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Abs trac t .  The ot2-macroglobulin (ot2M) receptor/low- 
density lipoprotein receptor-related protein (LRP) is 
important for the clearance of proteases, protease- 
inhibitor complexes, and various ligands associated 
with lipid metabolism. While the regulation of receptor 
function is poorly understood, the addition of high con- 
centrations of the 39-kD receptor-associate d protein 
(RAP) to cells inhibits the binding and/or uptake of 
many of these ligands. Previously, we (Kounnas, M. Z., 
J. Henkin, W. S. Argraves, D. K. Strickland. 1992. J. 
Biol. Chem. 267:12420-12423) showed that Pseudomo- 
has exotoxin (PE) could bind immobilized LRP. Also, 
the addition of RAP blocked toxin-mediated cell kill- 
ing. These findings suggested that PE might use LRP to 
gain entry into toxin-sensitive cells. Here we report on 
a strategy to select PE-resistant lines of Chinese ham- 
ster ovary cells that express altered amounts of LRP. 
An important part of this strategy is to screen PE-resis- 
tant clones for those that retain sensitivity to both diph- 

theria toxin and to a fusion protein composed of lethal 
factor (from anthrax toxin) fused to the adenosine 
diphosphate-ribosylating domain of PE. Two lines, 
with obvious changes in their expression of LRP, were 
characterized in detail. The 14-2-1 line had significant 
amounts of LRP, but in contrast to wild-type cells, little 
or no receptor was displayed on the cell surface. In- 
stead, receptor protein was found primarily within cells, 
much of it apparently in an unprocessed state. The 14- 
2-1 line showed no uptake of chymotrypsin-aEM and 
was 10-fold resistant to PE compared with wild-type 
cells. A second line, 13-5-1, had no detectable LRP 
mRNA or protein, did not internalize OtEM-chymo- 
trypsin, and exhibited a 100-fold resistance to PE. Re- 
sistance to PE appeared to be due to receptor-specific 
defects, since these mutant lines showed no resistance 
to a PE chimeric toxin that was internalized via the 
transferrin receptor. The results of this investigation 
confirm that LRP mediates the internalization of PE. 

T 
IlE ct2-macroglobulin (et2M) 1 receptor/low-density 
lipoprotein receptor-related protein (LRP) is 
among the largest single-chain proteins yet to be de- 

scribed. It is synthesized as a 600-kD precursor that is con- 
verted in the Golgi region to a heavy chain of 515 kD and 
light chain of 85 kD (Herz et al., 1988, 1990). The heavy 
chain, which is wholly exposed on the cell exterior, has 
several low-density lipoprotein receptor- and EGF-like 
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repeats. The light chain, which is noncovalently associated 
with the heavy chain, contains the transmembrane domain 
and a cytosolic tail with sequences resembling those 
known to mediate receptor internalization. LRP plays a 
major role in the regulation of protease activity and lipid 
metabolism in mammalian cells. Specifically, the heavy 
chain is known to bind and internalize several ligands re- 
lated to protease clearance and lipid metabolism. These 
include CtEM-protease complexes (Jensen et al., 1989; Ash- 
comet al., 1990; Kristensen et al., 1990), lipoprotein lipase 
(Chappell et al., 1992), Apolipoprotein E-enriched ~3VLDL, 
tissue-type plasminogen activator (tPA) (Kowal et al., 
1989; Bu et al., 1992) urokinase-type plasminogen activa- 
tor (uPA), plasminogen activator inhibitor type 1 com- 
plexed with either tPA (Underhill et al., 1992), or uPA 
(Herz et al., 1992), pregnancy zone protein (Van Leuven 
et al., 1986), and lactoferrin (Willnow et al., 1992). An 
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additional protein, called receptor-associated protein 
(RAP), binds to the heavy chain and copurifies with it in 
various protocols for affinity purification of LRP (Strick- 
land et al., 1990). While it is believed that most ligands 
bind to discrete portions of the heavy chain of LRP, the 
addition of excess RAP interferes with the binding and/or 
uptake of all of them. Pseudomonas exotoxin (PE) also 
binds LRP, and its binding to, and toxicity for, cells is re- 
duced when excess RAP is added to the culture medium 
(Kounnas et al., 1992). 

PE enters cells by receptor-mediated endocytosis (Fitz- 
Gerald et al., 1980; Saelinger et al., 1985) and ultimately 
kills the cells it enters by translocating to the cell cytosol 
ADP-ribosylating elongation factor 2 and shutting down 
protein synthesis (Pastan and FitzGerald, 1989; Wick et 
al., 1990). Once inside cells, the toxin is processed by a fur- 
inlike protease to generate nonoverlapping fragments of 
28 and 37 kD (Ogata et al., 1990, 1992; Moehring et al., 
1993; Chiron et al., 1994). The 28-kD fragment is derived 
from the NH2 terminus of the toxin and contains the 
toxin's binding domain. The 37-kD fragment is from the 
COOH terminus of the toxin and contains the translocat- 
ing domain, the ADP-ribosylating domain, and the se- 
quence REDLK at the COOH terminus, which resembles 
the endoplasmic reticulum retention sequence KDEL. To 
be toxic for cells, PE requires the presence of REDLK or 
KDEL at its COOH terminus (Chaudhary et al., 1990; 
Seetharam et al., 1991). This has implicated the ER as the 
organelle most likely to be involved in the translocation of 
the 37-kD fragment to the cytosol. 

The interaction of PE with mammalian cells begins with 
its binding at the cell surface. Previously, we provided bio- 
chemical evidence that PE could bind to the LRP when it 
was immobilized on nitrocellulose or polystyrene (Koun- 
nas et al., 1992). In ligand blots, PE interacted with the 
515-kD heavy chain of the receptor and not with the 85- 
kD light chain (Thompson et al., 1991; Kounnas et al., 
1992). Also, RAP blocked the toxicity of PE but not the 
toxicity of a chimeric toxin that bound and entered ceils 
via the transferrin receptor. While these initial experi- 
ments indicated that PE could bind LRP, there was little 
evidence that functional LRP was required to mediate 
toxin entry and delivery to the cell interior. This issue was 
recently addressed by selection of PE-resistant clones 
from fibroblasts known to be heterozygous for the LRP 
gene (Willnow and Herz, 1994). By Southern blot analysis, 
some PE-resistant clones apparently had lost the wild-type 
(WT) LRP allele; however, others clearly retained it and 
were resistant for other reasons. 

To investigate the role of LRP in the pathway of PE tox- 
icity, we have selected PE-resistant cells and then screened 
for cells that retained sensitivity to both diphtheria toxin 
(DT) and to a fusion protein composed of lethal factor 
(from anthrax toxin) joined to domain III of PE (Arora et 
al., 1992). Initially, two lines out of four appeared to have 
alterations in receptor expression. Using a variety of ligands 
and antibodies to probe for receptor expression, we deter- 
mined that the 13-5-1 line lacked detectable LRP protein. 
Northern blot analysis indicated that, in comparison to 
WT cells, 13-5-1 cells expressed a significantly reduced 
level of LRP mRNA. In functional assays, this line failed 
to bind or internalize chymotrypsin--a2M and exhibited a 

100-fold increased resistance to PE. The 14-2-1 line had 
significant amounts of LRP, but in contrast to WT cells, 
little or no receptor was displayed on the cell surface. In- 
stead, receptor protein was found primarily within cells, 
with much of it remaining unprocessed. There was no up- 
take of chymotrypsin-a2M into 14-2-1 cells and, when in- 
cubated with PE, these cells exhibited a 10-fold resistance 
compared with WT. To determine if the toxin selection 
and screening procedure readily identifies cells with al- 
tered expression of LRP, we examined LRP expression in 
other lines that were isolated using the same strategy. 
Characterization of five additional lines revealed that this 
selection strategy identifies two classes of mutants: those 
like 14-2-1 cells, which expressed substantial amounts of 
LRP but failed to process it (as evidenced by the lack of 
light chain reactivity), and those like the 13-5-1 line, with 
little or no detectable LRP. 

The results presented here show that the strategic use of 
several bacterial toxins readily permits the identification 
of cell lines with alterations in receptor expression. They 
also confirm that PE uses LRP in its "productive" pathway 
to reach the cytosol and inhibit protein synthesis. 

Materials and Methods 

Reagents 
Recombinant PE was expressed in Escherichia coli and isolated from the 
periplasm according to procedures described previously (Ogata et al., 
1990). PE from Pseudomonas aeruginosa was purchased from List Biolog- 
ical Laboratories, Inc. (Campbell, CA). Construction of the chimeric toxin 
transferrin (TF)-PE40, which is composed of human TF linked by a thio- 
ether bond to a truncated portion of PE lacking the toxin's binding do- 
main, has been described previously (Kounnas et al., 1992). A RAP-pro-  
tein A fusion protein was expressed in E. coli from the plasmid pETA39-5 
and was recovered from the soluble fraction of the cytoplasm (see below). 
The fusion protein was purified on an IgG sepharose column. Rabbit anti- 
bodies to the heavy chain of LRP were raised against affmity-purified hu- 
man receptor as described previously (Ashcom et al., 1990), while anti- 
bodies to the light chain were raised against the last 12 amino acids of the 
LRP light chain (Kounnas et al., 1992). 

Construction of the RAP-Protein A Fusion Protein 
Plasmid pRAP1-323 (Williams et al., 1992) was used as the template for PCR 
amplification of the internal SacI to EcoRI fragment. The amplified fragment 
was digested with these two enzymes and then ligated into pETAPA125 that 
had been prepared by digestion with Asp718 and EcoRI and treated with T4 
polymerase, pETAPA125 has the T7 promoter at the 5' end of the structural 
gene and a terminator at the 3' end. Induction of expression was by the addi- 
tion of isopropyl-[~-D-thiogalactopyranoside (IPTG). 

Isolation of PE-resistant Cells 
CHO K1 cells were from Michael Gottesman (National Institutes of 
Health) and were grown in c~-MEM supplemented with 10 mM Hepes, pH 
7.5, 5% Fetal Clone II (Hyclone Laboratories Inc., Logan, UT), and 50 
tzg/ml gentamicin. T-75 flasks containing 5 × 106 cells were treated with 5 
mM ethyl methane sulfonate in the standard MEM growth medium for 21 
h. The cells were detached by trypsin treatment, diluted 1:50, plated in 
100-mm dishes, and grown for 4 d to allow expression of mutations. Cells 
were then treated with PE at 100 ng/ml for 48 h. The medium and the 
dead cells (>99.9% of the total) were removed and new medium was 
added. After an additional 4 d, the dishes of mutagenized cells contained 
~50 colonies, whereas dishes derived from nonmutagenized cells con- 
tained <5 colonies. Well-isolated colonies were picked, expanded, and 
tested for sensitivity to PE, DT, and the combination of anthrax protective 
antigen and a fusion protein of anthrax lethal factor and PE domain Ill  
(FP33) (Arora et al., 1992). Mutant cell lines that were resistant only to 
PE were cloned by limiting dilution and their phenotypes confirmed. 
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Immunofluorescence 
To detect total cell-associated LRP, CHO cells grown in 35-mm dishes 
were fixed with 2.0% formaldehyde and then permeabilized with 0.1% sa- 
ponin. An affinity-purified rabbit polyclonal antibody to the receptor 
heavy chain (Ashcom et al., 1990) was added in the presence of saponin 
and normal goat globulin (4 mg/ml). After 30 min, the primary antibody 
was removed and cells were washed a minimum of four times each with 
saponin and normal goat globulin. Then rhodamine-labeled affinity-puri- 
fied goat anti-rabbit IgG at 25 p,g/ml was used to detect the primary anti- 
body (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA). 
After extensive washing, the cells were fixed with 3.7% formaldehyde and 
viewed at a magnification of 640x. 

The presence of LRP on the surface of cells was assessed using the 
same affinity purified rabbit antibody to the heavy chain. Cells were 
chilled to 4°C and ice-cold antibody (10 I~g/ml) in PBS-BSA (BSA at 2 
mg/ml) was added for 30 rain. At the end of this incubation period, mono- 
layers were washed extensively with cold PBS-BSA. Surface-bound anti- 
body was detected using rhodamine-labeled affinity purified anti-rabbit 
IgG (Jackson ImmunoResearch Laboratories, Inc.) at 25 p~g/ml. Ceils 
were washed extensively in PBS, fixed in formaldehyde (3.7%), and 
viewed at a magnification of 640. Control cells were processed in an iden- 
tical manner except that the primary antibody step was omitted. 

Ligand Blots of Membrane Extracts 
Cell lines were grown for 3-4 d in roller bottles or large flasks, washed 
with PBS, scraped from the plastic surface, and collected by centrifuga- 
lion. Cell pellets were resuspended in 0,1 M KCI, 20 mM Hepes, pH 7.0, 
with the following protease inhibitors: 1% aprotonin (Sigma Immu- 
nochemieals, St. Louis, MO), 1 mM PMSF (Sigma), 1 mM pepstatin 
(Boehringer Maunheim Corp., Indianapolis, IN) and I ~M ieupeptin 
(Boehringer Mannheim Corp.). Gentle sonication was used to disrupt 
cells. Unbroken cells and nuclei were removed by low-speed centrifuga- 
tion. Crude membranes were then harvested by high-speed centrifugation 
(80,000 g for 30 min). Detergent extracts were prepared by resuspending 
membranes at 4°C in 20 mM NaPO4, 1 mM CaC12, 1% n-Octyl-13-D-gluco- 
pyranoside (Calbiochem Novabiochem, La Jolla, CA) with the same cock- 
tail of protease inhibitors mentioned above. Residual membranes were re- 
moved from the preparation by a second high-speed centrifugation. The 
superuatant was saved as the membrane extract. Approximately 12 ~g of 
extract from each cell line was dissolved in 2× sample buffer, and individ- 
ual components were separated by SDS-PAGE under nonreducing condi- 
tions, using 8 and 4-20% precast gels (NOVEX, San Diego, CA). After 
separation by SDS-PAGE, proteins were transferred to Immobilon mem- 
branes and probed with 2 p~g/ml of either PE or RAP, both of which inter- 
act with immobilized receptor. 

Since PE interacts with LRP optimally at pH 5.5, PE ligand blots were 
carried out at this pH (Thompson et at., 1991). The presence of PE was 
detected using an affinity-purified rabbit anti-PE antibody that had been 
conjugated with HRP (Jackson ImmunoReseach Laboratories, Inc.). 
RAP binding to immobilized receptor was detected using RAP-protein 
A. Binding was carried at neutral pH, and the presence of RAP-protein A 
was detected using a peroxidase-labeled rabbit IgG. 

Western Blot Analysis Using Antireceptor Antibodies 
Rabbit antibodies, specific for the heavy and light chains of LRP, were used 
to detect the presence of the receptor in detergent extracts of membranes 
prepared from mutant and WT cell. As above, extracts were separated on 
either 8 or 4-12% polyacrylamide gels, proteins were transferred to Immo- 
bilon membranes, and then probed with antibodies. Anti-heavy chain, 
which had been affinity purified on an LRP column, was added at ~2  Ixg/ml. 
The anti-hght chain antibody was an IgG preparation and was added to a fi- 
nal concentration of 50 p,g/ml. Rabbit antibodies were detected using either 
a Veeta stain kit (Vector Laboratories, Inc., Buriingame, CA) or with Re- 
naissance Chemiluminescence kit (DuPont-NEN, Boston, MA), 

Northern Blot Analysis 
Cells were harvested by treatment with trypsin-EDTA, and total RNA 
was isolated using RNA Stat-60 (Tel-Test, Friendswood, TX) according to 
the manufacturer's instructions. RNA concentrations were calculated 
from the absorbance at 260 nm. 10 p,g of each sample was denatured and 
subjected to electrophoresis in a 1.2% agarose gel containing 2.2 M form- 
aldehyde. The gel was stained with ethidium bromide to verify that each 

lane contained similar amounts of undegraded rRNA. RNA was electro- 
blotted onto Zetabind nylon membranes (Cuno, Inc) and cross-linked by 
UV irradiation using a Stratalinker (Stratagene Inc., La Jolla, CA). The 
eDNA probes were full-length LRP (described below), human glyceralde- 
hyde-3-phosphate dehydrogenase, and an 800-bp Pstl/XbaI fragment of 
pHcGAP (American Type Culture Collection, Rockville, MD). 

The LRP eDNA clone was constructed by PCR. Primers were designed 
based on the sequence published by Herz et al. (1988). Fragments of ,'A 
kb were amplified initially. Thereafter, fragments were joined to form 
larger pieces until a full-length (13.8-kb) clone had been constructed. To 
confirm its identity with the known LRP sequence, the clone was se- 
quenced automatically using an ABI 373A DNA sequencer. The full- 
length clone was produced in plasmid pETer-14-15, a derivative of pET- 
3b (Studier and Moffatt, 1986). Miniprep DNA was digested with Not1 
and EeoRV and the eDNA isolated. 

The probes were labeled to high specific activity with [3zP]-dCTP (3,000 
Ci/mmol; Amersham Corp., Arlington Heights, IL) by use of a random 
primer labeling kit (Boehringer Mannheim Corp.). Hybridization and 
membrane washing conditions were as previously described (Donohue et 
al., 1994). Blots were exposed to film (XAR-5; Eastman Kodak Co., 
Rochester, NY) in cassettes with intensifying screens at -80°C. 

Inhibition of Protein Synthesis by PE and TF-PE40 
WT, 14-2-1, and 13-5-1 cells were seeded in 24-well plates at ~105 cells per 
well. The following day, cells were treated with increasing concentrations 
of either PE or TF-PE40. After an overnight incubation at 37~C, cytotox- 
icity was determined by measuring the incorporation of [3H]leucine into 
new cellular protein. 1-2 h before the addition of TF-PE40, cells were 
washed in tissue culture medium lacking serum but containing BSA (2 rag/ 
ml). This served to reduce the competition for receptor binding usually 
seen with the high levels of TF found in serum. Cells remained in serum- 
free medium for the duration of the experiment. Data are expressed as 
percent of protein synthesis compared with cells that did not receive toxin. 

Cell Binding, Internalization, and Degradation Assays 
Cell binding, internalization, and degradation assays were carried out with 
modifications to the procedures of Isaacs et at. (1988) and Kounnas et al. 
(1993). CHO cells (WT and mutants) were grown in HAMS F12 medium 
containing 10% FCS, penicillin/streptomycin, and L-glutamine. The cells 
were plated at 7 × 105 cells per well in six-well dishes and allowed to grow 
for 24 h before assay. 1 h before starting the assay, the medium was re- 
moved and the cells incubated at 37°C with HAMS F12, 1% Nutridoma 
serum substitute (Boehringer Mannheim Corp.), 15 mg/ml BSA, and 20 
mM Hepes, pH 7A (incubation media). For cell uptake and degradation 
experiments, cells were then washed with incubation medium and 
lz~Iet2M--chymotrypsin (13 p, Ci/~g) in incubation medium added. At se- 
lected time intervals, the media was removed, the ceils were washed with 
cold PBS, and then incubated with trypsin-EDTA for 15 min at 4°C. The 
cell suspension was then removed from the wells and the cells pelleted by 
centrifugation. Counts present in the pellet were taken as the amount of 
ligand that had been internalized. To measure the extent of ligand degra- 
dation, TCA (to a final concentration of 10%) was added to the media re- 
moved from the cells. After centrifugation, counts in the supernatant were 
measured. Nonspeeific uptake and degradation were measured by includ- 
ing an excess of unlabeled ~t2M--chymotrypsin. 

Results 

Strategy for Selection of LRP Mutants 

Since PE can bind to LRP and may use this receptor to 
gain entry into sensitive cells, it was of interest to deter- 
mine if toxin-resistant lines had alterations in their expres- 
sion of LRP. CHO cells were mutagenized by exposure to 
5 mM ethyl methane sulfate. Surviving cells were grown 
for 4 d to allow expression of mutations and then chal- 
lenged with 100 ng/ml of PE. Well-isolated colonies were 
picked, expanded, and screened for their sensitivity to PE, 
DT, and a fusion protein composed of lethal factor (from 
anthrax toxin) fused with the ADP-ribosylating domain of 
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Figure 1. Detection of cell-associated LRP by indirect immunofluorescence. Total LRP was detected in WT cells (A), 14-2-1 cells (B), 
and 13-5-1 cells (C) by the addition of affinity-purified rabbit anti-LRP heavy chain IgG in the presence of 0.1% saponin. Cells were 
then probed with rhodamine-labeled affinity-purified goat anti-rabbit IgG. Surface-expressed LRP was detected by the addition of rab- 
bit anti-LRP heavy chain IgG to cells at 4°C. As above, the rabbit IgG was detected by the addition of rhodamine-labeled affinity-puri- 
fied goat anti-rabbit IgG: WT cells (D), 14-2-1 (E), and 13-5-1 (F). Cells were fixed with 3.7% formaldehyde. Bar, 20 ~m. 

PE (domain Ill). Mutant cells, specifically resistant to PE, 
were cloned by limiting dilution, and their phenotypes 
confirmed (see below). PE-resistant ceils that were also re- 
sistant to DT or lethal factor-domain III were discarded 
since they were likely to be elongation factor-2 mutants, 
acidification mutants, protease mutants, or pleiotropic 
mutants. 

Initially, the status of LRP expression was investigated 
in two PE-resistant cell lines, 14-2-1 and 13-5-1. Cells were 
permeabilized with saponin and then probed with a rabbit 
antibody to the heavy chain of LRP. A rhodamine-labeled 
goat anti-rabbit IgG was used to visualize the rabbit anti- 
body. In WT cells (Fig. 1 A) abundant receptor was seen 
throughout each cell. Although the strength of labeling 
was slightly less than in WT cells, the 14-2-1 line exhibited 
significant amounts of reactivity throughout each cell (Fig. 
1 B). In contrast to this, the 13-5-1 line exhibited one 
"spot" of perinuclear reactivity per cell (Fig. 1 C, arrow- 
heads). The latter reactivity was antibody specific since 
cells receiving no primary antibody appeared completely 
dark (data not shown). 

To detect surface-expressed LRP, cells were chilled to 
4°C and then exposed to the rabbit anti-heavy chain anti- 
bodies. Cells were washed extensively, and bound antibody 
was detected using rhodamine-labeled goat anti-rabbit IgG. 
WT cells had a punctate pattern of weak fluorescence, 

possibly corresponding to LRP that had clustered in 
coated pits. In contrast to this, surface fluorescence for the 
14-2-1 and 13-5-1 lines was undetectable on most cells and 
barely present on a small number of cells (Fig. 1 D depicts 
WT cells, while E and F show the 14-2-1 and 13-5-1 lines, 
respectively). 

Ligand Blot Analysis 

When intact cells were probed with anti-LRP antibodies, it 
appeared that the two toxin-resistant lines had altered ex- 
pression of the receptor. To determine if cells possessed 
functional LRP, ligand blots were performed. Detergent 
extracts of membranes from WT, 14-2-1, and 13-5-1 cells 
were analyzed for the presence of PE- and RAP-binding 
proteins. Solubilized proteins (12 I~g total protein/lane) 
were separated by SDS-PAGE and then transferred to 
Immobilon P membranes. One set of Immobilon mem- 
branes was exposed to PE at pH 5.5 (the optimum pH for 
toxin binding [Thompson et al., 1991]), while the other set 
was exposed to RAP at neutral pH. 

Results indicated that there was toxin binding to a very 
high molecular weight component (with the mobility of 
the heavy chain of LRP; Fig. 2, single arrow) in WT and 
14-2-1 cells but not in the 13-5-1 line (for comparisons see 
the first three sample lanes of Fig. 2). In addition, there 
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Figure 2. Ligand blots to detect membrane-associated PE-bind- 
ing activity. Detergent-solubilized membrane proteins from nine 
CHO lines were separated by SDS-PAGE, transferred to Immo- 
bilon P membranes, and probed at pH 5.5 for the presence of PE- 
binding proteins. Toxin binding was detected by the addition of 
HRP-labeled affinity-purified rabbit anti-PE. Molecular mass 
markers indicate phosphorylase B (97 kD), albumin (66 kD), and 
ovalbumin (45 kD). 

was reactivity with several other unidentified bands. The 
relevance of this reactivity is not well understood. How- 
ever, in many different blotting experiments, the only con- 
sistent difference between WT and mutant cells was seen 
at the top of the gel corresponding to the mobility of the 
heavy chain of LRP. Reactivity with a doublet at ~120 kD 
(Fig. 2, double arrow) was consistently noted in all lines 
(see below). 

To determine reactivity with RAP, Immobilon mem- 
branes were exposed to a RAP-protein A fusion protein 
at neutral pH. Several bands of reactivity were noted. WT 
and 14-2-1 ceils had reactivity near the top of the gel, con- 
sistent with binding to the heavy chain of LRP (Fig. 3, up- 
per arrow), while the 13-5-1 cell line did not have this band 
(for comparisons see the first three sample lanes of Fig. 3). 
In addition, all three cell lines had strong reactivity for a 
band that migrated at ~'-,120 kD (Fig. 3, lower arrow). It is 
not known if this lower band is related to the two reactive 
bands seen at approximately the same relative mobility in 
the PE ligand blots. 

Together, the ligand-binding results suggest that func- 
tional LRP is present in 14-2-1 cells, possibly at reduced 
amounts compared with WT cells, but absent in 13-5-1 
cells. Also, all three cell lines had approximately similar 
amounts of a 120-kD component that reacted strongly 
with RAP. 

Western Blot Analysis 

To detect the presence of any receptor-related proteins, 
membrane extracts were probed with antibodies to both 
the heavy and light chains of LRP. When solubilized pro- 

Figure 3. Ligand blots to detect membrane-associated RAP 
binding activity. Detergent-solubilized membrane proteins from 
nine CHO lines were separated by SDS-PAGE, transferred to 
Immobilon P membranes, and probed at neutral pH for the pres- 
ence of RAP-binding proteins. Binding was detected by the addi- 
tion of HRP-labeled rabbit IgG, 

teins from the three lines were probed with antibodies to 
the heavy chain, the pattern of reactivity was similar to the 
one seen with the PE ligand blots. The 14-2-1 line had 
about the same or slightly reduced amounts of heavy chain 
compared with WT, while the 13-5-1 line had none (see 
the first three sample lanes of Fig. 4). Reactivity at ~120 
kD was seen, but the staining was much weaker than was 
seen for RAP binding. When extracts were probed with 
rabbit antibodies to LRP light chain, there was a reactive 
band of 85 kD in the WT sample, no band at a similar mi- 
gration in the 13-5-1 cells, and only a faint band in the 14- 
2-1 cells (Fig. 5, large arrow). In the 14-2-1 extracts there 
was also weak reactivity migrating at the position of the 
heavy chain of LRP (Fig. 5, small arrow). This suggested 
that in 14-2-1 cells either LRP was not maturing into heavy 
and light chains or there was some selective loss of the 
COOH-terminal portion of the light chain. Since the 13- 
5-1 line was devoid of the LRP heavy chain, it was not sur- 
prising that it also lacked the light chain. 

Northern Blot Analysis 

To determine whether LRP mRNA levels were also re- 
duced in 13-5-1 cells, RNA was isolated from WT and 13- 
5-1 cells and Northern blot analysis was performed using a 
full-length cDNA probe for LRP. One major and minor 
transcript at 13-14 kb were detected (Fig. 6 A) in WT but 
not in 13-5-1 cells. Similar amounts of RNA from each line 
had been loaded on the gel as determined by reprobing 
the blot for glyceraldehyde-3-phosphate dehydrogenase 
mRNA. 

In companion experiments, cells were analyzed for RAP 
expression. Results indicated that while 13-5-1 cells lacked 
LRP (Fig. 6 B), expression of RAP was similar in both 
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Figure 4. Western blot analysis of membrane proteins from nine 
CHO cell lines. Detergent-solubilized membrane proteins were 
transferred to Immobilon P membranes and then probed with 
rabbit anti-LRP heavy chain. Reactive proteins were detected us- 
ing a Vecta stain kit. 

lines (Fig. 6 C). Combined, the Northern blot result and 
the Western blot analysis ruled out the possibility that the 
absence of  LRP  protein was due to indirect effects such as 
poor  expression of RAP,  which might be needed to stabi- 
lize LRP  inside cells. 

Uptake of  Radiolabeled a2M-Chymotrypsin 

To assess the ability of mutant  cells to bind and internalize 
a physiologic ligand, the time course of ot2M-chymotrypsin 
uptake and degradation was measured. Fig. 7 demon- 
strates that 125I-labeled a2M-chymotrypsin was rapidly 
taken up (Fig. 7 A) and degraded (Fig. 7 B) by WT cells, 
but not by the 14-2-1 or 13-5-1 cell lines. This result is con- 
sistent with the immunofluorescence micrographs (Fig. 1, 
E and F), which showed that there was little or no LRP  ex- 
posed on the surface of either the 14-2-1 or 13-5-1 cell 
lines. 

Figure 5. Western blot analysis of 
membrane proteins from WT, 13- 
5-1, and 14-2-1 cells. Detergent- 
solubilized membrane proteins 
were transferred to Immobilon P 
membranes and then probed with 
rabbit antibodies prepared against 
the last 12 amino acids of the LRP 
light chain. Reactive proteins 
were detected using a Vecta stain 
kit. 

Figure 6. Northern and Western blot analysis of 13-5-1 cells for 
LRP expression. (A) RNA from WT or 13-5-1 cells was electro- 
blotted onto Zetabind membranes and probes with a full-length 
LRP eDNA and a glyceraldehyde-3-phosphate dehydrogenase 
eDNA. (B and C) Membrane proteins from WT or 13-5-1 cells 
were probed with antibodies to the heavy chain of LRP (B) or to 
RAP (C). 

Susceptibility of  Cells to PE and TF-PE40 

To investigate the relative toxin sensitivity of cells display- 
ing various configurations of  LRP,  WT, 14-2-1, and 13-5-1 
cells were exposed to increasing concentrations of PE. W T  
cells had an ICs0 of 15 ng/ml, 14-2-1 cells of 130 ng/ml, and 
13-5-1 cells of >500 ng/ml (Fig. 8 A). Clearly, the changes 
of LRP  expression were reflected in the cells' sensitivity to 
PE. To determine the nature of  the lesion causing toxin re- 
sistance, the same lines were exposed to TF chemically 
conjugated to PE40 (PE40 is a truncated form of PE lack- 
ing the toxin's cell-binding domain). Cells were washed 
into serum-free medium and then exposed to increasing 
concentrations of TF-PE40. TF-PE40 was active on WT 
cells with an IC50 of 270 ng/ml. The 14-2-1 cells exhibited a 
slight resistance compared with WT, while the 13-5-1 cells 
were slightly more sensitive (Fig. 8 B). 
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Figure 7. Time course of (A) uptake and (B) degradation of 1251- 
et2M--chymotrypsin. WT (O), 14-2-1 (A), and 13-5-1 (il) cells 
were plated at a density of 7 × 105. 1 h before the assay, the me- 
dium was removed and replaced with incubation buffer. 1251- 
a2M--chymotrypsin (1 nM) was then added. To measure nonspe- 
cific uptake, excess cold a2M-chymotrypsin was added; at each 
time point, the values plotted are corrected for nonspecific up- 
take or degradation measured by subtracting the amount endocy- 
tosed or degraded in the presence of excess unlabeled a2M-chy- 
motrypsin (500 nM). 
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Figure 8. Toxicity of (A) PE and (B) TF-PE40 for cell lines ex- 
pressing varying amounts of LRP. WT (O), 14-2-1 (&), or 13-5-1 
(1) cells were incubated with increasing concentrations of PE or 
TF-PE40 for 18 h. To determine the level of toxicity, cells were 
then pulsed for 1 h with [3H]leucine. Data are expressed as per- 
cent of protein synthesis in toxin-treated cells compared with 
control ceils receiving no toxin. 

Analyses of Other Clones Generated by the 
Same Strategy 

To determine the incidence of altered LRP expression in 
other PE-resistant clones that retained sensitivity to DT 
and lethal factor domain III, additional lines were pro- 
duced and screened as described above. Membrane ex- 
tracts were prepared from each line and then, after SDS- 
PAGE, probed for the presence of receptor heavy chain 
(see Fig. 4), PE binding (see Fig. 2), and RAP binding (see 
Fig. 3). One clone, 266-5-1, which had little or no detect- 
able heavy chain, appeared to have the same phenotype as 
13-5-1. In cell-killing assays, the 266-5-1 line was 100-fold 
resistant to PE (data not shown). The other four lines 
(209-1,251-2-1,241-6-1, and 236-1-1) resembled the 14-2-1 
cells in so far as they all had detectable LRP heavy chain, 
albeit at lower levels than in WT cells. In cell-killing as- 
says, these lines exhibited a 30-100-fold resistance to PE. 
All lines had a band at 120 kD exhibiting strong reactivity 
with RAP (see Fig. 3, lower arrow) and weak reactivity 
with anti-heavy chain antibodies (see Fig. 4). The identity 
of the protein corresponding to this band is discussed 
below. 

One cell line, designated 221-1, was obtained using a dif- 
ferent kind of selection. This line was selected for resis- 
tance to the fusion protein of lethal factor and domain III 
of PE. It subsequently proved to be approximately three- 
fold more sensitive to PE than WT cells (data not shown). 
By Western blot analysis, this line had slightly more LRP 
heavy chain than WT cells. Also, 221-1 was the only mu- 
tant line with comparable amounts of LRP light chain to 
WT cells (data not shown). 

Discussion 

Bacterial toxins have proved to be useful probes of mam- 
malian cell function. In particular, studies using DT have 
illuminated the biology of EF-2 by uncovering the post- 
translational modification of a conserved histidine (resi- 
due 715) to a novel amino acid called diphthamide (Van 
Ness et al., 1980). In unrelated experiments, it was shown 

~30 yr ago that ammonium chloride protected cells from 
the action of DT (Kim and Groman, 1965). This was one 
of the earliest experiments that led to the unveiling of the 
process we now know as endosomal acidification (for re- 
view see Yamashiro and Maxfield, 1988). In addition, it 
should be noted that the genetic basis for toxin resistance 
has been studied extensively in CHO cells (Robbins et al., 
1981; Moehring et al., 1984; Kohno et al., 1985; Colbaugh 
et al., 1988; Yamashiro and Maxfield, 1988). 

Here we have used DT to screen against cell lines that 
express mutations at common steps, such as those men- 
tioned above, in the PE/DT pathway. Our screen also in- 
cluded a fusion protein comprised of lethal factor from an- 
thrax toxin fused with domain III of PE. This hybrid toxin 
enters and kills cells via cell-bound protective antigen 
(Arora et al., 1992). Protective antigen requires a furinlike 
cleavage to render it capable of binding the lethal factor- 
domain III hybrid. Therefore, by incorporating this second 
screen, cells expressing mutations in furinlike proteases or 
"translocation" proteins would also be avoided. In theory, 
lines expressing PE-specific mutations should emerge. In 
fact, this strategy produced a very high proportion of cell 
lines with altered expression of LRP. PE had already been 
shown to bind LRP in a specific manner (Kounnas et al., 
1992). Here we provide further evidence that PE not only 
binds to this receptor but uses it to enter cells and inhibit 
protein synthesis. This was shown primarily by document- 
ing that lines exhibiting diminished expression of func- 
tional LRP were resistant to native PE but not resistant to 
a PE-related chimeric toxin that was internalized via an- 
other receptor. 

Initially, four PE-resistant clones were analyzed. In pre- 
liminary studies, using antibodies to the heavy chain of 
LRP, two of these, 14-2-1 and 13-5-1, appeared to have ob- 
vious changes in their expression of LRP. These were 
studied further using a variety of probes that evaluated 
both the physical state of the receptor and its functionality. 

Immunofluorescence studies of intact cells revealed that 
the 13-5-1 line had little reactivity for the antisera raised 
against the heavy chain of LRP. In separate studies (not 
reported here) we have expressed recombinant fragments 
corresponding to the entire length of the LRP heavy chain. 
Many of these fragments reacted with the anti-heavy 
chain antibodies, indicating that the loss of reactivity in the 
13-5-1 cell line was not due to a change in one or two 
epitopes but a major loss in LRP-related material. In addi- 
tion, ligand blots of membrane extracts revealed that 
13-5-1 cells did not contain a high molecular weight com- 
ponent that was reactive with either PE or RAP. By 
Northern blot analysis, no LRP-specific transcripts could 
be detected in 13-5-1 cells. And, functionally, the 13-5-1 
line did not bind or internalize ot2M-chymotrypsin com- 
plexes. The fact that these cells were 100-fold resistant to 
PE but not resistant to a chimeric toxin that entered cells 
via the TF receptor confirmed the importance of this re- 
ceptor in toxin-mediated cytotoxicity. 

It is of interest to note that cells lacking detectable LRP 
were 100-fold resistant to PE. In domain I of PE, lysine 57 
is known to mediate binding to LRP (Jinno et al., 1988; 
Kounnas et al., 1992). When this lysine is changed to 
glutamic acid, binding is abolished and toxicity for cells is 
reduced by 100-fold (Jinno et al., 1988; Kounnas et al., 
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1992). Thus  the  rec ip roca l  loss of  b inding  funct ion,  by ei- 
the r  the  r ecep to r  o r  the  l igand,  resu l ted  in the  same  100- 
fold r educ t ion  in cy to toxic  activity.  T h e  res idual  toxici ty  of  
P E  for  13-5-1 cells cou ld  be  due  to l ower  aff ini ty  in terac-  
t ions wi th  a n o t h e r  cell  sur face  c o m p o n e n t .  

T h e  s i tua t ion  wi th  the  14-2-1 l ine was qui te  dif ferent .  
P rob ing  p e r m e a b i l i z e d  cells r e v e a l e d  substant ia l  a m o u n t s  
of  i m m u n o r e a c t i v e  L R P .  H o w e v e r ,  w h e n  the  surface  ex- 
p ress ion  o f  L R P  was assessed,  it b e c a m e  appa ren t  why  
these  cells migh t  be  res is tant  to PE.  A n t i - L R P  heavy  cha in  
showed  li t t le o r  no  surface  react ivi ty.  Lack  of  func t iona l  
r ecep to r  at the  cell  sur face  was c o n f i r m e d  by resul ts  indi-  
cat ing tha t  these  cells also fai led to b ind  and in te rna l ize  
etEM--chymotrypsin complexes .  L igand  blots  of  m e m b r a n e  
extracts  r e v e a l e d  that  the  14-2-1 l ine expressed  L R P  in a 
f o r m  that  cou ld  still b ind  bo th  P E  and R A P .  Addi t iona l ly ,  
W e s t e r n  blots  wi th  a n t i - h e a v y  cha in  c o n f i r m e d  the  pres-  
ence  of  substant ia l  a m o u n t s  of  reac t ive  ma te r i a l  at appar -  
ent ly  the  cor rec t  size. P rob ing  with  an  an t ibody  to the  L R P  
light chain  r e v e a l e d  that  the re  was r e d u c e d  reac t iv i ty  at 85 
kD,  the  e x p e c t e d  m o l e c u l a r  mass  for  this chain  o f  the  re-  
ceptor .  A n t i - l i g h t  cha in  an t ibod ies  r e ac t ed  weak ly  wi th  a 
species that  was close in size to the  L R P  heavy  chain.  This  
resul t  sugges ted  that  s ingle-chain  L R P  was be ing  ex- 
p ressed  bu t  no t  p rocessed  efficiently.  W h e n  assessed for  
P E  sensit ivity,  these  cells p r o v e d  to be  ~ 1 0 - f o l d  res is tant  
c o m p a r e d  with  WT.  

Whi le  it is no t  p roved ,  da ta  f r o m  the  analysis o f  the  14- 
2-1 l ine suggest  that  sur face  express ion  o f  L R P  fol lows the  
process ing  of  the  s ingle-chain  p recu r so r  and  is poss ibly  de-  
p e n d e n t  on  it. This  is cons is ten t  wi th  the  pa thway  pro-  
posed  by H e r z  et  al. (1990) for  m a t u r a t i o n  of  L R P .  Single-  
chain  L R P  is c l eaved  af ter  the  s equence  of  R H R R ,  which 
is a consensus  site for  c l eavage  by a fur in l ike  pro tease .  Fu-  
ture  s tudies  will d e t e r m i n e  w h e t h e r  o r  no t  this s equence  is 
r e t a ined  in the  m u t a n t  L R P  expressed  in the  14-2-1 cells o r  
w h e t h e r  the re  is a n o t h e r  defec t  that  resul ts  in p o o r  pro-  
cessing. 

A reac t ive  band  at ~ 1 2 0  k D  was d e t e c t e d  w h e n  m e m -  
b rane  ext rac ts  w e r e  p r o b e d  with  PE,  R A P ,  o r  an t ibod ies  
to the  L R P  heavy  chain.  This  band  was Seen in all lines, 
but  did no t  co r re la te  wi th  toxin  res is tance,  and  is no t  a 
cand ida te  for  the  tox in ' s  p r imary  recep tor .  H o w e v e r ,  the  
reac t iv i ty  of  this band  for  R A P  was striking. This  has 
p r o m p t e d  a sepa ra te  s tudy to es tabl ish its ident i ty .  A pre-  
l iminary  r epo r t  suggests  that  the  120-kD p ro t e in  is the  
very  low dens i ty  l i pop ro t e in  r e c e p t o r  (Ba t t ey  et  al., 1994). 

In  conclus ion ,  P E  uses the  heavy  cha in  o f  L R P  as its re-  
c e p t o r  for  toxin  in ternal iza t ion .  Since P E  binds t ight ly  to 
the  heavy  cha in  o f  L R P  at low p H ,  it is l ikely that  the  tox in  
r ema ins  r e c e p t o r  b o u n d  af ter  de l ive ry  to the  e n d o s o m e .  
T o  be  act ive  as a toxin,  P E  mus t  be  pro teo ly t ica l ly  c leaved.  
In  sepa ra te  expe r imen t s ,  we  have  shown that  P E  is c l eaved  
by fur in  wi th  a p H  o p t i m u m  of  5.0-5.5 (Ch i ron  et  al., 
1994). F u r i n - m e d i a t e d  c leavage ,  which  m a y  occur  in the  
e n d o s o m a l  c o m p a r t m e n t ,  could  be  the  m e c h a n i s m  by 
which  the  C O O H - t e r m i n a l  enzymat ica l ly  act ive  f r a g m e n t  
of  P E  is r e l eased  f r o m  L R P .  O n c e  re leased ,  this f r agmen t  
can  t rans loca te  to the  cytosol  and A D P - r i b o s y l a t e  e longa-  
t ion fac tor  2. 
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