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Editorial on the Research Topic

Multi-omic Data Integration in Oncology

In the next few years, we are going to witness changes in the treatment of cancer patients due
to molecular and personalized medicine. Indeed, many hospitals are already starting routine
genome-wide screening to complement and inform diagnosis and treatment choices. However, the
majority of molecular aberrations identified in cancers have synergic interactions in many aspects
of cell signaling beyond the genome. The complexity of cancers cross cell boundaries especially
studying the tumor microenvironment as a heterogeneous and dynamic network of interacting
cells (1), one of the new hot topics for anticancer treatment development. In this scenario,
multi-omic technologies and single-cell data can shed light on these interactions by generating
high-throughput datasets portraying the genomes, transcriptomes, proteomes, metabolomes, and
epigenomes of tumors.

Large-scale cancer genomic projects, such as The Cancer Genome Atlas (TCGA) (2), have
generated petabytes of multi-omic data portraying this heterogeneity. Importantly, these data
have been made available to the scientific community, shifting the main challenge from data
collection to data analysis and integration, and allowing for development of novel data analysis
methods. However, while computational and statistical analyses of single-omics datasets are
well-established—excluding the still challenging single-cell data analyses—the integration of
multi-omic data is still far from being standardized. As the number of datasets grows and the
biological knowledge increases, existing methods should be extended or generalized, and new
computational tools need to be proposed to cope with the complexity and multi-level structure
of the available information. In this special issue, de Anda-Jáuregui and Hernández-Lemus
presented a comprehensive review of the state of the art of multi-omic data analysis in oncology,
encompassing a wide range of tasks, such as data acquisition and processing, data management,
identification of therapeutic targets, as well as patient classification, diagnosis, and prognosis.

One of the major challenges in the analysis of multi-omic data is how to integrate the
different data modalities. Nicora et al. reviewed a selection of recent tools for the computational
integration of multi-omic data sets based on: deep learning, network integration, data clustering or
factorization, and feature extraction or transformation. This emerging field has already contributed
a rich catalog of freely available tools: the most widely used approaches are network-basedmethods,
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but deep learning strategies are becoming increasingly popular.
In this context, Chierici et al. proposed a computational
framework for high-throughput data integration (called
Integrative Network Fusion, INF), which leverages network
structures and machine learning models to extract multi-omic
predictive biomarkers for cancer subtype identification. By
integrating gene expression, protein expression, and copy-
number data across three TCGA cancer types, INF showed
a higher predictive performance with respect to simple
juxtaposition of single-omics analyses and enabled the extraction
of more biologically meaningful biomarkers. INF was designed to
integrate an arbitrary number of omic layers, allowing to extend
the framework to other types of data, such as histopathological
and radiological images.

The main goal of most integrative methods is the
identification of multi-omic signatures that can be diagnostic
(healthy vs. disease), prognostic (good vs. poor patient
outcome), or predictive (good vs. poor response to therapeutic
interventions). The selection of the optimal signature size, that
is the number of molecular features needed to stratify patients,
is not trivial. In general, the smaller the signature size, the
easier its clinical applicability, but the lower its accuracy, due to
patients heterogeneity. In this perspective meta-analysis studies
that exploit data from previously published studies can increase
the signature robustness and reliability. Liu et al. combined
extensive text mining and transcriptomic data to identify and
validate a small prognostic signature in liver cancer. By selecting
more than thousand genes known to be involved in liver cancer
initiation and progression, they identified a triplet of genes
associated with survival. Using three independent cohorts and
specific experimental assays to confirm transcript and protein
expression levels, they found that low expression of F2, GOT2,
and TRPV1 is associated with poor prognosis in liver cancer. In
a parallel study, Li et al. identified a small diagnostic signature
composed of long non-coding RNAs (RP11-33A14.1, RP11-
423H2.3, and LAMTOR5-AS1) that, combined with clinical and
previously-published molecular biomarkers, is able to predict
prostate cancer from fine needle aspiration biopsies with high
sensitivity and specificity. Looking for potential molecular
functions of the signature elements, the authors suggested and
validated a sponge mechanism, that sees miR-7, miR-24-3p,
and miR-30 as the three main miRNAs sequestered by the long
non-coding RNAs, which in turn interact with the RNA binding
protein FUS.

While the identification of precise molecular signatures is
fundamental for clinical practice, the understanding of the
actual mechanisms driving these alterations in specific cancers
or cancer subtypes is crucial to design new pharmacological
treatments. Ochoa et al. investigated the regulatory elements
that drive the various expression behaviors of the PAM50
signature (3) in different breast cancer subtypes. The authors
integrated coding and non-coding gene expression, methylation
levels, and information on transcription factors (TF)-target
interaction data via a generalized elastic-net model. Using
breast tumors and normal adjacent tissues from the TCGA,
they identified both subtype-specific regulators and regulators
acting across subtypes, such as miR-21 and miR-10b. With a

similar aim, Tait et al. combine transcriptomic data to study the
expression patterns of non-coding elements (miRNAs and long
non-coding RNAs, ncRNA) underlying dysfunctional adipocyte
phenotype in obesity and colorectal cancer. The authors inferred
lncRNA-miRNA-mRNA modules, highlighting several ncRNA
modulations and dysregulated pathways that are common to
both obesity and colorectal cancer. Chen et al., using whole
exome and transcriptome sequencing, studied the genomic and
transcriptomic landscape of cholangiocarcinoma. The authors
investigated subnetworks that were greatly influenced by tumor
clonal or subclonal mutations impacting gene expression.

Immunotherapy with checkpoint blockers has drastically
advanced treatment of different types of cancer over the past
years, improving overall patient survival compared to standard
therapy. However, response to treatment remains hard to
predict due to the large intra- and inter-patient heterogeneity.
Lapuente-Santana and Eduarti reviewed the benefit of multi-
omic approaches for biomarker discovery in the immuno-
oncology field. They present multi-omic approaches that could
help understand how different immune cell types can influence
the efficacy of immunotherapy with checkpoint blockers and
how the cells interact in the tumor microenvironment, shaping
the immune response, and resistance to immunotherapy. The
authors suggest that a combination of dynamic mathematical
models and longitudinal data could further improve our
understanding of the tumor microenvironment role in the
response to immunotherapy and provide the rationale for
alternative personalized treatments.

Another field that recently had a boost from multi-
omic integration strategies is pharmacogenomics. The term
pharmacogenomics is generally used to define the variability
of drug response due to the patients’ genomic landscape. In
this context, cancer cell lines have been the most widely used
models to explore the molecular basis of drug sensitivity.
Starting from the first NCI-60 project (4), several other studies
investigating the link between the genomic makeup and drug
response in cancer cell lines have been carried out (5–7). Caroli
et al. reviewed the databases and computational tools that have
been developed to integrate cancer cell lines genomic profiles
and sensitivity to small molecule perturbations obtained from
different screenings.

Multimodal omics can be integrated in silico to respond
to complex biological questions that require a systems biology
approach. One of such examples is the prediction of tumor
neoantigens, namely mutated peptides that are bound to the
major histocompatibility complex molecules of cancer cells and
can elicit anticancer immune responses. Schrörs et al. derived an
integrated map of the genome, transcriptome, and neoantigen
landscape of one of the most widely used breast cancer models:
the 4T1 murine mammary cancer cell line. They found that
4T1 cells share molecular features with triple-negative breast
cancer and, thus, represent a promising model for preclinical
studies. Moreover, the authors confirmed experimentally the
antigenic potential of 23 mutated peptides selected from the pool
of neoantigens predicted in silico using IFNγ-ELISpot assays.

Despite their recognized value to advancing and informing
immuno-oncology and precision medicine, standard “bulk”
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technologies are intrinsically limited by the sequencing of
heterogeneous cell mixtures, which renders a blended average
portrayal of the tumor microenvironment. Rapidly-emerging
single-cell technologies allow to disentangle the phenotypes
of individual cells, providing unprecedented insights into the
cellular and spatial diversity of the tumor microenvironment.
However, the sparsity, noise, and high-dimensionality of single-
cell data pose unique challenges to data analysis. Hsu and
Culhane provide a guide to dimensionality reduction techniques
that are vital to extract the major sources of variations
from single-cell RNA-sequencing data prior to performing
downstream data integration, clustering and analysis. The
authors focused on principal component analysis (PCA), amatrix
factorization method that can easily scale to large datasets
when used with sparse-matrix representations; they described its
relationship with singular value decomposition, the differences
between using correlation or covariance matrices, the impact of
data scaling, log-transformation, and standardization, and how
to recognize artifacts in PCA plots. Moreover, they described how
canonical correlation analysis (CCA), another popular matrix
factorization approach, can be used to integrate single-cell data
from different platforms or studies.

Despite their promise, single-cell technologies, such as flow
cytometry, mass cytometry, or single-cell RNA sequencing,
are still limited by the lack of information on spatial
context and multicellular interactions. de Vries et al. show
how multimodal and spatially-resolved single-cell data can
advance our understanding of the inter-cellular organization and
communication in the tumor microenvironment. They present
recent developments in spatial, tissue-based techniques, such
as multiparameter fluorescence, imaging mass cytometry, and
in situ transcriptomics, as well as, multidimensional single-
cell technologies and studies that integrate multiple single-
cell modalities to disentangle complex cell interactions in the
tumor microenvironment. These approaches hold the promise to
uncover the sources of intra-tumor heterogeneity that hamper
cancer treatment but require the development of dedicated
bioinformatic tools for the data analysis and interpretation
and tight collaboration between oncologists, immunologists,
pathologists, and bioinformaticians for the extraction of
mechanist rationales and actionable targets.

Overall, our collection of original research articles and reviews
covers a wide range of multi-omic applications in oncology.

The scenario that emerges is that transcriptomics, methylomics,
and genomics are the three most frequently analyzed and
integrated data, both in bulk and single-cell studies. To fully
understand the complex interactions of the molecular processes
underlying cellular mechanisms a fine temporal and spatial
resolution is required. Spatial transcriptomics (8), a set of
techniques that allow the (sub-) cellular characterization of gene
expression, has the potential to unveil the complex interplay
between cell types but gives rise to new computational and
statistical challenges, also in terms of data integration. In
addition, important information can be exploited by integrating
omics data and biomedical images (9), a field that is experiencing
new advances in terms of sensitivity and resolution. Multi-
modal integrative analysis will soon become the standard
to study complex systems, and we look forward to exciting
new computational developments to tackle data heterogeneity,
computational efficiency and results interpretation, and can
ultimately push the oncology field forward.
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