for training and testing split-

ting with 85%:15% based on the convergence of ROC values according to training size. The

“neuralnet” package was utilized to build the models, which are based on resilient backpropa-

gation [35]. Two hidden layers were determined for all models with maximum steps 105 for

the full model and 106 for the short model and model with significant bivariate analysis. The

activation function of logistic/sigmoid was applied to all layers. Repetition was done 20 times

for the full model and 10 times for the short model with the default threshold of 0.01. Logistic

loss/Log loss was calculated in the “MLmetrics” package and the best models were shown with

the plots [36].

A total of six ANN models were created and saved as.rds files. The author set a cutoff of 0.5

probability for the result interpretation. The name and detailed structure of the ANN models

are available in S5 Table. These ANN models were tested with 15% data from the main data

set. The Area Under Curve (AUC), Accuracy, Sensitivity, Specificity, and Log loss of the six

models according to the testing data performance were summarized and available in S7 Table.

The authors also constructed four different groups of classifiers, the Decision Tree (DT),

Random Forest (RF), Logistic Regression (LR), and Extreme Gradient Boost (XGB). The

85%:15% data splitting was conducted. The best model for LR and DT model was determined

from the sensitivity value of testing data. For RF and XGB model, the lowest error of the five-

fold cross-validation was used for selecting the best model. A total of additional 12 models

were constructed. (detailed information on S6 Table).

Screening procedure

The second stage of data collection involves consecutive participants recruitment from the

same centers. All suspected DR-TB cases from outpatient and inpatient units were recruited

from January 2020 until October 2020 following similar eligibility criteria. The DST was
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conducted independently by the laboratory technician without prior knowledge of model

results. Cases with no growth from multiple samples in the initial LJ culture (until 8 weeks)

will be excluded as it indicates an error in laboratory procedure or the sample collection, or

the patient was not infected with TB. The performers of the model tested the eligible patients

in two categories. First, the participants who underwent DST and the DST result have not

been issued. Second, those participants that scheduled to DST. Eligible participants that were

scheduled for DST but died were excluded. This procedure ensures that both assessors were

blinded to each test result. The time interval between the model test and DST was 1 day –6

months.

For final validation using the prospectively collected data, the authors developed the frame-

work of the CUHAS-ROBUST application which is ready to be integrated with the core

model. There were two options to test the performance of the models with the prospective

data. First, the individual testing, where each model is embedded into the application and the

parameters are inputted manually. Since the authors built 18 models, batch testing with all

models was preferred where a prediction of whole data could be performed in a single step. S9

Table show the accuracy, sensitivity, and specificity of 18 models, tested by prospectively col-

lected data. From 18 models, the model with the best sensitivity, specificity, and accuracy

exceeds 80% was deployed into the CUHAS-ROBUST application using the “Shinyapps” plat-

form in R-Studio for further use in other settings. This web-based application provides a pre-

diction tool with additional features for parameter calculation including BMI calculator,

Brinkmann Index, and HbA1c estimation.

Analysis and sample size

The resampling bootstrap method was executed to overcome the small number of prospective

participants [37] particularly amid COVID 19 pandemic. The bootstrap method ensures that

the new data sets represent a similar confidence interval to the prospective data using the

resample program [38]. Sensitivity is the main focus as the function of a screening test is to

detect as many true-positive cases as possible. The estimated prevalence of RR-TB among sus-

pected RR-TB is 10% according to a study in West Java, Indonesia [39]. Since the recruitment

of prospective study may not follow the real prevalence as the hospital-based study may recruit

more sick participants, therefore the authors set a hypothesis which not depends on the preva-

lence. The null hypothesis of 85% sensitivity (P0) and 90% as an alternative hypothesis (P1)

(approximate power 90% (1-β) and type I error/α as 5%) would yield a total of 471 participants

[40]. The hypothesis can be written as H0: Se = P0 versus H1: Se 6¼ P0 (or Se = P1) with the for-

mulation as follows:

n ¼
Z a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ð1 � P0

p
þ Zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1 � P1Þ

p� �2

ðP1 � P0Þ
2

ð1Þ

The authors assessed the completeness of data and conducted an initial descriptive and

bivariate analysis for parameter selection. As the outcome is binary (yes or no), therefore, no

specific effort to handle indeterminate results. As completeness of the data was one of the eligi-

bility criteria, the missing data imputation would not occur.

Ethical statement

This study has been registered for clinical trial number NCT04208789 with full protocol avail-

able on the clinicaltrials.gov website. The approval from the Institutional Review Board was

granted from the Faculty of Medicine Hasanuddin University (expedited) and The Research

PLOS ONE CUHAS-ROBUST application for pulmonary rifampicin-resistance tuberculosis screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0249243 March 25, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0249243


Ethics Review Committee for Research Involving Human Research Participants, Chulalong-

korn University (exempted).

The researchers were granted access to both electronic and conventional medical records,

indirectly, which began in January 2020. Data was collected based on a request in a limited

number per day to prevent the disruption in health service while the data was being accessed.

The hospital staff retrieved the desired information from the electronic system without identi-

fiable information such as name, and address, and other detailed information, and handed it

to the researcher. If the electronic system provides insufficient information, the hospital staff

(not the researcher) will open the hardcopy version of medical records and obtain the informa-

tion manually.

Results

After eligibility screening, a total of 487 data involved in data building consists of 89 partici-

pants of DR-TB with rifampicin-resistant (32 participants were MDR-TB) and 398 participants

showed no drug-resistant (Table 1). A total of three non-rifampicin-resistant (isoniazid-resis-

tant) cases were observed but excluded due to data incompleteness. Most of the treatment

given for the participants was a combination of Streptomycin + Levofloxacin + Ethambutol,

after the DST procedure. Detail of participant recruitment is illustrated in Fig 1.

As for the prospective data collection, a total of 157 participants suspected DR-TB (23 with

MDR-TB and 21 RRTB) were recruited. All negative results were sensitive/no drug-resistant.

The turnaround time for culture growth ranging from 2–8 weeks, and 7–11 weeks for a drug-

susceptibility test. Similar combination therapy was given to all positive cases.

The authors built six models of ANN with a summary of the performance according to 15%

of the data for model building presented in Table 2. The ANN Short model with two hidden

layers and two nodes in each layer (ANN Short 2–2) outperformed 6 other ANN models in

terms of accuracy, sensitivity, and specificity (96%, 84%, and 100% respectively), followed by

ANN full model with the similar structure (Fig 2).

A further validation using prospective and bootstrap data were conducted. In prospective

data, other models show very high specificity, particularly logistic regression in prospective

data (99%) but lower sensitivity (<50%). Interestingly, the ANN short model did not have a

good specificity. Overall, the ANN full 2–2 model is superior with 90% accuracy, 84% sensitiv-

ity, and 92% specificity (S9 Table) and outperformed the other 17 models. Despite having

lower specificity compared to the Logistic Regression Full model, ANN full 2–2 model main-

tain its highest performance with 88% accuracy, 84% sensitivity, and 90% specificity on boot-

strap data, shown in Table 3.

Discussion

The Artificial Neural Network (ANN) full model outperforms other models in terms of accu-

racy, and sensitivity. The ANN is known for its benefit in classifying disease. A review shows

that the neural network can be built as a single model or assembled with a different classifier

(such as merging ANN with Regression Tree to be one whole model) and demonstrate diverse

results [41]. This project focuses on ANN as a single classifier of any type of RR-TB, and not

expanding its assessment for specific MDR-TB only and other types of DR-TB.

Comparison to other studies with a similar design was done but some studies mainly

focused on MDR-TB. A study to build an MDR-TB classifier was conducted using Logistic

Regression of fewer clinical data including the history of the previous TB, contact with

MDR-TB, presence of cavitary in X-Ray and abnormal physical examination. The perfor-

mance varied across the different cut-offs where total score two as the cut-off value
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Table 1. Participant’s characteristic in model building data (n = 487).

Variable Subset RR + MDR (n = 89) Non-RR (n = 398) p value

Gender Male 41 132 0.021

Female 48 266

Age (year) <40 30 210 0.001

40 and above 59 188

Mean ± SD 44.06 ± 11.57 39.59 ± 13.84

Education Illiterate 4 13 0.662&

Primary Education 19 95

Secondary Education 64 271

College degree and above 2 19

Universal Health Coverage Covered 70 331 0.313

Uncovered 19 67

Current Employment Status Employed 34 168 0.488

unemployed 55 230

History of Drug Abuse Never 87 396 0.154&

Yes 2 2

Contact with positive DR-TB case Never 61 381 <0.001

Yes 28 17

DM status No 40 252 0.001

Yes 49 146 0.004#

Mean ± SD of HbA1c 7.33 ± 1.86 6.91 ± 1.95

History of Previous TB treatment Never 27 299 <0.001

Yes 62 99

HIV status Reactive 26 77 0.039

Non-Reactive 63 321

Brinkmann Index Never Smoke 53 340 <0.001

1–600 27 55

>600 9 3

Drink alcohol within one year Never 86 395 0.078&

Yes 3 3

Immunosuppressants use > 6 weeks Never 85 390 0.245&

Yes 4 8

Number of Chronic Disease Median ± IQR 0 ± 0 0 ± 0 <0.001^

Min-Max 0–2 0–2

Body Mass Index (kg/m2) <18.5 49 74 <0.001

18-5-<23 28 194

23–25 6 71

>25 6 59

Adherence to Previous TB treatment Yes 30 84 <0.001

No 32 15

Diagnosed as COPD Yes 21 40 <0.001

No 68 358

Sputum Smear level Negative or Scanty 3 285

1+ 37 99

2+ 32 9 <0.001

3+ 17 5

(Continued)
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demonstrates 85.6% accuracy, 60.8% sensitivity, and 87.5% specificity [11]. Another model

with ANN involved clinical data was built with similar steps except for the hyperbolic tangent

activation function. The clinical information used for the parameter including age, gender,

marital status, history of imprisonment, previous TB treatment, contact, smoking, drinking

alcohol, and cavitary in radiology. The sensitivity to distinguish the drug-resistant from the

non-drug resistant reached 95.7%, 86% specificity, and 88.1% accuracy but the deteriorating

performance was observed when tested for MDR prediction 82.8% sensitivity, 91.2% specific-

ity, and 85.3% accuracy. This study developed the Classification and Regression Tree (CART)

of MDR where the performance in all three indicators was even below 60% (59% Sensitivity,

39.3% Specificity, and 50.5% Accuracy. These models obtained 280 data for model building

and tested with cross-validation of the data used for model building, something that enhances

the superiority of the current study [12].

The strong aspects of this study are the data collection method and the reference test. The

authors perform rigorous methods of screening the eligible participants through electronic

medical records with ICD code and elaborates standard procedures and quality control

applied. The electronic medical record system boosts the screening process and preserved data

quality [42]. The exclusion was made to the one who received the prompt treatment before

DST. Despite different DST procedures were introduced at a certain time, the authors selected

the participants who underwent the DST with the LJ method, reducing the heterogeneity of

DST results due to different processes. In this study, all the negative results showed a sensitive

result to all drug regimens.

Stricter eligibility criteria reduced the possible participants to be recruited in the study. A

rule of thumb to calculate the sample size of the ANN is at least 10 samples per number of

weights in the ANN structure despite one study suggests 50 samples [43]. By using the function

to calculate the number of weights in ANN, the model with 8 parameters and two hidden lay-

ers with each of the layers consists of two hidden nodes needs a minimum of 270 data. The

ideal number is 1350 data and this number is inflated when more parameters are introduced

to the structure. Very low samples affect the prediction performance especially the log-likeli-

hood-based measure in the learning curve. The authors notice that this issue is inevitable par-

ticularly in medicine where it is less likely to attain a bigger sample, except when conducted in

homogenous multiple centers.

The authors emphasize the point that data processing plays a pivotal role. The discretization

technique and parameter selection are essential. ANN short model with fewer variables that

Table 1. (Continued)

Variable Subset RR + MDR (n = 89) Non-RR (n = 398) p value

Presence of Cavitation Yes 55 77

No 34 321 <0.001

Median Number ± IQR 0 ± 2 0 ± 0 <0.001$

Min-Max of Cavitation 0–4 0–4

Extension of Lesion Median ± IQR 3 ± 1 2 ± 2 <0.001^

Min-Max 1–4 0–4

Abbreviation: COPD (Chronic Obstructive Pulmonary Disease), DM (Diabetes Mellitus), DR TB (Drug-Resistant Tuberculosis). DST (Drug Susceptibility Test), HbA1c

(Hemoglobin Glycated 1c) HIV (Human Immunodeficiency Virus), IQR (Interquartile Range), Max (Maximum), MDR (multidrug-resistant) Min (Minimum), SD

(Standard Deviation). All tested with Chi-Square, except (& = Fisher Exact).

# is a Mann-Whitney U test for the difference between HbA1c values.

$ is a Mann Whitney test for the difference of cavitation number between the group

^ tested with Mann Whitney. The baseline for prospective testing data provides as S1 Table.

https://doi.org/10.1371/journal.pone.0249243.t001
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prone to bias such as variables from history taking provides better specificity and accuracy

despite inconsistent findings shown in prospective and bootstrap data. Some variables were

identified to be irrelevant despite several reviews show association. Alcohol drinking is for-

bidden in predominantly Muslim countries like Indonesia and this variable is prone to bias as

people will reluctant to admit it [44], thus explaining the inconsistent association in training

data and prospective data. Rather than providing a binary response, Brinkmann Index is the

quantitative way to assess the smoking behavior and accommodate any smoking cessation

impact from the past despite its dubious reliability. Most of the chronic diseases observed in

the participants are hypertension, kidney disease, and heart disease. Breast cancer was

observed in one patient. Patients with multiple complications or remarkably sick are often

seen in participants on hospital-based recruitment [45], therefore, implying a full model may

overestimate the prediction in a patient treated at the first-line healthcare system which tends

to have less complication. The use of immunosuppressant agents identified in the study is the

use of steroids, either oral or inhaled. Only one participant was given anticancer medication in

prospective data. The authors consider body mass index, as it shows an inverse correlation to

the rifampicin concentration in the body [46]. Another point is the authors did not focus on

the DM status but the latest Hba1c point [47]. This is important as some of the DM patients

may have controlled HbA1c which possibly reduces the occurrence of DR-TB. Furthermore,

the authors provide the HbA1c estimation, but these estimate values were not considered for

prediction. The authors provide this estimation in the application to expand the generalizabil-

ity of CUHAS-ROBUST in the health service that unable to perform the NGSP-certified

HbA1c. Regarding the radiology and sputum smear results, the authors treated the radiological

finding as categorical input, not a high-dimensional input. Several studies were conducted

using the radiological finding as a high-dimensional input (image) and predicted with complex

neural network models such as Convolutional Neural Network. Nevertheless, it showed a

lower performance [48–50]. Some pre-processing techniques and device settings affect the ele-

ment of radiology image [51] including intensity, shape, and texture of the lesion portrayed in

radiology film, despite digital image processing has been endorsed to tackle this issue. But

there was one point where a COVID 19 patient was predicted resistant due to extensive con-

solidation on CT-scan results and this variable is highly important in some models. The

authors suggest selecting radiology features that represent active tuberculosis including cavity,

consolidation, or parenchymal infiltrate rather than including all features. This study is not

Fig 1. Flowchart of participants recruitment. The figure consists of two diagrams. The upper diagram illustrates the selection of data for model

building and the lower diagram for the prospective data collection. Notice that some prospective participants were excluded due to procedural

reasons. As 40 people were excluded for showing no growth on Lowenstein Jensen culture after eight weeks. Four in-patient participants were

scheduled to have a DST but later pronounced death before DST could take place.

https://doi.org/10.1371/journal.pone.0249243.g001

Table 2. Performance of Artificial Neural Network model with 15% training data (N = 73).

Model TN TP FP FN %Acc (95% CI) % Sens (95% CI) % Spec (95% CI) LogLoss AUC

2.2 Full 51 16 3 3 92 (83–97) 84 (60–97) 94 (85–99) 1.53 0.96

2.1 Full 51 13 3 6 88 (78–94) 68 (43–87) 94 (85–99) 1.56 0.94

2.1 Short 52 13 2 6 89 (79–95) 68 (43–87) 96 (87–99) 0.91 0.95

2.2 Short 54 16 0 3 96 (88–99) 84 (60–97) 100 (93–100) 0.18 0.99

Bivariate 2–2 50 16 4 3 90(81–96) 84 (60–97) 93(82–98) 2.81 0.96

Bivariate 2–1 51 16 3 3 92(83–97) 84 (60–97) 94 (85–99) 1.25 0.98

Abbreviation: Acc = Accuracy; AUC = Area Under Curve; CI = Confidence Interval; FN = False Negative; FP = False Positive; TN = True Negative; TP = True Positive

https://doi.org/10.1371/journal.pone.0249243.t002
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considering other significant parameters including inflammatory markers, despite it has the

possible predictive ability (such as C-Reactive Protein) as it is not routinely performed [52].

The authors elaborate on the model building process and applied a similar data splitting

procedure when constructing another model. This study implemented normalization using

min-max techniques [53] and it accelerates the model learning by simplifying the input to a

certain range [54]. Identifying the number of training sizes and using multiple diagnostic

parameters were performed to select the best model. However, in ANN model learning, the

performance of the model was evaluated using the holdout technique, treating the testing data

as the validation procedure compares to other models using cross-validation results and error

rate. Using holdout validation excludes some of the data that perhaps suitable for training,

therefore this method’s performance relies on the choice of data splitting, and repeated testing

is suggested to take the average performance [55].

Backpropagation is the way the neural network learns by tuning the error of the weight neu-

ral network connection. There are some algorithms of backpropagations, including Leven-

berg-Marquardt, conjugate gradient, and resilient back-propagation. This study applies the

resilient backpropagation in the neuralnet default package as it provides better performance in

testing data (particularly accuracy), while other techniques may provide faster learning [56].

This study is still relying on the solid culture method rather than the liquid culture method

which was recently applied in clinical practice. However, liquid culture is prone to contamina-

tion. Combining different DST confirmation introduces heterogeneity of the results, some-

thing which this study avoid.

A sampling bias still likely occurred in this setting. There is a question of whether the data-

set truly represents the total population. Representativeness is one of the crucial points and the

Fig 2. ANN structure of the CUHAS-ROBUST model. This figure depicts the ANN model with 19 parameters, two

hidden layers with two nodes in each layer and the blue lines show the weight of bias in each node.

https://doi.org/10.1371/journal.pone.0249243.g002

Table 3. Performance of all models on bootstrap data.

Model True Negative False Positive False Negative True Positive %Accuracy (95% CI) % Sensitivity (95% CI) % Specificity (95% CI)

DT Full 312 24 75 60 79(75–83) 44(36–53) 93(90–96)

RF Full 314 22 101 34 74(70–78) 25(18–33) 93(90–96)

LR Full 332 4 92 43 80(76–83) 32(24–40) 99(97–99)

XGB Bivariate 316 20 101 34 74(70–78) 25(18–33) 94(91–96)

ANN 2–2 Full 301 35 22 113 88(85–91) 84(76–89) 90(86–93)

Abbreviation: ANN (artificial Neural Network), DT (Decision Tree), GB (Gradient Boost), LR (Logistic Regression), RF (Random Forest), XGB (Extreme Gradient

Boost)

https://doi.org/10.1371/journal.pone.0249243.t003

PLOS ONE CUHAS-ROBUST application for pulmonary rifampicin-resistance tuberculosis screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0249243 March 25, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0249243.g002
https://doi.org/10.1371/journal.pone.0249243.t003
https://doi.org/10.1371/journal.pone.0249243


bigger number of samples may be linked to better representativeness. But the author acknowl-

edged that there is no single dataset that perfectly represents the true population. The dataset is

similar in terms of gender proportion in comparison to the total population, although the

authors were unable to test the representativeness of other variables between the dataset and

total data as most of the variables in the total population were incomplete (such as representa-

tiveness in a specific group of disease, ethnicity, or domicile, or other stratification factors). In

machine learning model development, there is an essential issue of whether the prevalence of

interest outcome in the dataset should be similar to the true population or not. The imbalanced

data is where the proportion of the case is not balanced, either lack of positive cases or negative

cases, and it affects the model performance [57]. By assessing the prevalence of disease between

the dataset and total data, the author noticed a difference in the RR-TB prevalence of the data-

set and total data (18.27% vs 10.26%). Indeed, there is an imbalance of data in this situation

but the prevalence of the dataset shows a better proportion and closer to 50:50 distribution,

which then the non-representativeness due to the different prevalence is permissible. There

are several techniques to deal with the imbalance of data and one of the common approaches

is Synthetic Minority Oversampling Technique or SMOTE. The SMOTE will add synthetic

data to the minority group (in this situation, the number of the positive case), or omitting the

sample of the majority group which is the negative case [58]. As the prevalence is low, it is

unlikely to synthesize more positive cases and the possible option is to listwise more negative

cases to achieve a nearly balanced proportion. But this would induce another threat as the

number of the dataset will be smaller. To sum up, the author acknowledged that the represen-

tativeness of the dataset with the total population is questionable and the initial tests was insuf-

ficient to prove the representativeness. But the difference of prevalence between the dataset

and the total population is acceptable in machine learning, particularly when the dataset is

closer to balanced data and it can boost the model performance.

Validation with new data is the point that the authors intended to address because the

machine learning model tends to memorize the model and overfitting may occur [55], but

technical issues hinder the procedure. The COVID 19 pandemic changes the current practice

where the referral process is affected the most, leaving only people with the highest possibility

of DR-TB can be referred for the GeneXpert and DST testing. This was worsened by the alloca-

tion of GeneXpert for COVID 19 diagnosis. Moreover, rigid inclusion criteria (completeness

information) contribute to a lower number of eligible prospective participants. This is the

underlying reason why the prevalence of RR-TB in this study is higher compare to the study in

Indonesia [39]. Hence, the bootstrap method was the only way to yield a sufficient number for

testing. Compare to GeneXpert’s result from a multicenter study based on DST, the ANN

model deployed to CUHAS-ROBUST shows lower sensitivity (84% vs 87.5%), but GeneXpert

results vary across the personal history of tuberculosis and smear level [59].

Caution should be taken when using this application in different settings as this model was

developed using single province data and tested with the prospective data from the same cen-

ter. This is a true limitation of this study and hence, the nationwide trial of CUHAS-ROBUST

should be conducted to assess the true performance. The main reason why this study was con-

ducted in several centers in one province was a trade-off between the heterogeneity (medical

procedures, locality contexts, and human resources to collect the parameter needed) and gen-

eralizability. The authors acknowledge that there would be disparities in healthcare service,

particularly the quality of healthcare modalities and medical staff’s reliability which affected

the quality of data. One variable that is affected by different healthcare quality is diabetes melli-

tus (DM). The diabetes prevalence in Jakarta is the highest in Indonesia compared to the study

center. With better accessibility of DM treatment in the capital city, DM patients in Jakarta

may have better glycemic control. A study shows that an individual who lives in the capital
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and having multiple comorbidities, may afford or get access to medication, which then reduces

the likelihood of getting the disease compared to the individual with the same comorbid who

live in a remote area [60]. Hence it is unlikely to see a strong significant association between

DM and drug-resistance compared to the results in the study center. Furthermore, the authors

might assume that overestimation may exist from the model because of this reason. Another

point is the discrepancy of quality of laboratory and radiology examinations which introduces

heterogeneity and it’s a challenge to standardize the procedure as the authors relied on the ret-

rospective data. The single-center system may reduce the possible heterogeneity arise from

these disparities. But a multicenter study may introduce higher data variability which essential

in model building. The locality context exists when several associated factors may not be rele-

vant in certain regions, particularly sociodemographic factors related to religion, values, and

norms of the dominant ethnic group. One context related to the local norm is alcohol con-

sumption. The study area is predominantly Muslim, where the distribution and consumption

of alcohol are prohibited and/or restricted, hence this factor was omitted as a possible predic-

tor. Different considerations could be taken when this study is conducted in the predomi-

nantly non-muslim area. A larger study area with various local factors enforces more

parameters to be included, which affects the screening procedure as many parameters should

be obtained. If accommodating too many factors as the parameter, future screening will be

inconvenient. It is really common to observe the deteriorating diagnostic performance for

diagnostic tools after implemented to the larger population. It is either due to the aforemen-

tioned factors or the difference in the actual prevalence of the disease that was used to justify

the initial sample for screening performance. Furthermore, different prevalence might affect

the implicit threshold of a physician to determine and interpret the diagnostic results [61].

This implicit threshold also arises from the prior knowledge of rapid test results as people who

underwent the DST must undergo the GeneXpert test and positive cases gain more attention

compared to those negative cases. A study in machine learning, therefore, should consider all

of these factors and be conducted with a rigid operational definition, reliable measurement

tools and procedures.

Deployment of the model to an application, the CUHAS-ROBUST generates a possibil-

ity that the RR-TB screening can be done in a primary-care setting where the suspected

DR-TB case comes for screening. By implementing this screening in primary care, two

objectives could be achieved. The first is evaluating the screening ability of the patient

(which commonly appears healthier than the patient at a higher healthcare facility) at the

first screening point, second is to enhance a faster prompt treatment and surveillance

(including tracing and screening). An open-system for CUHAS-ROBUST should be con-

sidered to facilitate the user’s contribution, including providing new data for the model

update which can improve future performance. The provision of supporting modalities

(including X-ray) in primary-care is another recommendation to maximize the CUHAS--

ROBUST screening.

Despite the CUHAS-ROBUST application with the ANN model provides a lower sensitivity

in comparison with the Xpert test for pulmonary RR-TB screening, the authors successfully

describe crucial issues for further improvement, particularly in data collection and pre-

processing.
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