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Purpose: To investigate how modulating ocular sympathetic activity affects progression
of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular
degeneration (AMD).

Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV
and were assigned to one of the following groups: daily eye drops of artificial tears
(n = 10; control group); daily eye drops of the β-adrenoreceptor agonist isoproterenol
(n = 10); daily eye drops of the β-adrenoreceptor antagonist propranolol (n = 10);
sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced
CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN
transection at different time points: immediately after the laser injury (n = 6), 7 days after
the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control
group). All animals were euthanized 14 days after laser application. CNV development
was quantified with fluorescein angiography and optical coherence tomography (in vivo),
as well as lesion volume analysis using 3D confocal reconstruction (postmortem).
Angiogenic growth factor protein levels in the choroid were measured with ELISA.

Results: In the first study, blocking ocular sympathetic activity through pharmacological
or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus
the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity
with isoproterenol also led to a reduction in lesion volume, but only by 27% versus
controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three
treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV
lesion volume analysis indicated that surgically removing the ocular sympathetic supply
inhibited progression of laser-induced CNV, regardless of whether ICN transection was
performed on the same day or 7 days after the laser injury.

Conclusion: Surgical and pharmacological block of ocular sympathetic activity can
inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could
be a potential bioelectronic medicine strategy for treating wet AMD.

Keywords: wet AMD, internal carotid nerve, choroidal neovascularization, ocular sympathetic activity, laser-
induced CNV, β-adrenoreceptor modulation
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INTRODUCTION

Age-related macular degeneration (AMD) is among the
most common causes of vision loss in developed countries
(Campochiaro, 2013). Exudative (wet) AMD is a form of
the disease in which an imbalance between angiogenic and
antiangiogenic factors, such as vascular endothelial growth factor
(VEGF), leads to choroidal neovascularization (CNV) (Van
Lookeren Campagne et al., 2014). Anti-VEGF therapies are the
gold standard therapy for wet AMD, but these drugs must be
injected into the eye every 2–6 weeks (Menon and Walters, 2009).

The sympathetic nervous system may play a role in regulating
endpoints related to wet AMD. Sympathetic innervation of the
eye originates from the superior cervical ganglion (SCG) (Smith
and Reddy, 1990). Prior studies in rat have shown a role for the
SCG in regulating choroidal vascularity, with removal of the SCG
leading to an increase in vascularization within weeks (Steinle
et al., 2002; Steinle and Smith, 2003) accompanied by changes in
angiogenic growth factors (Lashbrook and Steinle, 2005; Steinle
and Lashbrook, 2006; Wiley et al., 2006). Our group recently
demonstrated similar effects through transection of the internal
carotid nerve (ICN), a branch of the SCG that is the eye’s only
source of sympathetic input (Martinez-Camarillo et al., 2019).
We reported that ICN transection led to increased choroidal
vascularity and levels of angiogenic factors, including VEGF
and tumor necrosis factor-alpha (TNF-α). These results indicate
potential involvement of the sympathetic system in CNV and
therefore in wet AMD.

The most widely accepted animal model of wet AMD is the
laser photocoagulation model (Pennesi et al., 2012). The model
works by burning Bruch’s membrane with a laser, which causes
growth of new blood vessels from the choroid into the subretinal
space (Lambert et al., 2013). This growth is accompanied by
upregulation of VEGF (Yi et al., 1997; Wada et al., 1999) and
TNF-α (Shi et al., 2006; Jasielska et al., 2010). Maximal changes
are observed 1–2 weeks following the laser injury, with involution
of the CNV and recovery of the retinal pigment epithelium
occurring thereafter (Hoerster et al., 2012; Pennesi et al., 2012).
Although the laser-induced CNV animal model was originally
developed in non-human primates (Ryan, 1979), rodent models
have emerged as the most employed species for neovascular AMD
research (Pennesi et al., 2012). While the laser photocoagulation
model doesn’t replicate the complete pathophysiology of AMD, it
is still the most commonly used animal model for developing wet
AMD therapies (Shah et al., 2015; Lin et al., 2019).

Expression of β-adrenergic receptors as part of the
sympathetic pathway within the choroid has been described
previously (Casini et al., 2014). Propranolol, a non-selective
β-adrenoceptor (β-AR) blocker, has been used as an
antiangiogenic compound for treating choroidal diseases such
as choroidal hemangioma (Thapa and Shields, 2013; O’Bryhim
et al., 2019). Prior studies using the laser photocoagulation model
in mouse have demonstrated that systemic (Lavine et al., 2013)
or intraocular (Nourinia et al., 2015) delivery of propranolol
causes a reduction in CNV lesion size. These findings support
manipulation of ocular sympathetic activity as a potential
therapy for wet AMD. However, they appear to contradict our

prior findings that ICN transection (i.e., blocking sympathetic
activity) is proangiogenic (Martinez-Camarillo et al., 2019).

The field of bioelectronic medicine has recently emerged
with a goal of treating diseases caused by autonomic disbalance
(Birmingham et al., 2014). These therapies typically involve
electrical stimulation or blocking of autonomic nerves to
selectively affect the function of individual organs innervated
by those nerves. We have hypothesized that chronic electrical
modulation (stimulation or block) of ICN activity can slow,
stop, or even reverse progression of wet AMD by normalizing
expression of angiogenic growth factors that regulate blood vessel
proliferation (Martinez-Camarillo et al., 2019). In the present
study, we tested this hypothesis by using pharmacological or
surgical manipulation of ocular sympathetic activity as a proxy
for ICN electrical modulation and the rat laser photocoagulation
model as a proxy for wet AMD. Outcome measures included
quantification of CNV development and measurement of
choroidal VEGF levels.

MATERIALS AND METHODS

Animals and Study Design
A total of 58 Brown Norway rats, aged postnatal day (P)
100 ± 5 days, were included in two consecutive studies. In
the first study, 40 female rats were assigned into one of the
following four groups (n = 10 per group): (1) laser injury
followed by 14 days topical therapy with artificial tears (control
group); (2) laser injury followed by 14 days topical therapy of
50 mM isoproterenol eye drop formulation (β-AR agonist group);
(3) laser injury followed by 14 days topical therapy with 2%
propranolol eye drop formulation (β-AR antagonist group); (4)
bilateral ICN transection 6 weeks prior to laser injury followed
by 14 days topical therapy with artificial tears (ICNx group).
Female animals were used to be consistent with prior studies
(Steinle et al., 2002, 2005; Steinle and Smith, 2003; Lashbrook
and Steinle, 2005; Steinle and Lashbrook, 2006; Wiley et al.,
2006; Martinez-Camarillo et al., 2019). In the second study,
18 male Brown Norway rats were assigned to the following
three groups (n = 6 per group): (1) bilateral ICN sham surgery
7 days after laser therapy (control group); (2 and 3) bilateral
ICN transection immediately after or 7 days after laser therapy.
Male animals were used to avoid possible confounding effects
from the menstrual cycle on angiogenic growth factor levels. All
animals were euthanized 14 days after laser application. CNV
development was quantified in vivo with fluorescein angiography
(FA) and spectral-domain optical coherence tomography (SD-
OCT), as well as postmortem with lesion volume analysis using
3D confocal reconstruction. VEGF protein levels in the choroid
were measured with ELISA. Table 1 indicates which of these
outcome measures were analyzed in each study. Unpaired t-tests
were used for all statistical comparisons. Investigators who
performed data analysis were blinded to the treatment group. All
animals received the same anesthesia protocol, which included an
intraperitoneal injection of ketamine/xylazine. All experiments
were performed in accordance with the University of Southern
California Institutional Animal Care and Use Committee
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TABLE 1 | Analyses performed to track CNV progression following laser injury (day 0).

Analysis Time point(s) Measurement method

Study 1 CNV leakiness Day 14 FA

Lesion volume (ex vivo) Postmortem 3D confocal reconstruction

Choroidal VEGF protein levels Postmortem ELISA

Study 2 Lesion volume and edema (in vivo) Days 3, 7, 10, and 14 SD-OCT

CNV leakiness Days 3, 7, 10, and 14 FA

Lesion volume (ex vivo) Postmortem 3D confocal reconstruction

(IACUC) approval and guidelines on animal use and with the
Association for Research in Vision and Ophthalmology (ARVO)
statement for the Use in Ophthalmic and Vision Research.

Internal Carotid Nerve Transection
A subset of animals underwent bilateral transection of the ICN,
using a technique previously published by our group (Martinez-
Camarillo et al., 2019). This surgical approach selectively disrupts
sympathetic supply to the eye, while preserving the other SCG
branches. Following transection, the skin incision was closed with
a non-absorbable suture (nylon 6-0), and antibiotic ointment was
applied. Success of the surgery was verified by monitoring eyelid
and eyeball position over the subsequent days (Savastano et al.,
2010; Martinez-Camarillo et al., 2019).

Laser Photocoagulation Injury
With the animals under anesthesia, eye drops were instilled (1%
tropicamide and 2.5% phenylephrine HCl) to induce full pupil
dilation. Rats were treated with a 532-nm OcuLight GL green
diode laser (IRIDEX, Toronto, ON, Canada). Laser settings were:
150–160 mW power, 50 ms duration, and 75 µm diameter. In
study 1, half of the rats in each experimental group received
4 burns per eye (one burn per quadrant) and were used for
evaluating CNV development with FA scoring and lesion volume
analysis using 3D confocal reconstruction (He et al., 2005).
The other half received 12 burns in a single eye (one burn
per clock hour) and were used for evaluating choroidal VEGF
protein levels (Chan et al., 2005) (Twelve burns is considered a
blinding procedure, so only one eye could be treated according
to animal care guidelines). In study 2, all rats were treated with
4 laser burns per eye. Care was taken to avoid the retinal vessels.
Rupture of Bruch’s membrane was confirmed by the presence of
a retinal bubble.

Eye Drops
Following the laser injury, animals in study 1 received daily
eye drops between 9:00 and 11:00 am each day for 14 days.
Two drops (∼40 µL each) were instilled per eye. Artificial tears
were applied in the control and ICNx groups. The β-AR agonist
group received 50 mM isoproterenol (Jiang et al., 2010) dissolved
in artificial tears, and the β-AR antagonist group received 2%
propranolol (Dal Monte et al., 2013) dissolved in artificial tears.
Isoproterenol is known to be subject to oxidation, especially at pH
levels ≥6.5, which can lead to chemical degradation (Leach et al.,
1977). However, the pH of the eye drops could not be adjusted
below 6.5 since that would irritate the eyes. In order to mitigate

degradation, isoproterenol and propranolol drops were freshly
prepared once per week in plastic vials and stored at 4◦C. UV
spectra of the isoproterenol drops were measured over time to
confirm drug stability (Siva et al., 2012).

Fluorescein Angiography
All animals underwent FA to assess leakage from newly formed
vessels resulting from the laser injury. Rats in study 1 received
FA 14 days after laser therapy (prior to being euthanized), while
rats in study 2 received FA 3, 7, 10, and 14 days after laser
injury. With the animals fully anesthetized and their eyes dilated,
a 0.01 mL intraperitoneal injection of 10% sodium fluorescein dye
was applied. Sequential posterior pole images were taken using a
RetCam 3 Retinal Camera (Clarity Medical Systems, Pleasanton,
CA, United States) with an 80◦ lens. The intensity of fluorescein
staining in late-phase FA was scored according to an established
grading scale (Takehana et al., 1999). Lesions were given a score
of 0 (no staining), 1 (slightly stained), 2 (moderately stained), or 3
(strongly stained). The scores of all lesions within each treatment
group were averaged. Lesions that scored a 0 were excluded from
analysis, since those lesions likely represented laser impacts that
did not result in CNV (Lambert et al., 2013).

3D Confocal Reconstruction
Animals with 4 burns per eye were used for quantifying CNV
lesion volume postmortem. Rats were euthanized at least 4–5 h
after FA imaging, in order to allow the fluorescein enough time
to clear from the circulatory system. Eyes were enucleated, and
the cornea, lens, and retina were removed. The sclera-choroid
complex was fixed overnight in 4% formalin at 4◦C. Tissue was
washed the next day and permeabilized with 0.5% Triton-X for
4 h. The eye cups were blocked with 1% BSA for 2 h and
placed in 1:50 fluorescein-labeled GSL I isolectin B4 (endothelial
cell and macrophage marker; Vector Laboratories, Burlingame,
CA, United States) at 4◦C overnight. Samples were washed
and mounted on slides with mounting media (VECTASHIELD;
Vector Laboratories), while making incisions in the eye cups
to flatten them. Flat mounts were visualized using the 10x
objective of an UltraVIEW spinning disk confocal microscope
(PerkinElmer, Waltham, MA, United States). The image stacks
were generated in the z-plane, with the microscope set to excite
at 488 nm and to detect at 505–530 nm. Images were processed
using the microscope’s software, by closely circumscribing and
digitally extracting the fluorescent lesion areas throughout the
entire image stack (He et al., 2005). Each extracted lesion
was processed through the topography software to generate a
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digital topographic image representation of the lesion, which was
measured to indicate the CNV lesion volume.

Optical Coherence Tomography
In the second study, SD-OCT was used to monitor CNV
progression in vivo after laser therapy. OCT imaging was
performed with an Envisu Bioptigen system (Leica Microsystems,
Wetzlar, Germany), with each lesion imaged using 100
horizontal raster scans spaced 16 µm apart, over an area
of 1.6 × 1.6 mm. We used a stereological method (three-
dimensional interpretation of two-dimensional cross sections) to
reconstruct the OCT images in 3D and calculate lesion size, as
described previously (Trujillo-Sanchez et al., 2018).

Angiogenic Growth Factor Levels
In study 1, animals with 12 laser burns were used for evaluating
choroidal VEGF protein levels. Posterior poles were isolated
from each laser-treated eye and pooled within each of the
four experimental groups. Tissues were homogenized in buffer
containing mixed protease inhibitors for protein extraction. Total
protein concentration was determined by a Bio-Rad protein
assay (Bio-Rad Laboratories, Hercules, CA, United States). VEGF
protein in the posterior poles was assessed in triplicate with a
VEGF ELISA kit (detection range of 3–500 pg/mL; R&D Systems,
Minneapolis, MN, United States) (Chan et al., 2005). Protein
concentrations were normalized by the total protein.

RESULTS

Study 1
In the first study, we measured the effects of pharmacological
or surgical manipulation of ocular sympathetic activity on
development of laser-induced CNV. Animals were subjected to
laser injury and were split into four groups: (1) daily eye drops of
artificial tears (control group); (2) daily eye drops of isoproterenol
(β-AR agonist group); (3) daily eye drops of propranolol (β-AR
antagonist group); (4) bilateral ICN transection 6 weeks prior
to the laser injury, followed by daily eye drops of artificial tears

(ICNx group). The 6-week delay before the laser injury was
chosen to be consistent with prior studies that assessed effects
of sympathetic denervation on choroidal vascularity and related
measures (Steinle et al., 2002; Steinle and Smith, 2003; Steinle
and Lashbrook, 2006; Martinez-Camarillo et al., 2019). Animals
were euthanized 14 days after laser application. As described in
Table 1 and section “Materials and Methods,” outcome measures
included CNV leakiness (in vivo), CNV lesion volume (ex vivo),
and choroidal VEGF protein levels.

Fluorescein Angiography
Leakiness of CNV lesions was assessed with FA scoring, 14 days
after laser therapy. Average FA scores for all groups fell
between 1.5 and 2.0, indicating moderate staining (Figure 1).
Lesions in rats receiving daily β-AR eye drops (propranolol or
isoproterenol) were slightly less leaky than lesions in the control
group; however, scores were not significantly different among
these groups (P > 0.05). In rats that underwent ICN transection
6 weeks prior to laser injury, FA scores were 17% lower than
scores in the control group (P = 0.02).

3D Confocal Reconstruction
Confocal analysis of lesion volumes revealed smaller lesions
in the three treatment groups than in the control group
(Figure 2). Blocking β-AR activity with propranolol or through
ICN transection led to reductions in lesion volume by 75 and
70%, respectively (P < 0.001). Application of the β-AR agonist
isoproterenol also reduced lesion volume versus the control
group, but by only 27% (P < 0.05).

Angiogenic Growth Factor Levels
ELISA testing indicated elevated choroidal VEGF protein levels
in the three treatment groups versus the control group (P < 0.01;
Figure 3). VEGF levels in the control group were relatively
low (Martinez-Camarillo et al., 2019), suggesting a return to
baseline in this group.

Study 2
The second study was designed to further investigate the effects
of ICN transection in the rat laser-induced CNV model. Results

FIGURE 1 | FA scores 14 days after laser injury in each experimental group (n ≥ 35 lesions per group from five animals per group). Four laser burns were made per
eye. (Left) Average lesion score in each group. Scores in the ICN transection group were significantly lower than scores in the control group (*P < 0.05). Error bars
indicate SEM. (Right) Histogram showing the distribution of FA scores in each group.
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FIGURE 2 | β-AR modulation leads to smaller laser-induced CNV lesions. (Left) All three treatment groups had statistically smaller lesions than the control group
(n ≥ 30 lesions per group from five animals per group; ∗∗∗P < 0.001; ∗P < 0.05). Lesions in the propranolol and ICN transection groups were statistically similar in
size (P = 0.16). Error bars represent SEM. (Right) Images of CNV membranes, stained with FITC-labeled isolectin-B4, showing representative lesions from the
control group (top) and ICN transection group (bottom). Scale bar = 200 µm.

from study 1 revealed that blocking ocular sympathetic activity
in this model inhibited progression of laser-induced CNV (see
Figures 1, 2), supporting ICN block as a potential therapy for wet
AMD. However, ICN transection was performed 6 weeks prior to
the laser injury. A therapy for wet AMD would not commence
until after a patient presents with CNV; therefore, a better
animal model of the clinical situation would be to perform ICN
transection after the laser injury. This was the purpose of study 2.

Rats were subjected to laser injury and split into three groups:
(1) bilateral ICN sham surgery 7 days after the laser injury
(control group); (2) bilateral ICN transection immediately after
the laser injury (ICNx0 group); (3) bilateral ICN transection
7 days after the laser injury (ICNx7 group). Animals were
euthanized 14 days after laser application. Outcome measures
included CNV leakiness (in vivo) and CNV volume (in vivo
and ex vivo), as described in Table 1 and section “Materials and
Methods.”

Fluorescein Angiography
Figure 4 shows the FA scores in each experimental group at 3,
7, 10, and 14 days after the laser injury. Scores in all groups
were statistically similar on days 3 and 7, with the average score
increasing from ∼0.2 to ∼0.9 over this time period. Scores in each
group increased again on days 10 and 14, indicating steady CNV
development throughout the 2-week monitoring period. On days
10 and 14, FA scores in both ICNx groups were lower than
those of the control group, with the ICNx7 group exhibiting the
lowest average scores. The average FA score in the ICNx7 group
increased from ∼0.9 to ∼1.1 between days 7 and 14, signifying
limited CNV progression over this time period.

Lesion Volume Analysis
Figure 5 summarizes the results from the OCT and confocal
lesion volume measurements. Lesions in all three groups shrank
between days 3 and 7 after the laser injury, due to resolution
of edema during this time period. Between days 7 and 10,

lesion sizes remained relatively stable. Average lesion sizes in
all groups were statistically similar through day 10, with just
one exception (see Figure 5, left). By day 14, however, lesions
in the control group had grown, while lesion sizes in the two
ICNx groups remained stable. Both OCT and confocal imaging
revealed significantly smaller lesion sizes in the ICNx groups
versus the control group on day 14 (P < 0.001). According to the
confocal measurements, average lesion volume in the ICNx0 and
ICNx7 groups was 30 and 45% smaller than that of the control
group, respectively.

DISCUSSION

Outcomes from our two studies indicate a direct role for
the sympathetic nervous system, and the β-AR receptors in

FIGURE 3 | Choroidal VEGF protein levels 14 days after laser injury in each
experimental group (n = 5 animals per group). Twelve laser burns were made
in a single eye. VEGF levels in the treatment groups were significantly higher
than levels in the control group. Units represent VEGF protein normalized to
total protein. Error bars represent SD. ∗∗∗P < 0.001; ∗∗P < 0.01.
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FIGURE 4 | FA scores at 3, 7, 10, and 14 days after laser injury in each
experimental group (n ≥ 45 lesions per group from six animals per group).
Four laser burns were made per eye. Beginning 10 days after laser treatment,
scores in the animals that underwent ICN transection on day 7 were
significantly lower than scores in the animals that received sham surgery
(***P < 0.001). Error bars indicate SEM.

particular, in regulating the development of laser-induced CNV.
In the first study, inhibiting sympathetic activity by either
pharmacological or surgical manipulation led to reductions
in lesion volume by 70–75%. In agreement with the FA data
(see Figure 1), these results suggest that blocking ocular
sympathetic activity generated an anti-angiogenic response.
Unexpectedly, application of the β-AR agonist isoproterenol
also led to a reduction in lesion volume versus the control
group, but only by 27%. This may be attributed to β-AR
desensitization or downregulation caused by prolonged
application of isoproterenol, as reported by others (Gonzalez-
Brito et al., 1988; Gambarana et al., 1991; Brouri et al., 2002; Dal
Monte et al., 2012).

Though no studies have investigated the effect of β-AR
agonists on the progression of laser-induced CNV, several studies
in mice have reported that systemic or intraocular delivery

of β-AR antagonists causes a reduction in CNV lesion size
(Lavine et al., 2013, 2017; Nourinia et al., 2015; Omri et al.,
2019). Lavine et al. (2013) measured lesion areas (as opposed
to volumes) 14 days after laser photocoagulation and found that
daily intraperitoneal injection of propranolol (20 mg/kg/day) led
to a 50% reduction in lesion size. Omri et al. (2019) also treated
mice with daily administration of intraperitoneal propranolol
(6 mg/kg/day) and observed ∼70% reduced lesion areas after
14 days. Nourinia et al. (2015) measured lesion areas 28 days
after laser photocoagulation and found that a single intravitreal
injection of propranolol (0.3 µg) at the time of laser application
led to a 79% reduction in lesion size, similar to what we
observed. Lavine et al. (2017) tested effects of a single intravitreal
injection of the β2-AR antagonist ICI 118,551 at the time of
laser application and found a 35% reduction in lesion area after
14 days, indicating that the anti-angiogenic effects reported in
these studies are at least partially due to β2 receptor blockade (as
opposed to other β-AR subtypes).

To further demonstrate the inhibitory effect of delayed ocular
sympathetic block on laser-induced CNV in rats, the second
study showed that surgical ICN transection led to smaller CNV
lesion sizes, even when transection was performed at 0 and
7 days after the laser injury. Unexpectedly, we found that ICN
transection 7 days after the laser injury was more effective than
immediately after the laser injury (see Figures 4, 5). This finding
may arise from use of relatively small sample sizes (n = 6
animals per group). In support of this hypothesis, it would be
expected that 7 days after the laser injury, CNV lesions in the
ICNx7 group (prior to undergoing surgery) would be similar
in size to lesions in the control group. However, as shown
in Figure 5, ICNx7 lesions were smaller than control group
lesions on day 7. Nevertheless, the FA and lesion volume results
from both studies indicate that surgically removing the ocular
sympathetic supply inhibits progression of laser-induced CNV.
Surgical ICN block was more effective when performed 6 weeks
prior to laser injury versus after laser injury (70% reduction
in lesion volumes versus 30–45% reduction, respectively). For
comparison, a mouse study with the FDA-approved anti-VEGF

FIGURE 5 | ICN transection leads to smaller laser-induced CNV lesions. Lesion volumes were measured with SD-OCT at 3, 7, 10, and 14 days after laser treatment
(left). Following euthanasia on day 14, volumes were measured ex vivo with confocal microscopy (right). By day 14, animals that underwent ICN transection had
statistically smaller lesions than the animals that received sham surgery (n ≥ 44 lesions per group from six animals per group; ***P < 0.001). This was true regardless
of whether ICN transection was performed immediately after or 7 days after laser therapy. Error bars represent SEM.
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agent aflibercept (Eylea; VEGF-TRAPR1R2) demonstrated that
a single intravitreal injection of the drug at the time of laser
application led to a ∼30% reduction in lesion size after 14 days
(Saishin et al., 2003).

Given our finding that pharmacological and surgical block
of ocular sympathetic activity inhibited CNV progression, it
would be expected that these interventions would also cause
reduced choroidal VEGF levels. However, we found just the
opposite; choroidal VEGF was elevated in the treatment groups
(see Figure 3). There are a couple potential explanations for
this surprising result: First, VEGF was measured 14 days after
the laser injury, which may not have been the appropriate time
point [for example, systemic VEGF levels in mouse peak 7 days
after laser injury and return to baseline after 14 days (Kase
et al., 2010)]. Second, VEGF levels are affected by several factors
including inflammation, ischemia, and hypoxia (Ramakrishnan
et al., 2014); it is possible that drug administration and/or ICN
transection surgery caused these side effects.

Our observation that blocking ocular sympathetic activity
in the laser-induced CNV model is anti-angiogenic appears
to contradict our prior finding that ICN transection in naive
rats (not subjected to laser injury) causes increased choroidal
vascularity after 6 weeks, as measured by histomorphometry
(Martinez-Camarillo et al., 2019). One possible explanation,
as proposed previously, is that this increased vascularity may
have been indirectly caused by a long-term vasodilation due
to a loss of sympathetic tone (Martinez-Camarillo et al.,
2019). Another possibility is that the contradictory findings
arise from use of different experimental models and rat
strains: naive Sprague Dawley (albino) in our prior study
and laser-treated Brown Norway (pigmented) in the present
studies (The laser-induced CNV model requires pigmented
animals, since pigment is needed for absorbing the laser
energy to create a burn). Yet another possibility is that
sympathetic activity plays different roles in the intact versus
leaky blood vessels, which is supported by a pro-angiogenic
sympathetic role in tumor neovascularization (Mulcrone et al.,
2017; Hanns et al., 2019; Kamiya et al., 2019; Stavropoulos
et al., 2020). In a comprehensive review of the role of
the β-adrenergic system on ocular neovascularization, Casini
et al. (2014) concluded that “in different experimental models,
a decrease of the β-adrenergic function may result either

in reduction or in exacerbation of the vascular changes,
thus suggesting possible dual effects of β-AR modulation
depending on the experimental setting.” Because the laser-
induced CNV model is the gold standard for testing new
treatments for wet AMD (Pennesi et al., 2012), future studies
should focus on this model.

In summary, our results demonstrate that blocking ocular
sympathetic activity inhibits CNV. Even when ICN transection
was performed 1 week after laser injury, inhibition of CNV
progression was still observed. This suggests that electrical
blocking of ICN activity could be an effective bioelectronic
medicine strategy for treating wet AMD.
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