
MOLECULAR MEDICINE REPORTS  17:  31-36,  2018

Abstract. Aristolochic acid (AA) is a component identified 
in traditional Chinese remedies for the treatment of arthritic 
pain, coughs and gastrointestinal symptoms. However, 
previous studies have indicated that AA can induce oxida-
tive stress in renal cells leading to nephropathy. α-tocopherol 
exists in numerous types of food, such as nuts, and belongs 
to the vitamin E isoform family. It possesses antioxidant 
activities and has been used previously for clinical applica-
tions. Therefore, the aim of the present study was to determine 
whether α-tocopherol could reduce AA-induced oxidative 
stress and renal cell cytotoxicity, determined by cell survival 
rate, reactive oxygen species detection and apoptotic features. 
The results indicated that AA markedly induced H2O2 levels 
and caspase-3 activity in renal tubular epithelial cells. Notably, 
the presence of α-tocopherol inhibited AA-induced H2O2 and 
caspase-3 activity. The present study demonstrated that anti-
oxidant mechanisms of α-tocopherol may be involved in the 
increased survival rates from AA-induced cell injury.

Introduction

Aristolochic acid (AA) is a component present in Chinese 
herbs (for example Asarum and Aristolochia) from remedies 

for the treatment of arthritis pain, coughs and gastrointestinal 
symptoms (1-4). Previous studies have indicated that AA can 
lead to renal injury (5,6) and this finding has led to further 
studies (7,8). Previous studies have indicated that renal damage 
from renal cell death and renal fibrosis is associated with AA 
treatment (9,10).

AA-induced oxidative stress may serve an important role 
in the development of renal injury (11-13). Previous studies 
have demonstrated that oxidative stress causes lipid peroxida-
tion, DNA damage and protein peroxidation, and results in 
cell damage (14-16). O2

- and H2O2 are key reactive oxygen 
species (ROS) identified in cells (17,18). Normally, O2

- and 
H2O2 are produced in the mitochondria via electron transport 
chain (19,20) and these ROS are removed by cellular super-
oxide dismutase (SOD), glutathione peroxidase (Gpx) and 
catalase (CAT) (21-23). However, various toxins also induce 
O2

- and H2O2 production (24-26). The excessive O2
- and H2O2 

lead to cell injury (27,28) and it has additionally been reported 
that AA-induced H2O2 leads to renal damage (29).

Various studies have demonstrated that oxidative stress 
can induce cell apoptosis or cell necrosis (30-32), and conse-
quently AA-induced oxidative stress can cause apoptosis or 
necrosis of renal cells (29,33-35). Concerning apoptosis, 
caspase-dependent and caspase-independent pathways 
have been reported previously (36,37). Although certain 
mechanisms of AA-induced cell death remain unclear, the 
caspase activation may be associated with AA-induced apop-
tosis (38,39). Previous studies indicated that AA can activate 
caspase-9 and caspase-3 leading to cell apoptosis (40-42).

The isoforms of vitamin E consist of α-tocopherol, 
β-tocopherol, δ-tocotrienol and γ-tocotrienol (43). Among 
them, α-tocopherol possesses anti-oxidative activities and has 
been used in a clinical setting (44,45). In addition, previous 
studies have suggested that α-tocopherol can inhibit renal 
fibrosis (46,47). Due to the fact that AA-induced renal injury 
was associated with oxidative damage and fibrotic renal 
injury (9,11-13), the effects of α-tocopherol on AA-induced 
renal cell cytotoxicity were studied. The results of the present 
study demonstrated that α-tocopherol can inhibit the H2O2 
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level and caspase-3 activities to attenuate renal tubular epithe-
lial cell death under AA treatment.

Materials and methods

Materials. The MTT assay kit was obtained from Bio 
Basic Canada, Inc. (Markham, OT, Canada). Vitamin E 
(α-tocopherol), luminol, lucigenin, tubulin polyclonal anti-
body and Hoechst 33342 were obtained from Sigma-Aldrich 
(Merck KGaA, Darmstadt, Germany). Caspase-3 and cleaved 
caspase-3 polyclonal antibodies were obtained from Cell 
Signaling Technology, Inc. (9662; 1:1,000; Danvers, MA, 
USA). Fetal bovine serum, DMEM, non-essential amino acid, 
L-glutamine, and penicillin/streptomycin were obtained from 
Gibco (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

Cell culture. Rat renal tubular epithelial cells (NRK-52E) 
were obtained from the Bioresource Collection and Research 
Center (Shin Chu, Taiwan). NRK-52E cells were cultured with 
DMEM medium containing 10% fetal bovine serum, 2 mM 
L-glutamine, 100 IU/ml penicillin/streptomycin and 0.1 mM 
non-essential amino acids. Cells were maintained in a humidi-
fied atmosphere containing 5% CO2 at 37˚C.

ROS detection. H2O2 and O2
- levels were measured by using the 

lucigenin‑amplified chemiluminescence method (48,49). The 
culture supernatant (200 µl) were added with 0.2 mmol/l of 
luminol solution (100 µl) and measured subsequently by using 
a chemiluminescence analyzing system (CLA-FSI; Tohoko 
Electronic Industrial Co., Ltd., Sendai, Japan) for the determi-
nation of H2O2 levels. The samples (200 µl) were treated with 
0.1 mmol/l lucigenin solution (200 µl) and then O2

- levels were 
measured using the CLA-FSI chemiluminescence analyzing 
system.

Cell survival rates determination. The cell survival rates were 
determined using the MTT assay kit according to the manufac-
turer's instructions. In brief, NRK-52E cells were cultured into 
96-well plates at a density of 8x103 cells/well and incubated for 
24 h in 100 µl DMEM medium. The suitable concentration and 
optimum exposure time of AAI were determined as 5, 10, 20 and 
100 µM at 6 h time intervals. Cells were treated with MTT assay 
kit for 3 h at 37˚C and were measured at 570 nm absorbance 
using a Multiskan™ FC microplate photometer (Molecular 
Devices, Inc., Sunnyvale, CA, USA). The cell survival rate was 
calculated as the following formula: Optical density (OD) 570 
experimental group/OD 570 control group x100%.

Observation of apoptotic features. Apoptotic features 
containing DNA fragmentation and nuclear condensation were 
observed by using Hoechst 33342 (23491-52-3; Sigma-Aldrich; 
Merck KGaA) nuclear staining (49,50). Control and experi-
mental cells were treated with Hoechst 33342 (10 µg/ml) at 
37˚C for 10 min. DNA fragmentation and nuclear condensa-
tion were observed under an Olympus DP71 fluorescence 
microscope (excitation, 352 nm; emission, 450 nm; Olympus 
Corporation, Tokyo, Japan).

Western blotting. Cells were treated with radioimmunopre-
cipitation assay buffer (20-188; EMD Millipore, Billerica, 

MA, USA). Following 10 min centrifugation (16,000 x g) 
at 4˚C, proteins were obtained from the supernatant layer 
and the concentration was determined by using the protein 
assay kit (23200; Thermo Fischer Scientific, Inc.). Equal 
quantities of samples were separated on a 13.3% SDS-PAGE 
(Bio-Rad Laboratories, Inc., Hercules, CA, USA), and then 
transferred onto polyvinylidene difluoride membranes (EMD 
Millipore). The membranes were blocked with 5% milk for 
2 h at room temperature. Next, the membranes were washed 
with phosphate-buffered saline (PBS) then incubated with the 
primary antibodies for 4 h. Following that, membranes were 
washed with PBS and treated with anti-rabbit-horseradish 
peroxidase secondary antibodies (NA934; 1:1,000 Amersham; 
GE Healthcare Life Sciences, Chalfont, UK) for 1 h at room 
temperature. Finally, proteins were observed by using Western 
Lightning Chemiluminescence Reagent Plus (PerkinElmer, 
Inc., Waltham, MA, USA).

Statistical analysis. Student's t-test and two-way analysis 
of variance were utilized for the analysis of the data using 
SPSS version 18.0 (SPSS, Inc., Chicago, IL, USA). Values are 
expressed as the mean ± standard error. P<0.05 was considered 
statistically significant different between values.

Results

Increases of H2O2 and O2
‑ levels by different concentrations 

of AA treatment. Previous studies have demonstrated that AA 
induced ROS generation in renal tubular cells (13,51). H2O2 

and O2
-, two major types of ROS, were measured in AA-treated 

renal tubular cells. Experimental results indicated that H2O2 
levels were increased dose-dependently in the AA-treated 
cells (Fig. 1A). Compared with H2O2 levels, O2

- levels were 
increased only at the 100 µM AA treatment however not at 
20-50 µM AA concentrations (Fig. 1B). The data suggested 
low-dose AA (5-20 µM) can induce increases in H2O2 levels, 
but not O2

- levels. Additionally, high-dose AA (100 µM) can 
induce increases of H2O2 and O2

- levels.

AA decreased cell survival rates in dose‑ and time‑ depen‑
dent manners. In order to determine the cytotoxic effects 
on AA-treated renal tubular cells, various concentrations 
(5-100 µM) of AA were studied. As presented in Fig. 2, the 
cell survival rates were below 50% at 100 µM AA (6 h), 20 µM 
AA (12 h), 10 µM AA (24 h) and 5 µM AA (48 h) treatment. 
These results demonstrated AA-induced cell cytotoxicity was 
dose- and time-dependent.

Apoptotic characteristics in AA‑treated renal tubular cells. 
Cell death can be described as apoptosis or necrosis (52,53). 
Apoptotic cells can be removed by macrophages in order to 
prevent serious inflammatory responses (54,55), and previous 
studies have indicated that nuclear condensation and DNA 
fragmentation are key apoptotic characteristics (49,56). In 
the present study, the cell nuclei were observed by Hoechst 
33342 staining (49,50). As presented in Fig. 3, compared with 
control cell, the nuclear condensation and DNA fragmentation 
were identified in AA‑treated renal tubular cells. The results 
indicated that AA-induced cell death was associated with the 
apoptotic death pathway.
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α‑tocopherol attenuated H2O2 levels and increased cell 
survival in AA‑treated cells. The antioxidant stress activi-
ties of vitamin E (α-tocopherol) has been demonstrated in 
clinical cases (44,45). Due to the fact that AA elevated H2O2 

levels (Fig. 1A), it was investigated whether α-tocopherol could 
inhibit H2O2 in AA-treated cells with various concentrations 
of α-tocopherol (5, 10, 20 and 100 µM). The data indicated 
that α-tocopherol attenuated AA-induced H2O2 levels (Fig. 4). 
Notably, it was observed that 10 µM α-tocopherol appeared to 
have a more marked effect on AA-induced H2O2 compared with 
other concentrations. Subsequently, the effects of α-tocopherol 
on AA-induced renal cell death were investigated. As presented 
in Fig. 5, the cell survival rates were increased in AA-treated 
renal tubular cells undergoing 10 or 20 µM α-tocopherol 
treatment. These results first demonstrated that α-tocopherol 
attenuated AA-induced H2O2 levels and increased cell survival 
of AA-treated cells.

α‑tocopherol reduced AA‑activated caspase‑3. Caspase-3 acti-
vation is associated with the apoptotic death pathway (40-42). 
Due to the fact that apoptotic characteristics were predominantly 
identified in AA‑treated renal tubular cells (Fig. 3B), whether 
AA could activate caspase-3 was investigated. As presented 
in Fig. 6, compared with the control group (lane 1), the level of 
cleaved caspase-3 was markedly increased in the AA-treated 
group (lane 2). AA was identified to induce caspase‑3 activity 
and the effect of α-tocopherol on AA-induced caspase-3 was 

Figure 2. Cell survival rates. The renal tubular cells were treated with 
5-100 µM AA for 48 h. Data from four independent experiments are presented 
as the mean ± standard deviation. AA, aristolochic acid.

Figure 1. H2O2 and O2
- levels. (A) H2O2 levels and (B) O2

- levels were measured 
in control group (0 µM AA) and AA-treated groups (5-100 µM AA). The 
levels were measured following 2 h treatment. Data from four independent 
experiments were presented as the mean ± standard deviation. *P<0.05, vs. 
the control group (0 µM AA). AA, aristolochic acid.

Figure 3. Nuclear condensation and DNA fragmentation. (A) Control group. 
(B) AA-treated group. Renal tubular cells were treated with 10 µM AA for 
24 h, nuclear condensation and DNA fragmentation (yellow arrows) were 
observed in the AA-treated cells under a phase-contrast microscope at 
magnifications of x400. AA, aristolochic acid.
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further determined. AA was reported to decrease mitochon-
drial membrane depolarization and to lead to an increase of 
caspase-3 (42). The results demonstrated that cleaved caspase-3 
levels were reduced in the AA plus α-tocopherol group (lane 5 
and 6) compared with the AA treatment group (lane 2). Due 

to the fact that AA-induced H2O2 levels are also reduced in 
the AA + α-tocopherol group (Fig. 4), this suggested that 
α-tocopherol attenuation of AA-induced cell cytotoxicity may 
be associated with caspase-3 activity from the reduce of H2O2 

levels.

Discussion

The results of the current study indicated that AA causes 
increases in H2O2 levels and a reduction in cell survival rates in 
renal tubular cells and α-tocopherol (10 and 20 µM) attenuated 
AA-induced H2O2 levels and inhibited AA-induced cytotox-
icity in these cells. These data suggested that AA-induced cell 
cytotoxicity may be associated with H2O2 levels. By contrast, 
α-tocopherol could not inhibit AA-induced cytotoxicity 
under high-dose (100 µM) AA treatment (data not shown), 
however it effectively ameliorated AA-induced cytotoxicity 
under low-dose (5-20 µM) AA treatment. This suggested 
that α-tocopherol ameliorated AA-induced renal cell damage 
was dependent on AA dosage. Furthermore, high-dose AA 
alone elevated both H2O2 and O2

- levels. Therefore, this may 
partially explain why α-tocopherol could not inhibit high-dose 
AA-induced cell cytotoxicity.

CAT, Gpx and SOD are major cellular antioxidant enzyme 
systems (57,58). CAT is a tetrameric iron-porphyrin protein 
in peroxisomes that converts H2O2 to H2O and O2. CAT and 
Cu/Zn-SOD are expressed constitutively, whereas Mn-SOD 
expression within the mitochondria is induced by oxidative 
stress. GSH is a sulfhydryl peptide that may directly react 
with O2

- or N2
- containing free radicals, or is able to donate 

electrons in the enzymatic dismutation of H2O2 to H2O and 
O2 by GPx (59,60). Cellular CAT and Gpx can remove H2O2, 
whereas SOD removes O2

- (61). In the present study, the data 
indicated that AA induced increases in H2O2 in a dose-depen-
dent manner, however the 100 µM AA alone was capable of 
increasing O2

- levels. This result suggested that low-dose AA 
may influence the activity of CAT and Gpx while high‑dose 
AA may influence CAT, Gpx and SOD activities. However, 
further studies are required to confirm this hypothesis.

Studies have indicated that antioxidant can attenuate 
AA-induced renal damage (11,29,59) and it has been addition-
ally demonstrated that vitamin C attenuated AA-induced renal 
damage (29). However, the effect of antioxidant α-tocopherol 
on AA-induced renal damage remains to be reported. The 
current study demonstrated that α-tocopherol ameliorated 
AA-induced renal cell cytotoxicity.

Vitamin C and α-tocopherol are common antioxidants 
and have been used in clinical cases (44,45,62,63). Vitamin 
C and α-tocopherol both have antioxidant activities, however 
their antioxidant mechanisms differ (64-66). These studies 
indicated that α-tocopherol (lipid-soluble material) is able to 
pass through the cell membrane and catch the free radicals to 
protect the cell from oxidative damage. However, vitamin C 
(water-soluble material) cannot pass through cell membrane 
to remove free radicals directly. Based on the results of a 
previous study (29) and the current study, it is suggested that 
both vitamin C and α-tocopherol scavenge H2O2 produced by 
AA-treated renal cells, leading to an increase of survival rate. 
It was suggested that AA-induced H2O2 existed not only in the 
cytosol however additionally in the cell membrane. In addition, 

Figure 5. Cell survival rates. The renal tubular cells were treated with 10 µM 
AA + 0, 10 and 20 µM α-tocopherol treatment, respectively. At 24 h the 
survival rates were calculated. Data from four independent experiments are 
presented as the mean ± standard deviation. **P<0.001, vs. the 10 µM AA 
alone-treated group. AA, aristolochic acid.

Figure 6. Caspase-3 activation by western blotting. The caspase-3 activity 
was analyzed at 24 h in the control (lane 1), 10 µM AA (lane 2), 10 µM 
α-tocopherol (lane 3), 20 µM α-tocopherol (lane 4), 10 µM AA + 10 µM 
α-tocopherol (lane 5), and 10 µM AA + 20 µM α-tocopherol (lane 6) cells. 
AA, aristolochic acid.

Figure 4. H2O2 levels. H2O2 levels were measured in 10 µM AA-treated groups 
(0 µM α-tocopherol vehicle) and 10 µM AA + 5-100 µM α-tocopherol treated 
group. The levels were measured following 2 h treatment. Data from four 
independent experiments were presented as the mean ± standard deviation. 
*P<0.05, vs. the AA alone-treated group (0 µM α-tocopherol cotreatment). 
AA, aristolochic acid.
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another key antioxidant function of vitamin C is converting the 
oxidized α-tocopherol radical back to α-tocopherol (62). It was 
suggested that the combination of vitamin C and α-tocopherol 
may be more powerful for protection of AA-induced renal 
damage. In patients with coronary artery bypass surgery, 
vitamin cocktail (ascorbic acid and α-tocopherol) effectively 
attenuated oxidative stress than control (44). In summary, the 
results demonstrated that α-tocopherol attenuates AA-induced 
H2O2 and caspase-3 and ameliorated AA-induced renal cell 
cytotoxicity.
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