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Mapping manifestations 
of parametric uncertainty 
in projected pelagic oxygen 
concentrations back 
to contemporary local model 
fidelity
U. Löptien1*, H. Dietze1, R. Preuss2 & U. V. Toussaint2

Pelagic biogeochemical models (BGCMs) have matured into generic components of Earth System 
Models. BGCMs mimic the effects of marine biota on oceanic nutrient, carbon and oxygen cycles. 
They rely on parameters that are adjusted to match observed conditions. Such parameters are key 
to determining the models’ responses to changing environmental conditions. However, many of 
these parameters are difficult to constrain and constitute a major source of uncertainty in BGCM 
projections. Here we use, for the first time, variance-based sensitivity analyses to map BGCM 
parameter uncertainties onto their respective local manifestation in model entities (such as oceanic 
oxygen concentrations) for both contemporary climate and climate projections. The mapping 
effectively relates local uncertainties of projections to the uncertainty of specific parameters. Further, 
it identifies contemporary benchmarking regions, where the uncertainties of specific parameters 
manifest themselves, thereby facilitating an effective parameter refinement and a reduction of the 
associated uncertainty. Our results demonstrate that the parameters that are linked to uncertainties 
in projections may differ from those parameters that facilitate model conformity with present-day 
observations. In summary, we present a practical approach to the general question of where present-
day model fidelity may be indicative for reliable projections.

The utility of climate projections into an unacquainted future is strongly related to the knowledge about their 
associated uncertainties. Reliable estimates of uncertainties are, however, typically difficult to quantify and relate 
strongly to the choice of poorly known model parameters1–3.

Typically, these model parameters can not be observed directly and are, hence, difficult to determine. A 
generic approach is to compare the model output to observations and to choose a parameter set such that a 
desired model behavior is achieved. This desired model behavior is generally assessed with a fidelity metric, i.e. 
a weighted comparison between model output and specific observations. Naturally such a metric introduces a 
subjective element4 and relates closely to the question how to judge the quality of a specific model in general5. 
For an algorithm-based parameter optimization, the fidelity metric is generally represented by a single number, 
also known as objective function or cost function6. For practical reasons, a fidelity metric is based on data from 
past or contemporary eras7–10 and it is implicitly assumed that the metric is indicative of the reliability of future 
projections3. There is, however, no consensus on how to choose the underlying data. A notorious problem in 
climate science is that an assessment of the anthropogenic impact is limited to the past decades and we will not 
live to calculate substantiated statistics on the reliability of centennial climate projections. This puts it apart from, 
e.g., weather forecasting where decades of daily forecasts and subsequent ground truthing have quietly driven 
revolutionary success11. BGCM models, as generically implemented into the current generation of climate mod-
els, face the additional challenge that they are based on relatively recent developments; i.e. the underlying equa-
tions and concepts are still discussed controversially12. Limited data availability (only very few long-term time 
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series are available and satellite observations refer to the sea surface only) and long wall-clock times (weeks to 
even months) to reach a quasi-equilibrium for each model formulation and parameter set, impede this process10. 
This puts these models even further apart from, e.g., the ocean and atmosphere modules of climate models that 
are built on first order principles such as Newton’s second law of Motion.

So why even bother with BGCM-based projections? The reason is that the pelagic oceanic nutrient, oxygen 
and carbon cycles were subject to pronounced changes during the past decades13–15 and we anticipate that these 
will continue as we move further into the Anthropocene. Among the associated pressing societal questions are 
the potential future developments of anthropogenic carbon storage in the oceans and oceanic deoxygenation 
- a term coined to describe the continuous decline of oxygen levels in the ocean which, in turn, may trigger a 
decline in fish yield16 and the release of the potent greenhouse gas nitrous oxide17. Such Oxygen Minimum Zones 
(OMZs) are particularly prominent in the tropical oceans (cf. Fig. 1). Thus, in response to urgent demands for 
information in order to facilitate mitigation and adaptation strategies, BGCMs are applied to project oceanic 
carbon and oxygen cycles - despite their limitations.

The current situation calls for strategies how to extent the existing (costly) observations to effectively reduce 
model uncertainties. In the present study, we illustrate a way forward to overcome some of the long-standing 
limitations associated with the notorious problem of assessing the reliability of BGCM-based projections. In 
order to quantify parameteric output uncertainties of these projections we employ variance-based methods18,19. 
More specifically, we use Sobol indices20 as representations of the sensitivities of a model with respect to the 
uncertainties of its input parameters and link the local manifestations of these parameter-induced uncertainties 
in now-casts of the simulated oceanic dissolved oxygen concentrations with those in future projections. We 
report on two methodological benefits. First, the method identifies regions of the World Ocean where parameter 
uncertainty induces particularly large uncertainties in future projections. This provides a spatial map of where 
the parameters induce large uncertainties and where the projected model results are relatively insensitive to the 
parameter uncertainties. Second, the method identifies regions where the current climate state is particularly 
sensitive to parameter changes. A variance decomposition quantifies the contribution of each of the (considered) 
parameters. In combination, the approach dissects the information of where contemporary observations may 
be used to constrain the model parameters and, with it, to confine the model spread (as induced by parameter 
uncertainty) among projections. These regions, where an increase in contemporary model fidelity maps on a 
reduced spread of projections are dubbed benchmarking regions. The approach proposed here allows to choose 
benchmarking regions depending on the specific region of interest in the projections (e.g. the projected oxygen 
minimum zones). Note that the respective favorable regions to constrain the model parameters under current cli-
mate conditions need not to be the same as the regions of particular interest in the projections, because the ocean 
circulation may map manifestations of parameter uncertainty from one region into another as time progresses.

This work is based on simulations with the UVic Earth System Model of intermediate complexity. The choice 
is motivated by the fact that (1) this model has been used to assess potential effects of geoengineering measures21 
and, (2)—owing to its reduced complexity—it is computationally cheap which facilitates the piloting approach 
towards solving long-standing fundamental problems pursued here. We start from a frequently used reference 
configuration22–24, run the model under preindustrial conditions into quasi-equilibrium (by integrating a 2500 
year-long spinup) and append a transient simulation by prescribing increasing atmospheric CO2 emissions until 
year 2100. The underlying emission scenario corresponds to RCP8.525. In addition to the reference simulation, 
we integrate a corresponding ensemble, featuring 125 members. These ensemble members differ from the ref-
erence model version in that the following model parameters are perturbed within their uncertainty bounds 
(as derived from a literature survey26–30): (1) The sinking speed of detritus (w), (2) the vertical background dif-
fusivity ( κ ) and (3) the maximum phytoplankton growth rate (a). This choice (out of ≈ 35 model parameters) 
is motivated by the parameters’ prominent roles in setting subsurface oxygen concentrations: Organic matter 
is produced by autotrophs in the sun-lit surface ocean controlled by the maximum phytoplankton growth rate 

Figure 1.   Illustration of regions where low, or even nil oxygen concentrations have been measured in the water 
column. The colours denote the lowest concentrations found in local water columns as archived by the World 
Ocean Atlas 200535 in units mmolO2 m

−3 . The white boxes mark the cores of notorious contemporary oxygen 
minimum zones (OMZs), as referred to in Table 1. This figure was created with PyFerret v7.5 (https://​ferret.​
pmel.​noaa.​gov/​Ferret/​docum​entat​ion/​pyfer​ret).

https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
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(a). Cycling through the food web transforms part of this organic matter into detritus sinking at a velocity w to 
depth, where it is remineralized by heterotrophic bacteria. One major process balancing the respective oxygen 
consumption is vertical diffusion of oxygen from the sea surface (oxygenated by air-sea fluxes) to depth. The 
diffusive flux is typically calculated as the product of the vertical oxygen gradient and a diffusivity, compounding 
a constant background value ( κ ) with a dynamic parameterization31. Even though w, κ , and a are particularly 
influential, they are, at the same time, apparently impossible to constrain with ordinary contemporary data and 
common fidelity metrics, also because their interdependencies call for unrealistically high signal-to-noise ratios 
in observational data3,30.

The perturbed parameter ensemble is extended by Polynomial Chaos Expansion (PCE) to emulate additional 
model outputs and to, subsequently, apply the variance-based sensitivity analysis32. In the following we distin-
guish between the three time slices dubbed preindustrial, contemporary, and projected referring to year 1850, 
2000 and 2100 respectively.

Results
Figure 2 summarizes our results in that it links local parameter-induced uncertainties in projected oxygenation 
with the (state-of-the-art33) model fidelity in reproducing the local and contemporary state of oceanic oxygena-
tion. The first panel (Fig. 2a) shows the ensemble mean of projected changes in water column oxygenation, here 
defined as the minimum oxygen concentration found locally in the water column. One of the most prominent 
features of Fig. 2a is a substantial projected decrease in oxygenation in (and downstream of) all deep water forma-
tion sites, i.e., in the Greenland-Norwegian Sea, the Labrador Sea, the Mediterranean Sea, the Weddell Sea and 
the Ross Sea. At these sites global warming can map directly onto local ventilation by stabilizing the water column 
and by decreasing the (temperature-dependent) oxygen solubility. This in turn may explain the insensitivity 
towards the choice of the perturbed model parameters in our ensemble (shown as low noise-to-signal values in 
Fig. 2b, also referred to as the (local) coefficient of variation) at theses sites. Or, in other words, the choice of w, 
a, and κ does hardly affect the projected changes of deoxygenation at deep water formation sites, relative to the 

Figure 2.   (a) Ensemble mean of simulated changes that accumulated from the preindustrial period to year 
2100. Regions where the local minimum of oxygen concentrations is projected to decrease (increase) are 
denoted in blue (red). (b) Measure of the (parametric uncertainty-induced) spread of the projected changes 
(calculated as the standard deviation of the ensemble) normalized by the respective local amplitude of the 
ensemble mean changes. The unit of this noise-to-signal metric is %. Blue colours denote combinations of rather 
high anticipated changes with rather low parameter uncertainty. Red colours denote areas where anticipated 
changes are rather low and/or where the uncertainty as expressed by the ensemble spread is high. (c) Spread 
(calculated as standard deviation) among ensemble members reproducing the contemporary local minimum 
of oxygen concentrations in the water column. Red values denote regions where ensemble members differ 
widely. The unit is mmol O2 m

−3 . (d) Same as (c) but normalized by the contemporary ensemble mean of local 
minimum of oxygen concentrations. The unit is %. This figure was created with PyFerret v7.5 (https://​ferret.​
pmel.​noaa.​gov/​Ferret/​docum​entat​ion/​pyfer​ret).

https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
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strong signal that is associated with climate change. To this end, the ensemble of projections is rather insensi-
tive to the parameter uncertainties—which is plausible since local ventilation is not directly affected by biotic 
processes (such as those controlled by a and w). Further, changes in the background diffusivity κ apparently 
drives only minor differences at the deep water formation sites where deep convection events regularly exceed 
the background diffusivities by orders of magnitude (during deep water formation)—such that uncertainties in 
κ do not retard the low noise-to-signal metric in the deep water formation sites shown in Fig. 2b.

Somewhat less prominent are projected changes in the tropics (Fig. 2a). These changes are small in absolute 
numbers and comprise typically values of the order of several mmolO2 m

−3 only. Even so, they can make sub-
stantial differences for the projected evolution of the oxygen minimum zones: e.g., decreasing the mean oxygen 
by 2 mmolO2 m

−3 yields a spatial extension of the suboxic volume by 30% (in the reference version of Uvic 2.9). 
Disconcertingly, the projections are especially uncertain in the tropics and OMZs, i.e., the noise-to-signal ratios 
in Fig. 2b are high, indicating that the uncertainty in model parameters maps onto a high spread amongst projec-
tions in these regions. Related questions are: Which processes are uncertain and which locations are best-suited 
for observations to constrain these processes (i.e., their associated model parameters)? The pragmatic approach 
to these questions implicitly assumes that the fidelity of reproducing local contemporary conditions is indicative 
of the reliability of its local projections. An essential precondition for this approach is that the existing model 
uncertainties are reflected in diverging contemporary local model responses.

By performing a variance-based sensitivity analysis18,20 we put the essential precondition to the test locally: 
Fig. 2c shows the respective extent to which ensemble members differ locally and contemporarily. It maps the 
local manifestation of differences among ensemble members. The main message here is that this local contem-
porary manifestation is not necessarily spatially correlated with the respective manifestations in future projec-
tions (i.e., Fig. 2b and d show different features). In the following, we put the information that is provided by the 
variance-based sensitivity analysis exemplarily to work and showcase the benefit of linking the local spread of 
projections with the local contemporary spread of the model ensemble (which is, essentially, a means of explor-
ing the uncertainties of projections with local contemporary model fidelity).

For the Atlantic OMZ, we find both contemporary and projected sensitivities being relatively high (Fig. 2b 
and d). Further, the uncertainty in projections is linked in roughly equal terms to the uncertainties of all three 
model parameters (Table 1) which also applies to contemporary ensemble spread (Fig. 3a and b). Also, sinking 
speed of organic matter, w, and vertical mixing, κ , show relatively strong interactions in simulated present climate. 
Well-suited locations for measurements to constrain the respective model parameters are indicated by a large 
spread in the perturbed parameter ensemble (Fig. 2d). Ideally, the spread could predominantly be attributed 
to a single parameter, because this would facilitate the parameter estimation substantially and avoid potential 

Figure 3.   Variance-based sensitivity-analysis20 of the simulated minimal oxygen content in the water column in 
the year 2000. Panel (a–c) show the main effects for the considered model parameters (sinking speed of organic 
matter w, vertical background ocean mixing, κ , and maximum phytoplankton growth, a, resp.) and (d–f) 
illustrate the interactions. Regions where the overall variance is very small (standard deviation below 6% of the 
mean value) are masked out in white. This figure was created with PyFerret v7.5 (https://​ferret.​pmel.​noaa.​gov/​
Ferret/​docum​entat​ion/​pyfer​ret).

https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
https://ferret.pmel.noaa.gov/Ferret/documentation/pyferret
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problems due to mutual dependencies30 (i.e. we propose to combine the Sobol indices with a preferably high 
ensemble spread while regions with very low variance are masked out in Fig. 3). For the mixing parameter κ 
relatively high contemporary and exclusive manifestation is given in the Indian Ocean (Figs. 2d and 3). We con-
clude that the Indian Ocean is a contemporary benchmarking region for κ and that proper use of observations at 
this site can reduce parameter uncertainties of projections of the Atlantic OMZ. Somewhat counter to intuition, 
constraining κ (be it with data from the Indian Ocean or elsewhere) is rather irrelevant for projecting the Indian 
Ocean OMZs with our model. There, along with the North and South Pacific OMZs the phytoplankton growth 
parameter a is most influential (Table 1). Figure 3 suggests that for the simulated minimal oxygen concentra-
tions in our model, the Southern Ocean is a well-suited contemporary benchmarking regions to constrain a 
with contemporary observational data. Or in other words—as a is the most influential parameter in projections 
of the OMZ in the Pacific and Indian Oceans, being able to simulate the oxygen concentrations in the Southern 
Ocean is a prerequisite in our model to more reliably project these OMZs.

In summary, we advocate the application of the method of Sobol to explore links between parameter uncer-
tainties, local contemporary model-data misfits and local uncertainties of projections into our warming future. A 
straightforward application is the identification of contemporary benchmarking regions to constrain the model 
parameters. To project the OMZs in the Pacific and Indian Oceans more reliably, a good representation of the 
oxygen concentrations in the Southern Ocean is a necessary (although not sufficient) condition in our model 
framework. For the Atlantic OMZ we could not identify such a clear benchmarking region and all considered 
parameters are almost equally influential. As, however, a large model spread of the perturbed parameter ensem-
ble occurs in the northern Pacific and the Atlantic Ocean, oxygen measurements in these regions are advised.

As a side aspect of the presented results, we report that the long-standing problem of a biased Indian Ocean 
OMZ, apparently endemic to the current generation of coupled ocean-circulation biogeochemical models34, is in 
our model related to the representation of vertical mixing processes rather than to unknowns in biogeochemical 
model parameters.

Discussion
We presented, for the first time, spatial maps linking contemporary benchmarking regions with the uncertainty 
of projections of pelagic biogeochemistry that is associated with uncertain parameter settings. Among the results 
is that, in our model framework, the contemporary Indian Ocean is a benchmarking region for vertical back-
ground mixing which needs to be constrained to project the Oxygen Minimum Zone in the Atlantic Ocean. In 
order to reduce the parametric uncertainties of forecasts for the Indian Ocean OMZ, however, phytoplankton 
growth needs to be constrained—preferably with observations in the Southern Ocean which provides for our 
model the best benchmarking region for this purpose.

Caveats apply. For one, state-of-the-art numerical representation of pelagic biogeochemistry are not rooted 
in first principles; they were developed for interpolation tasks and it is not clear whether it is admissible to 
employ them for projections because, e.g., they may fail to incorporate effects of biotic adaptation. Second, our 
approach addresses parametric uncertainty only. Unresolved processes and other sources of uncertainty are 
not included and the transferability to other emission scenarios must be investigated. Third, variance-based 
sensitivity analysis are computationally costly because the method necessitates large ensembles to make statisti-
cally meaningful inferences36. Here we were able to restrict the cost to feasible levels by using Polynomial Chaos 
Expansion (PCE)37–39. Also, neural network-based approaches are ermerging40.

Methods
Uncertainty quantification and Sobol indices.  The presented study is based on a variance-based 
global sensitivity analysis using Sobol indices18,20,41 which is applied to each model grid point individually. Work-
ing within a probabilistic framework, we decompose the variance of a model output of interest into fractions 
that can be attributed to the poorly known model parameters (here sinking speed of detritus (w), the vertical 
background diffusivity ( κ ) and the maximum phytoplankton growth rate (a)). The method is based on the cal-
culation of conditional expected values and provides percentages that are directly interpreted as measures of 
sensitivity. Such an approach to uncertainty quantification is attractive, because (1) the sensitivity is measured 
across the whole space of input parameters, (2) the method can deal with nonlinear responses and (3) it can 
measure the effect of interactions in non-additive systems42. Variance-based sensitivity analysis has, however, the 
disadvantage of being computationally particularly costly because it requires a multitude of model simulations 
under various parameter settings. To reduce the computational burden to a feasible level, we restrict ourselves 

Table 1.   Measure of the contribution of respective parameter uncertainties to the variance (spread) within  
the ensemble of projected changes of the local oxygen minima. The units are %, calculated using the method of 
Sobol20. The values refer to spatial averages of the regions defined in Figure 1.

Region w (%) κ (%) a (%) w κ (%) w a (%) κ a (%)

Atlantic 26.37 27.28 22.50 5.312 11.21 7.021

Indian Ocean 26.82 14.00 34.82 1.176 15.40 2.745

Pacific-north 27.09 20.53 33.36 2.421 12.71 3.774

Pacific-south 12.20 4.016 74.37 0.610 6.037 2.085
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to a non-intrusive reduced-order model approach within the framework of uncertainty quantification based 
on Polynomial Chaos Expansion (PCE)37–39. This approach limits the number of required model simulations 
substantially by using relatively few model simulations as collocation points for a spectral fit with Hermite basis 
functions43. In our study we consider Hermite polynomials up to third order because the contributions of higher 
orders become numerically insignificant (i.e., their relative values being lower than machine accuracy). We use 
125 model simulations with input parameters being set by a Gaussian quadrature.

We assume the parameters to be normally distributed within a standard deviation of roughly 50% for 
w and κ and 25% for a. These values are well within the range suggested by foregoing studies on parameter 
uncertainties27,30,44,45. Occasional negative and very small values are truncated because these lead to unrealistic 
model results. The mean values refer to the reference model version UVic 2.946 which was tuned to match the 
climatological observations by the World Ocean Atlas47. Further details on the Earth System model and the 
parameter settings are provided in the supplement.

Data availability
The analysed model output is archived at https://​zenodo.​org/​record/​55370​81#.​YVW1t​8ZCR0s. The data are 
distributed under the MIT Expat Licence.

Code availability
All code is written in Fortran. The code for the sensitivity analysis may be used under the MIT Expat Lizenz. It 
is archived at https://​zenodo.​org/​record/​55370​81#.​YVW1t​8ZCR0s under https://​doi.​org/​10.​5281/​zenodo.​55370​
81. The UVic ESCM model was developed by the University of Victoria and the current version was refined at 
GEOMAR Helmholtz Centre for Ocean Research Kiel46. The UVic ESCM is provided freely without restrictions 
other than the requirement that users not use it to participate in model intercomparison projects without prior 
permission (https://​thred​ds.​geomar.​de/​thred​ds/​catal​og/​open_​access/​uvic_​kiel_​2016/​catal​og.​html).
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