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Colossal flexoresistance in dielectrics
Sung Min Park1,2, Bo Wang 3, Tula Paudel 4, Se Young Park1,2,5, Saikat Das1,2, Jeong Rae Kim1,2,

Eun Kyo Ko1,2, Han Gyeol Lee1,2, Nahee Park6, Lingling Tao4, Dongseok Suh 6, Evgeny Y. Tsymbal 4,

Long-Qing Chen3, Tae Won Noh 1,2✉ & Daesu Lee 7,8✉

Dielectrics have long been considered as unsuitable for pure electrical switches; under weak

electric fields, they show extremely low conductivity, whereas under strong fields, they suffer

from irreversible damage. Here, we show that flexoelectricity enables damage-free exposure

of dielectrics to strong electric fields, leading to reversible switching between electrical states

—insulating and conducting. Applying strain gradients with an atomic force microscope tip

polarizes an ultrathin film of an archetypal dielectric SrTiO3 via flexoelectricity, which in turn

generates non-destructive, strong electrostatic fields. When the applied strain gradient

exceeds a certain value, SrTiO3 suddenly becomes highly conductive, yielding at least around

a 108-fold decrease in room-temperature resistivity. We explain this phenomenon, which we

call the colossal flexoresistance, based on the abrupt increase in the tunneling conductance of

ultrathin SrTiO3 under strain gradients. Our work extends the scope of electrical control in

solids, and inspires further exploration of dielectric responses to strong electromechanical

fields.
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Controlling electron dynamics in solids has opened avenues
for fascinating physical phenomena1–3 and has formed the
basis of electronic applications. In semiconductors with a

relatively small but nonzero bandgap, applying moderate electric
fields could switch their electrical state, i.e., from insulator to
conductor, which makes them a building block for contemporary
digital electronics. In dielectrics with a large bandgap, controlling
their electrical states is quite complicated, as it usually involves a
combination of intrinsic and extrinsic processes. Zener4 predicted
that strong electric fields (≥109 Vm−1) could intrinsically lead to
electrical breakdown in dielectrics through tunneling processes
across the valence and conduction bands. As this dielectric
breakdown naturally guarantees the largest and fastest electrical
response, recent works have aimed to realize it by applying strong
femtosecond fields1,2. Under strong static fields, however, the
dielectric breakdown has been unavoidably subject to extrinsic
effects5,6, such as Joule heating and irreversible damage. This
situation complicates our understanding of the intrinsic
mechanism of dielectric breakdown and limits device application.

Here, we demonstrate that electrical states in dielectrics can be
controlled by means of depolarization field induced by flexo-
electric polarization. By applying the strain gradients from a
conductive scanning probe tip, we simultaneously polarize and
measure the current across the film. Above the certain critical
strain gradients, the current–voltage (I–V) characteristic changes
from tunneling-like to linear, which indicates the change of the
electrical state from insulating to conducting. We explain this
phenomena with a modulation of band structure due to the
electrostatic field induced by flexoelectricity.

Results
Concept of flexoelectric control of electrical states in dielec-
trics. To achieve intrinsic, static control of electrical states in
dielectrics, we could utilize a non-destructive electrostatic field
developed in ultrathin polar materials (Fig. 1a). When a polar
material is sufficiently thin but still maintains polarization P, a
depolarization field Edep arises from the unscreened bound
charges on its surface7,8:

Edep ¼ � P � σS
ε

; ð1Þ

where σS is the screening charge (e.g., by adjacent metal

electrodes) and ε is the dielectric permittivity of the polar mate-
rial. In the ultrathin limit, σS tends to zero8 and Edep becomes
increasingly saturated at Edep=−P/ε, largely modifying the band
structure (Fig. 1a). In particular, when the polarization exceeds a
certain threshold, both the conduction band minimum and
valence band maximum could cross the Fermi level, as
confirmed in our first-principles calculation (Supplementary
Fig. 1). In such a case, the tunnel-barrier width of ultrathin
dielectrics would abruptly decrease, whereas the tunnel-barrier
height remains fixed to the bandgap Δbg (Fig. 1a and Supple-
mentary Fig. 2). This would result in a significant enhancement of
tunneling conductance across ultrathin dielectrics, leading to a
colossal decrease in electrical resistance, as predicted in our
Wentzel–Kramers–Brillouin (WKB) simulation (Fig. 1b). There-
fore, it would be of great interest to explore tunnel transport
across a highly polarized ultrathin dielectric.

To this end, we can induce and stabilize large polarization in an
ultrathin dielectric via flexoelectricity9–20. All dielectric materials
polarize in response to strain gradients, as follows:

P ¼ ε � feff �
∂u
∂x

; ð2Þ

where ∂u/∂x and feff are the strain gradient and effective
flexocoupling coefficient, respectively. Applying loading forces
through an atomic force microscope (AFM) tip (Fig. 2a)
generates strain gradients as large as 107 m−1 in ultrathin
dielectrics13,17–19. Such giant strain gradient could then induce
flexoelectric polarization, up to a few 0.1 Cm−2 (ref. 19), much
larger than the polarization values typically attainable in ultrathin
ferroelectrics21,22.

Colossal flexoresistance in an archetypal dielectric SrTiO3. We
choose SrTiO3 (STO) as a model dielectric system, as it shows
enhanced flexocoupling strength at the nanoscale19, as well as a
reasonably large bandgap of 3.2 eV. Importantly, furthermore, its
conductivity responds negligibly to the applied strain itself
(Supplementary Fig. 3)23,24, thereby maximizing the contribution
from strain gradient-induced flexoelectricity. We prepare 10-unit-
cell-thick (i.e., 3.9-nm thick) stoichiometric STO films on a (001)-
oriented STO single crystal substrate, with a conductive SrRuO3

buffer layer (Supplementary Figs. 4 and 5). The stoichiometric
homoepitaxial STO should remain paraelectric down to 0 K
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Fig. 1 Colossal decrease of resistivity in highly polarized ultrathin dielectrics. a Schematic diagram of the potential energy profiles across SrTiO3 (STO)
with increasing flexoelectric polarization (P; white arrow). Red solid lines and black dashed lines indicate the effective tunnel barrier and Fermi level,
respectively. Blue and green dashed lines indicate the conduction band minimum and valence band maximum for P= 0, respectively. b Resistance as a
function of Δφ, obtained by calculating tunneling conductance through a Wentzel–Kramers–Brillouin (WKB) approximation. We normalize the resistance
by the value at Δφ= 0, and assume the bandgap Δbg, original barrier height φ0, and original barrier width d0 to be 3.2 eV, 1.4 eV, and 3.9 nm, respectively.
At Δφ= 1.8 eV, the valence band maximum crosses the Fermi level, which causes an abrupt reduction in the resistance. The black dashed line indicates the
result obtained by neglecting the valence band contribution. Source data are provided as a Source data file.
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(ref. 25); however, under an AFM-tip loading force, it can become
highly polarized via flexoelectricity19.

We then use contact mechanics analysis to simulate strain
gradients and associated flexoelectric polarization in ultrathin
STO under an AFM-tip loading force (see Methods). For the
simulation, we adopt a diamond tip and assume a tip radius of
curvature (rtip) of 100 nm. Note that the actual contact radius is
estimated to be around 13 nm for the case of a 15 μN tip loading
force, which is much smaller than the tip radius rtip. Figure 2b
shows a simulated profile of transverse strain u11 under a
representative tip loading force of 15 μN, revealing the large
inhomogeneity of u11. The resulting transverse strain gradients
∂ut/∂x3 (i.e., =∂u11/∂x3+ ∂u22/∂x3) are as huge as a few 107 m−1

(Supplementary Fig. 6); this giant strain gradients are attributable
to AFM-tip-induced downward bending at the nanoscale. Our
simulation also finds that those strain gradients induce large
polarization in ultrathin STO via flexoelectricity, reaching up to
0.18 Cm−2 on average (Fig. 2c). When neglecting flexoelectricity,
our simulation does not produce any polarization, confirming the
flexoelectric nature of the induced polarization.

When such a large polarization remains preserved in an
ultrathin dielectric, it could significantly modify the band

structure of the dielectric, as predicted in Fig. 1. We estimate
the threshold polarization Pth in ultrathin STO, above which both
the conduction band minimum and valence band maximum
cross the Fermi level (Fig. 1a):

Pthj j � ε � Edep;th ¼ ε � Δbg

e � t ; ð3Þ

where Δbg and t are the bandgap and thickness of the STO layer,
respectively, e is the electronic charge, and Edep,th is the threshold
Edep. Given that ε ~ 20ε0 of strained STO (Supplementary Fig. 7),
Δbg= 3.2 eV and t= 3.9 nm, Eq. (3) yields Pth= 0.15 Cm−2,
comparable to the value obtained in our simulation (Fig. 2c). At a
certain AFM-tip loading force, therefore, the induced flexoelectric
polarization could give rise to an abrupt increase in tunneling
currents across ultrathin STO.

Motivated by this, we use a conductive AFM tip to apply
loading forces while simultaneously measuring the tunneling
current (Fig. 2a). Conforming to the simulation condition, we use
a diamond-coated tip with rtip= 100 nm (Supplementary Fig. 8),
which also can withstand much higher loading forces than other
conductive tips (e.g., PtIr-coated tips). Figure 3a shows I–V
curves measured at room temperature for a few representative
loading forces (see Supplementary Fig. 9 for the entire set). At
small applied forces (up to 7 μN), the measured current remains
close to the noise level (a few pA). At intermediate applied forces
(ranging from 7 to 13 μN), the I–V curves exhibit typical
tunneling characteristics, and the current level increases gradually
with the applied force. These results are ascribable to systematic
modification of tunnel-barrier profiles under AFM-tip loading
forces, consistent with our previous work19. Interestingly, when
the applied forces exceed a threshold value (~15 μN), the I–V
curves suddenly become linear in shape—characteristic of a
highly conducting state. This highlights that the electrical state of
ultrathin STO is switchable between highly insulating and
conducting states, via purely mechanical means.

Importantly, this electrical-state switching in a large-bandgap
dielectric naturally leads to an extremely large change in the
electrical resistivity. During electrical-state switching, the effective
resistivity of STO exhibits a colossal change with around eight
orders-of-magnitude difference (Fig. 3b; see also Methods). Due
to the detection limit of our equipment, we may underestimate
the resistivity of the insulating state, i.e., 107Ω cm, compared with
the bulk STO resistivity of over 109Ω cm; thus, the actual ratio of
resistivity change could be larger than the estimated value. Given
that we estimate the effective resistivity by taking into account the
loading force dependence of the tip–STO contact area and STO
thickness, we exclude any geometric anomaly as an origin for the
observed effect. When we normalize the measured effect by
applied pressures (i.e., loading forces divided by the tip–STO
contact area), the relative increase in conductivity turns out to be
as large as 10−3–10−2 Pa−1. Compared with other pressure-
induced effects, such as piezoresistance (at most, 10−7 Pa−1)26,27,
this effect not only shows several orders-of-magnitude enhance-
ment, but also implies a distinctly new mechanism.

Excluding other origins. Before addressing how flexoelectricity
could explain our results, we rule out other possible origins of the
phenomenon. We first exclude any involvement of an electro-
chemical process. The AFM-tip-induced mechanical force does
not cause any permanent surface damage to the STO film (Fig. 4a,
b), and the colossal control of resistance is reproducible, as pro-
ven by repeated exertion/withdrawal of the loading force (Fig. 4c).
We also reproduce the same result even using a graphene top
electrode (Supplementary Fig. 10). This again excludes any elec-
trochemical interaction of STO with experimental environments,
such as the AFM tip or ambient atmosphere, as graphene is
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Fig. 2 Mechanically induced large polarization in ultrathin dielectrics.
a Schematic diagram of the experimental setup, illustrating the flexoelectric
polarization (white arrow) generated by the atomic force microscope (AFM)
tip pressing the surface of ultrathin dielectrics. While generating large strain
gradients, we simultaneously measure the tunneling currents across the
flexoelectrically polarized STO. b, c Phase-field simulations for the
transverse strain u11 (b) and corresponding polarization distribution (c) in
ultrathin STO under a representative tip loading force of 15 μN over a
circular area ~13 nm in radius. Vertical and horizontal scale bars represent
1 nm and 10 nm, respectively. Source data are provided as a Source data file.
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impermeable to all atoms and molecules. In addition, based on
quantitative and qualitative evidences (Supplementary Figs. 11–
13), we exclude an electrostatic interaction between the AFM tip
and STO as the primary origin of the colossal resistivity change
observed.

Furthermore, the AFM-tip-induced strain itself cannot largely
change the resistivity of STO that does not have d electrons.
According to our theoretical analysis, the AFM-tip loading force
generates compressive longitudinal strain u33 up to around 0.15 in
STO (Supplementary Fig. 6). Because the antibonding and bonding
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states of Ti 3d and O 2p orbitals form the conduction and valence
bands of STO, respectively, the compressive strain rather increases
the bandgap of STO slightly (Supplementary Fig. 3)23,24; the effect
of strain itself thus cannot explain the observed colossal decrease in
STO resistivity, distinct from conventional piezoresistance
effects26,27. For confirming this in our geometry, we repeat the
experiments using AFM tips with different rtip values of ~165 and
~215 nm (Supplementary Fig. 8). Although these tips can generate
longitudinal strain u33, comparable to that by the tip with rtip=
100 nm (Supplementary Fig. 6), the resulting resistivity changes are
suppressed considerably (Fig. 3b and Supplementary Fig. 14).
Therefore, these results suggest that the observed colossal decrease
in resistivity could originate from AFM-tip-induced strain
gradients, which modify the tunnel barrier via flexoelectricity.

Strain-gradient-dependent resistivity change. Figure 3c indeed
highlights the close correlation between the resistivity change and
strain gradients. Strikingly, all of the data obtained with the three
tips collapse to a nearly single curve when plotting the resistivity as
a function of ∂ut/∂x3. This emphasizes the dominant contribution
of ∂ut/∂x3 to the observed colossal reduction of resistivity. As pre-
dicted in Fig. 1, when the strain gradient-induced flexoelectric
polarization reaches a threshold value, both the conduction band
minimum and valence band maximum cross the Fermi level. This
band crossing is capable of not only enhancing the tunneling
conductance across STO (Fig. 1b) but also promoting interband
tunneling between the STO valence and conduction bands, causing
Zener breakdown3,4,28. Equations (2) and (3) estimate the threshold
∂ut/∂x3 required for the band crossing to be around 3 × 107m−1 for
10-unit-cell-thick STO, using Δbg= 3.2 eV, t= 3.9 nm, and feff=
25 V (ref. 19). This agrees quantitatively with our experimental
results (Fig. 3c), in which the colossal decrease of resistivity begins
at ∂ut/∂x3 ~ 3.5 × 107m−1. Taken together, our experimental and
theoretical results consistently evidence that flexoelectric
polarization-induced band crossing could explain the colossal
reduction of resistivity, which we call the colossal flexoresistance.

Colossal flexoresistance in various dielectrics. As such, it would
be interesting to explore colossal flexoresistance in other dielec-
trics. As flexoelectricity is a universal phenomenon in all dielec-
trics, colossal flexoresistance could, in principle, be universal as
well. Each dielectric, however, would require different threshold
loading forces (i.e., threshold strain gradients) for colossal flex-
oresistance, depending on the inherent flexocoupling strength,
bandgap, and so on. We repeat the experiments using BaTiO3,
CaTiO3, and LaAlO3 of similar thicknesses (i.e., 10-unit-cell
thick). For BaTiO3 and CaTiO3, we observe the same electrical-
state switching (Fig. 4c and Supplementary Fig. 15), but at lower
and higher threshold loading forces, respectively. The lower (or
higher) threshold loading force for BaTiO3 (or CaTiO3) may
originate from inherently stronger (or weaker) flexocoupling
strength29 and/or smaller (or larger) bandgap, compared with
those in STO. For LaAlO3, contrarily, we does not observe any
noticeable resistance change up to the maximum AFM-tip load-
ing force (Fig. 4c). LaAlO3 may have a much weaker flexocou-
pling strength due to its small Born effective charge30;
additionally, its large bandgap (i.e., Δbg= 5.5 eV) also requires a
large threshold polarization in Eq. (3). These conditions may
make the threshold strain gradient in LaAlO3 too large to be
achievable in our experimental geometry.

Discussion
The colossal flexoresistance effect described here overcomes a
long-standing dilemma: the electrical-state switching in dielectrics
requires strong fields, but when applied by strong static fields,

dielectrics inevitably suffer from irreversible damage. Utilizing
universal flexoelectricity, we develop a general approach to apply
non-destructive, strong electrostatic fields in various insulating
systems, such as the Mott insulator3. Our approach will open up
new avenues for unconventional quantum phenomena under
strong static fields and device applications, such as the flex-
oelectronic transistor and mechanical sensor.

Methods
First-principles calculations. The atomic and electronic structures of the system
were obtained using density functional theory (DFT) implemented in the Vienna
ab initio simulation package (VASP)31,32. The projected augmented plane wave
(PAW) method was used to approximate the electron–ion potential33. The
exchange and correlation potentials were calculated using the local spin density
approximation (LSDA). In the calculations, we employed a kinetic energy cutoff
of 340 eV for PAW expansion, and a 6 × 6 × 1 grid of k points34 for Brillouin
zone integration. The in-plane lattice constant was that of relaxed bulk STO
(a = 3.86 Å); the c/a ratio and internal atomic coordinates were relaxed until the
Hellman–Feynman force on each atom fell below |0.01| eV Å−1.

To understand the effect of electronic polarization on the interfacial electronic
structure, we constructed a SrRuO3/STO bilayer with five unit cells of SrRuO3 and
nine layers of STO, part of which is shown in Supplementary Fig. 1a. The sub-
interfacial layers of the completely relaxed paraelectric phase of STO on SrRuO3 are
insulating, and the Fermi level lies in the gap between the conduction band minima
and valance band maxima. However, when STO is highly polarized, the induced
electrostatic field largely bends bands; thus, both the conduction band minimum
and valence band maximum of sub-interfacial STO layers could cross the Fermi
level, as shown in the LDOS plot (Supplementary Fig. 1b). We plotted
Supplementary Fig. 1b with frozen uniform displacement of the Ti atom by 0.18
and 0.54 Å. Note that polarized tetragonal STO has higher energy than paraelectric
cubic STO, but can be stabilized under non-equilibrium strain conditions35. This
band profile clearly supports the experimental finding that the band crossing of
STO conduction and valence bands could lead to a colossal decrease in the
electrical resistivity.

The dielectric constant was calculated using density functional perturbation
theory36–38. Supplementary Fig. 7 represents the calculated total zz component of
the total dielectric constant (i.e., εzz), which includes both ionic and electronic
contributions, as a function of strain u. The strain was measured with respect to the
DFT equilibrium lattice of 3.86 Å.

In order to investigate the change in the bandgap of STO in the presence of the
strain, we have used the hybrid functional (HSE06)39 implemented in the VASP
package (Supplementary Fig. 3)31,32. We have used a 5-atom unit cell to simulate
unstrained cubic and strained tetragonal structures in which an 8 × 8 × 8 k-point
grid with energy cutoff of 600 eV are used. Convergence is reached if the
consecutive energy difference is within 0.01 meV for electronic iterations and 0.1
meV for ionic relaxations. The calculated lattice constant of the cubic structure by
full structure relaxation is 3.897 Å with a bandgap of 3.3 eV, in good agreement
with experimental data40,41. For the strained tetragonal unit cell, a unit cell with
compressive strain of 2 and 10% for a and c lattice constants (a= 3.819 Å, c=
3.507 Å) with respect to the relaxed cubic structure is considered based on the
strain profile simulation. The calculated bandgap of the tetragonal structure is
around 3.6 eV, slightly larger than that of the cubic structure.

Wentzel–Kramers–Brillouin simulation. Using the one-dimensional WKB
approximation, we can simply describe the tunneling current density for a low T
and small V, as follows:

jðVÞ ¼ 2e
h

Z 1

�1
TðEÞ ´ ½f ðEÞ � f ðE � eVÞ�dE

ffi 2e
h

Z 1

�1
exp � 4π

h

Z d

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðUðxÞ � EÞ

p
dx

� �
´ ½f ðEÞ � f ðE � eVÞ�dE

ffi 2e
h
exp � 4π

h

Z d

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðUðxÞ � EFÞ

p
dx

� �
´ eV ;

ð4Þ

where T(E), f(E), U(x), and m represent the transmission probability, Fermi–Dirac
distribution, tunnel-barrier profile, and free electron mass, respectively. Using Eq.
(4), we obtain the tunneling current density for a trapezoidal barrier profile
(Supplementary Fig. 2) as follows19:

jðþVÞ ¼ 2e
h
exp � 4π

h

Z d0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

φ2 � φ1 þ eV
d0

ðx � d0Þ þ φ2

� �s
dx

 !
´ eV

¼ 2e
h
exp � 8π

ffiffiffiffiffiffiffi
2m

p

3h
� d0 �

ðφ2Þ1:5 � ðφ1 � eVÞ1:5
φ2 � φ1 þ eV

� �
´ eV;

ð5Þ
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jð�VÞ ¼ � 2e
h
exp � 4π

h

Z d0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

φ2 � φ1 � eV
d0

ðx � d0Þ þ φ2 � eV

� �s
dx

 !
´ eV

¼� 2e
h
exp � 8π

ffiffiffiffiffiffiffi
2m

p

3h
� d0 �

ðφ2 � eVÞ1:5 � ðφ1Þ1:5
φ2 � φ1 � eV

� �
´ eV ;

ð6Þ
where ϕ2 and ϕ1 are the barrier heights of the right and left sides of the trapezoidal
barrier, respectively, i.e., ϕ1= ϕ0+ Δϕ and ϕ1= ϕ0− Δϕ. Using Eq. (4), we can also
obtain the tunneling current density for a triangular barrier profile (Supplementary
Fig. 2) as follows19:

jðþVÞ ¼ 2e
h
exp � 4π

h

Z d0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

φ

d0
ðx � d0Þ þ φ

n or
dx

� �
´ eV

¼ 2e
h
exp � 8π

ffiffiffiffiffiffiffi
2m

p

3h
� d � φ1:5

φþ eV

� �
´ eV ;

ð7Þ

jð�VÞ ¼ � 2e
h
exp � 4π

h

Z d

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

φ� eV
d

ðx � dÞ þ φ� eV

� �s
dx

 !
´ eV

¼� 2e
h
exp � 8π

ffiffiffiffiffiffiffi
2m

p

3h
� d � ðφ� eVÞ0:5

� �
´ eV ;

ð8Þ

where ϕ and d indicate the barrier height and width of the triangular barrier, and
d′ = d · ϕ/(ϕ+ eV). Importantly, depending on whether we consider the con-
tribution of the STO valence band, ϕ and d have a different dependence on Δϕ.
When neglecting the STO valence band, ϕ= ϕ0+ Δϕ and d= d0 · [(ϕ0+ Δϕ)/2Δϕ
(Supplementary Fig. 2a); this indicates that although the increased Δϕ reduces the
barrier width d, it also increases the barrier height ϕ, such that the overall tunneling
conductance cannot become largely enhanced (as shown in Fig. 1b; black dashed
line). In striking contrast, when considering the STO valence band, ϕ is fixed to Δbg

and d= d0 · Δbg/2Δϕ (Supplementary Fig. 2b), which could lead to colossal
enhancement of the tunneling conductance with increasing Δϕ (Fig. 1b).

Sample fabrication. Ultrathin STO, BaTiO3, CaTiO3, and LaAlO3 films were
grown by pulsed laser deposition, using a KrF excimer laser (λ= 248 nm). STO,
BaTiO3, and LaAlO3 films were grown on bottom electrodes of epitaxial 20-nm-
thick SrRuO3, prepared on TiO2-terminated and (100)-oriented STO substrates.
CaTiO3 films were grown on LaAlO3 substrates buffered by LaNiO3 conducting
electrode. The growth patterns and thickness were monitored by in situ reflection
high-energy electron diffraction (RHEED; Supplementary Fig. 4). We deposited
SrRuO3 and STO thin films at 700 °C under oxygen partial pressure of 100 and 7
mTorr, respectively. After deposition, films were annealed at 475 °C for 1 h in
oxygen at ambient pressure and subsequently cooled to room temperature at 50 °C
min−1. X-ray diffraction reciprocal space mapping was performed to ensure that
the STO film was strain-free (Supplementary Fig. 5). Piezoresponse force micro-
scopy found that as-grown BaTiO3 films had downward self-polarization (Sup-
plementary Fig. 11).

Simulation of strain profile. The strain distribution in ultrathin STO film pressed
with an AFM tip is obtained by solving the elastic equilibrium equation in a 3D
thin film/substrate system with appropriate boundary conditions. The detailed
procedure is described in previous works42. Here, we discretized three-dimensional
space into 100 × 100 × 500 grid points and applied periodic boundary conditions
along the x1 and x2 axes. The grid spacing was Δx1= Δx2= 0.5 nm and Δx3=
0.1 nm. Along the x3 direction, 35 layers were used to mimic the film; the relaxation
depth of the substrate featured 350 layers to ensure that the displacement was
negligibly small. To estimate the surface stress distribution that developed with
AFM-tip pressing, we adopted the closed-form solution derived by Wang et al. for
indentation responses in a piezoelectric thin film in the ultrathin-film limit43. This
contact mechanics model, comparing to the classical Hertz model for a non-
piezoelectric, semi-infinite space44, considers not only the finite size of the film but
also the coupled nature of the indentation problem of an electromechanically active
sample. Therefore, it is more appropriate to describe the surface stress caused by
nano-indentation in ultrathin STO films in the present work.

We considered an STO thin film of thickness hf, with the top surface in contact
with an AFM tip and the bottom interface coherently constrained by the substrate.
We assumed a conductive, rigid, spherical indenter with a tip radius rtip= 100 nm
and a mechanical force F ranging from 1 to 25 μN. At the top surface, the normal
stress distribution (as a function of the distance from the contact center) is
described as follows:

σtip33 rð Þ ¼ �c33p
ða2�r2Þ
2hdef

; r ≤ a

0; r ≥ a

(
; ð9Þ

where a is the contact radius
�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rðhind þ e33

c33
ϕ0Þ

q �
, hind is the indentation

depth hind ¼
ffiffiffiffiffiffiffiffi
Fhdef
c33πR

q
� e33

c33
ϕ0

� �
, hdef is the deformation depth hdef= hf, c33 is the

elastic stiffness of the STO film (c33= 336 GPa), e33 is the piezoelectric coefficient
of the STO film (e33= 0 Cm−2), and ϕ0 is the applied bias (ϕ0= 0 V). At the
film–substrate interface, the displacement is continuous for coherency and is
assumed to relax to zero within a depth of hs into the substrate (i.e., ηi

		
x3¼�hs

¼ 0).

The clamping effect of the STO substrate is considered to render the average strain
zero at each layer of the film (i.e., u11 ¼ u22 ¼ 0 and u12 ¼ 0). Finally, the
boundary value problem of elastic equilibrium, assuming no body force, is given by

σ ij;j ¼ 0

σ33jx3¼hf
¼ σtip33 ; σ31jx3¼hf

¼ σ32jx3¼hf
¼ 0

ηi
		
x3¼�hs

¼ 0

8>><
>>: ; ð10Þ

where stress is related to strain via σij ¼ cijklekl ¼ cijklðukl � u0klÞ. The eigenstrain u0ij
is derived from strain-order parameter couplings of STO through
u0ij ¼ QijklPkPl þ λijklqkql , where Qijkl and λijkl are the electrostrictive and
rotostrictive tensors, respectively. The electrostrictive and rotostrictive coupling
coefficients of STO were adapted from ref. 45.

Simulation of the polarization profile. The polarization distribution under the
mechanical load by an AFM tip can be calculated by self-consistent phase-field
modeling46. The temporal evolution of the polarization field P(x,t) is governed by
the time-dependent Ginzburg–Landau equation, i.e., ∂P/∂t= − L(δF(P)/δP), where
L is the kinetic coefficient and the total free energy F can be expressed as46

F ¼
Z

fbulk þ felastic þ felectric þ fgradient þ fflexo
� �

dV

¼
Z

αijPiPj þ αijklPiPjPkPl þ βijθiθj þ βijklθiθjθkθl þ tijklPiPjθkθl þ
1
2
gijkl

∂Pi
∂xj

∂Pk
∂xl

"

þ 1
2
kijkl

∂θi
∂xj

∂θk
∂xl

þ 1
2
cijklðuij � u0ijÞðukl � u0klÞ �

1
2
EiPi þ

1
2
fijkl

∂Pk
∂xl

εij �
∂εij
∂xl

Pk

� �#
dV :

ð11Þ
The bulk Landau free energy fbulk consists of two sets of order parameters, i.e., the
spontaneous polarization P and the antiferrodistortive order parameter θ, which
represents the oxygen octahedral rotation angle of STO45. The flexoelectric con-
tribution is considered as a Liftshitz invariant term as

fflexo ¼
1
2
fijkl

∂Pk
∂xl

uij �
∂uij
∂xl

Pk

� �
: ð12Þ

The eigenstrain tensor u0 in the elastic energy density is given by

u0ij ¼ QijklPkPl þ Λijklθkθl � FijklPk;l; ð13Þ
where the electrostrictive, rotostrictive, and converse flexoelectric couplings are
considered via tensors Q, Λ, and F. The coefficients used in constructing the total
free energy F of an STO single crystal are given in our previous works45,47. The
transverse flexoelectric constant of STO estimated from experiments in the pre-
vious work was used (f12= 25 V)19; the other two flexoelectric components were
assumed to be zero (i.e., f11= f44= 0) for simplicity.

Tunneling measurements. The I–V curves were obtained using an Asylum
Research Cypher AFM (Oxford Instruments, Abingdon, UK) at room temperature
under ambient conditions. Conducting diamond-coated metallic tips (DDESP-V2;
BRUKER, Billerica, MA, USA) with nominal spring constants 80 Nm−1 and a dual-
gain ORCA module (Oxford Instruments) were used to measure currents. In order
to estimate the rtip from the measured scanning electron microscopy (SEM) images
(Supplementary Fig. 8a–c), we digitized the profile of the tip shape using a Java-
based software (plot digitizer 2.6.8). The outline of the tip was tracked down with a
scale of a pixel (~35 nm) in SEM images. Digitized data points were fitted with
parabolic function Δz= c2(Δx)2+ c1(Δx)+ c0 (Supplementary Fig. 8d–f), then
converted into rtip as rtip= 1/|2c2|.

An electrical bias was applied through the conducting SrRuO3 electrode; this
was swiped from ‒0.5 to +0.5 V at a ramping rate of about 4 Vs−1. During the
measurements, we set the current limit (compliance) to 20 nA. The noise floor of
the AFM system was a few pA. We measured the resistance R from the linear slope
of I–V curves in the low-bias regime. We extracted the resistance of STO, i.e., RSTO,
from the difference between the measured R and the resistance of the bottom
SrRuO3 layer (i.e., ~70.4 kΩ; Supplementary Fig. 9i). We then estimated an
effective resistivity (ρeff) of STO by considering the effective tip–STO contact radius
(a) and the effective STO thickness (tSTO):

ρeff ¼ RSTO � πa
2

tSTO
; ð14Þ

where we obtained the values of a and tSTO from our theoretical contact mechanics
analysis.

Graphene. For the graphene transfer onto the ultrathin BaTiO3 film, we followed
the so-called dry-transfer technique. A graphene monolayer was mechanically
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exfoliated on a silicon wafer coated with poly(vinyl alcohol) (PVA), which is water-
soluble, and poly(methyl methacrylate) (PMMA). After the selection of a proper
graphene flake, the flake/PMMA layer was detached from the silicon substrate by
immersion in hot deionized water. Then, the flake/PMMA layer floating on the
water was transferred to a holder and was placed on the ultrathin BaTiO3 film
using a homemade micromanipulator after alignment under an optical microscope.
At last, the PMMA was removed with acetone.

Data availability
All relevant data presented in this paper are available from the authors upon reasonable
request. The source data underlying Figs. 1–4 and Supplementary Figs. 5–11,13–15 are
provided as a Source data file.
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