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Abstract 

In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutri‑
tion and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack 
of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been 
developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding 
tissue‑derived intestinal epithelial stem cells in a 3‑dimensional culture environment reproducing in vitro the stem 
cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithe‑
lial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of 
the native epithelium. The phenotype of intestinal organoids is stable in long‑term culture and reflects characteristics 
of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and 
used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most 
of the studies using livestock intestinal organoids were used to investigate host‑microbe interactions at the epithe‑
lial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of 
farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds 
screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to 
culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, 
including the presence of non‑epithelial cell types and of the gut microbiota. Harmonization of the methods used 
to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in 
these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in 
farm animals, present their phenotypes and discuss current and future applications of this innovative culture system 
of the digestive epithelium.
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1 Introduction
The intestinal epithelium is formed by a monolayer of 
cells located at the mucosal surface. Intestinal epithe‑
lial cells (IEC) contribute to food digestion and nutrient 
absorption while acting as a physical and immunologi‑
cal barrier against harmful luminal components (micro‑
organisms, toxins, food antigens) [1]. This dual function 
of the intestinal epithelium is performed by the coordi‑
nated action of differentiated epithelial cells specialized 
for nutrient absorption (enterocytes), hormone secre‑
tion (enteroendocrine cells), antimicrobial peptide secre‑
tion (Paneth cells), anti‑parasite immunity (tuft cells) or 
mucus secretion (goblet cells) (Figure 1A). All these dif‑
ferentiated IEC types derive from intestinal epithelial 
stem cells (IESC) located at the base of epithelial crypts 
[2]. Paneth cells remain at the bottom of crypts whereas 
the other IEC types differentiate while they migrate 
towards the lumen. Epithelial cell type distribution also 
differs along the length of the intestine, which reflects the 
functional specialization of digestive segments [3]. The 
small intestine is divided into 3 segments: duodenum, 
jejunum and ileum. The duodenum receives the food 
chyme, bile juice and pancreatic secretions to complete 
the chemical digestion. The jejunum is the main site for 

nutrient absorption while the ileum absorbs residual 
nutrients, vitamins and conjugated bile acids. The large 
intestine is composed of the caecum and the colon, 
which main functions are to absorb water, electrolytes 
and microbial fermentation products.

The study of the intestinal epithelium in livestock spe‑
cies has major implications for agricultural (e.g. improve‑
ment of feed efficiency), veterinary (e.g. resistance to 
enteric pathogens) or biomedical (e.g. large animal mod‑
els of human diseases) research. However, models com‑
monly used to study livestock epithelium present major 
limitations. In vitro immortalized intestinal epithelial cell 
lines (e.g. porcine IPEC‑J2) lack cellular heterogeneity, 
do not fully reproduce tissue functionality and present 
genomic abnormalities [4, 5] or have not been established 
for some species (e.g. chicken, bovine). Ex vivo culture of 
intestinal explants or primary isolated IECs recapitulate 
key features of the in vivo tissue but they are not suitable 
for long‑term experiments due to limited viability (24–
48 h as reviewed by Randall et al. [6]). The recent devel‑
opment of livestock intestinal organoids solved most of 
these limitations.

Intestinal organoids are self‑organized 3D structures 
composed of a monolayer of polarized IEC surrounding 
a hollow lumen [7] (Figure  1B). This innovative model 
recapitulates in vitro the multicellular composition of the 
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Figure 1 Models of intestinal organoids in farm animals. A Diverse cell lineages constitute the digestive epithelium. Paneth and stem cells 
are localized at the bottom of the crypts, while enterocytes, goblet cells, enteroendocrine cells and tuft cells migrate towards the lumen upon 
differentiation. B Schematic illustration of livestock intestinal organoid generation from epithelial crypts isolated from fresh intestinal tissue or from 
frozen biopsies. C Schematic representation of farm animal intestinal organoid applications in basic and applied science.
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intestinal epithelium, its architecture with crypt‑domains 
and its main roles such as nutrient absorption and bar‑
rier function. “Enteroids” and “colonoids” refer to intes‑
tinal organoids derived from the small intestine or from 
the colon, respectively [8]. Importantly, intestinal orga‑
noids retain in  vitro phenotypic features of their diges‑
tive segment of origin [3]. Intestinal organoid culture was 
first developed in mouse and humans after identification 
of the signaling pathways involved in the maintenance 
and proliferation of  Lgr5+ IESC [9]. Intestinal organoid 
culture is based on the reproduction of the IESC niche 
in vitro: Wnt pathway activation, epidermal growth fac‑
tor (EGF) signaling stimulation and bone morphogenic 
protein (BMP) pathway inhibition [2]. IESC are seeded 
in a gel of extracellular matrix proteins (e.g. Matrigel™) 
that provides a structural scaffold for 3D growth and 
promotes cell survival (Figure  1B). Human and mouse 
intestinal organoids can be derived from intestinal tissue‑
derived IESC or from induced pluripotent stem (iPS) or 
embryonic stem (ES) cells [10]. Organoids obtained from 
tissue‑derived IESC are composed only of epithelial cells. 
In contrast, both epithelial and mesenchymal cells (e.g. 
myofibroblasts) are present in iPS and ES‑derived intes‑
tinal organoids, which however remain in an immature, 
fetal‑like state [10].

Herein, we first review the main methods used to gen‑
erate and cryopreserve intestinal organoids from farm 
animals. Then, we present the main characteristics of 
these innovative intestinal epithelium culture systems. 
Finally, we detail current and future applications of live‑
stock intestinal organoids (Figure 1C).

2  Methods to generate and cryopreserve livestock 
intestinal organoids

2.1  Methods to grow intestinal organoids
Despite recent progress for the development of domes‑
tic animal iPS and ES cells [11, 12], to our knowledge, all 
intestinal organoid models from livestock species have 
been developed with tissue‑derived‑IESC. Methods orig‑
inally developed to culture mouse and human intestinal 
organoids from tissue‑derived IESC [13, 14] were recently 
adapted to numerous farm animal species including pig, 
rabbit, cow, sheep, horse and chicken (summarized in 
Table  1 for pig, Table  2 for ruminant and herbivorous 
species and Table  3 for chicken) (Figure  2). Farm ani‑
mal intestinal organoids were successfully obtained from 
several digestive segments (duodenum, jejunum, ileum, 
caecum and colon). The first step of livestock intestinal 
organoid culture is to isolate epithelial crypts that con‑
tain IESC. Most of the studies used a dissociation buffer 
containing ethylenediaminetetraacetic acid (EDTA) and 
dithiothreitol (DTT). There are great variations in EDTA 
concentration (0.8–30  mM), time and temperature of 

incubation according to the studies, species and digestive 
segments (Tables 1, 2 and 3). Some studies supplemented 
the crypt isolation buffer with Y27632, a ROCK inhibi‑
tor that prevents epithelial cell death. Isolated crypts 
are then seeded in Matrigel™ and the growth medium is 
added. Alternatively, a hanging drop culture system with‑
out Matrigel™ embedding has been reported for embry‑
onic chicken intestinal organoids [15].

The composition of livestock intestinal organoid 
growth medium has been directly adapted from human 
and mouse protocols (see Tables  1, 2 and 3 for refer‑
ences). Although recombinant growth factors are most 
often not commercially available for farm animals, human 
or mouse orthologues can be used due to high evolution‑
ary conservation of their amino acid sequences [14, 16]. 
Wnt signaling activation is generally induced by mouse 
or human recombinant Wnt3a and R‑spondin, either 
used purified or in conditioned media from engineered 
cell lines. Some studies also used CHIR99021, an inhibi‑
tor of glycogen synthase kinase 3 to further activate the 
Wnt pathway. BMP pathway signaling is usually inhib‑
ited by human or mouse recombinant Noggin, either 
used purified or in conditioned media. For instance, the 
conditioned medium from L‑WRN cells (mouse L cell 
line secreting Wnt3a, R‑spondin and Noggin, ATCC® 
CRL‑3276™) was successfully used to culture intestinal 
organoids from several species [14, 16] (Figure  2). The 
BMP inhibitor LDN193189 was used instead of Nog‑
gin in the growth medium of rabbit caecum organoids 
[16]. TGF‑β receptor inhibitors (LY2157299, A8301, 
SB43542) and the p38 MAPK inhibitor SB202190 were 
used in several studies to promote epithelial proliferation 
and inhibit differentiation [17]. Epithelial proliferation is 
stimulated by human or murine EGF in several studies, 
while other methods used fetal bovine serum (FBS) that 
is a potent source of growth factors, though undefined. 
When organoid culture medium does not contain FBS, 
the cell culture supplements N2 and B27 are used to pro‑
vide vitamins or hormones. Most studies supplemented 
the growth medium with the ROCK inhibitor Y27632 to 
prevent isolated epithelial cell death but it can be omitted 
after 2–3 days of culture when organoids are formed [18]. 
Continuous use of Y27632 was also reported to prevent 
the formation of tight junctions in pig intestinal organoid 
cells, when cultured in 2D monolayers (described below) 
[19]. Other common constituents of livestock intestinal 
organoid growth media include HEPES (buffer), N‑ace‑
tylcysteine (antioxidant), GlutaMAX (stable glutamine), 
nicotinamide and antibiotics/antifungals. As an alter‑
native to custom‑made culture media, pig and bovine 
intestinal organoids can be cultured in IntestiCult™, a 
proprietary defined medium available from STEMCELL 
Technologies (Vancouver, Canada) [20–22] (Tables 1 and 
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2). This commercial growth medium has been optimized 
for mouse and human organoids but not for other spe‑
cies. Indeed, supplementation of mouse IntestiCult™ 
organoid growth medium with additional growth fac‑
tor was required to culture bovine organoids [20, 22] 
(Table 2). After initial growth, intestinal organoid differ‑
entiation can be enhanced by reducing the concentration 
of the IESC niche factors. For instance, rabbit caecum 
organoids differentiation was obtained by reducing the 
concentration of L‑WRN conditioned medium from 50 
to 5% for 2 days [16]. Similarly, bovine enteroid differen‑
tiation was triggered by withdrawal of Wnt3a and other 
niche factors [23, 24].

Intestinal organoid culture medium is replaced every 
2–3 days. After 5–10 days of culture, intestinal organoids 
are dissociated by mechanical and/or enzymatic meth‑
ods and are subcultured with a 1:3 to 1:8 dilution ratio 
in fresh Matrigel™. A study showed that pig enteroids 

cultured at 39  °C (body temperature of pigs) expressed 
lower levels of the IESC marker Lgr5 +, when compared 
to organoids grown at 37  °C [25]. This result suggests 
that the temperature of cell culture incubators should be 
adapted to each species. Another study in pig enteroids 
showed that the organoid forming efficiency was higher 
when jejunum crypts were cultured at 37 °C, when com‑
pared to 41 °C, an experimental condition used to mimic 
heat stress [26]. However, potentially lower stability of 
human and mouse recombinant growth factors at tem‑
peratures above 37  °C might contribute to the effects of 
temperature on organoid phenotype.

2.2  Organoid cryopreservation and biobanking
Farm animal intestinal organoids can be successfully 
recovered after cryopreservation in freezing medium 
(containing FBS, dimethyl sulfoxide and in some stud‑
ies Y27632) and long‑term storage in liquid nitrogen [14, 

Table 3 Chicken intestinal organoids

CM: conditioned medium, L-WRN: L cell line engineered to secrete Wnt3a, R-spondin 3 and Noggin, rh: recombinant human, FBS: fetal bovine serum, EGF: epidermal 
growth factor. Antibiotics and antifungals added in the growth medium are not presented.

Segment Application Segment Crypt isolation Growth medium Reference

Caecum Model development Caecum Collagenase, 37 °C, 1.5 h 50% (DMEM + 10% FBS), 
50% L‑WRN CM, 10 µM 
SB431542, 10 µM 
Y27632

[14]

Jejunum Model development Jejunum 2 mM EDTA, 4 °C, 
3 × 30 min

DMEM/F12, 10 mM 
HEPES, 2 mM 
glutaMAX, 50 ng/
mL EGF, 100 ng/mL 
Noggin, 500 ng/mL 
R‑spondin1

[40]

Small intestine Chemical treatments Small intestine Mechanical DMEM/F12, 10% FBS, 
insulin‑transferrin‑
selenium, polyamine, 
bovine pituitary 
extract

[61]

Embryonic Small 
intestine

Model development, 
TLR agonist and Lac-
tobacillus acidophilus 
treatment

Embryonic Small 
intestine

2.5 mM EGTA, 0.5% 
glucose, 4 °C, 
15 min + 45 min twice

DMEM/F12, Glutamax, 
insulin‑transferrin‑sele‑
nium premix, 25 ng/
mL EGF, 25 ng/mL rh 
Noggin,250 ng/mL rh 
R‑spondin1, 5 µg/mL 
Prostaglandin E2

[15, 31, 41, 42, 62]

Figure 2 Morphology of intestinal organoids from farm animals. Brightfield images of intestinal organoids grown in Matrigel™ with 50% 
L‑WRN conditioned media. Organoids from pig, cow, horse and sheep were obtained from the terminal ileum. Organoids from rabbit and chicken 
were obtained from the caecum. Scale bars: 200 µM. Images were  adapted from previous publications distributed under the terms of Creative 
Commons Licenses: Powell and Behnke (pig, cow, horse, sheep and chicken organoids) [14] and from Mussard et al. (rabbit organoids) [16].
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16, 20, 25]. High‑throughput applications (e.g. bioac‑
tive molecules screening) might benefit from the recent 
development of an in‑plate cryopreservation technique 
for bovine colonic organoids [23]. However, since slaugh‑
terhouses are often located away from the cell culture 
laboratory, the isolation and culture of intestinal epithe‑
lial crypts from fresh tissues is not always feasible for 
farm animals. Methods have been developed to directly 
cryopreserve either isolated epithelial crypts or intestinal 
tissues retaining the ability to generate organoids after 
thawing. These methods allow sampling of a large num‑
ber of animals at once, which would not be compatible 
with immediate labor‑intensive organoid culture. Cryo‑
preserved epithelial crypts isolated from pig and equine 
jejunum were successfully used after thawing for the cul‑
ture of organoids [25, 27]. Intestinal tissue fragments can 
also be cryopreserved and used to culture organoids as 
shown for human biopsies [28]. The principle is to freeze 
small pieces of intestinal tissue before the crypt isolation 
step. Once stored in liquid nitrogen, these specimens 
can be shipped frozen, stored and later thawed to isolate 
crypts and generate cultures of intestinal organoids, even 
if a delay in organoid formation is observed. Organoids 
can thus be generated from biobanked tissues following 
the best lab schedule. In addition, in our hands, cryo‑
preservation of tissues has guaranteed organoid culture 
generation free from bacterial and fungal contaminations 
compared to freshly generated organoids. We have suc‑
cessfully produced pig intestinal organoids after isolation 
of epithelial crypts from small pieces (< 1  mm2) of sev‑
eral digestive segments cryopreserved in FBS (90%) and 
dimethyl sulfoxide (10%) (Blanc et al., unpublished data) 
(Figure 3, Additional file 1).

3  Phenotype of livestock intestinal organoids
3.1  Insights from transcriptome analysis
The objective of intestinal organoid cultures is to repli‑
cate in  vitro as closely as possible the phenotype of the 
intestinal epithelium observed in  vivo. Transcriptome 
analysis revealed that pig jejunum organoids resembled 
more pig jejunum tissue than the pig IPEC‑J2 cell line 
[5]. For instance, genes coding for enterohormones or 
mucins were similarly expressed in jejunum tissue and 
organoids while they were not expressed in IPEC‑J2, 
probably because of the lack of cellular diversity in this 
cell line [5]. Gene expression patterns also largely over‑
lapped between bovine epithelial crypts and enteroids 
[22]. Thus, livestock intestinal organoids appear to effi‑
ciently reproduce epithelial transcriptome in  vitro. The 
ability of intestinal organoids to retain digestive‑segment 
specific epithelial phenotype is an important feature pre‑
viously observed in mice [3]. Pig organoids from jejunum 
expressed higher levels of genes involved in digestion 

and nutrient transport than organoids derived from the 
ileum, while the opposite was observed for immune‑
related genes [5]. These digestive‑segment specific gene 
expression profiles in pig organoids are consistent with 
known roles of the jejunum for nutrient absorption and 
of the ileum for host‑microbiota interaction. Another 
study in pig revealed specific transcription patterns in 
organoids derived from duodenum, jejunum and colon; 
although differentially expressed genes were not detailed 
[29]. Stability of gene expression in organoids across 
extended period of time and multiple passage is neces‑
sary to ensure reproducibility of the results obtained. 
Transcriptome analysis of pig jejunum organoid lines 
revealed stable gene expression profile after a long period 
of culture in  vitro (12  weeks/17 passages) [5]. Bovine 
enteroid transcriptome also showed an overall stabil‑
ity across 5 passages [22]. Finally, inter‑individual dif‑
ferences persisted after multiple passages of organoids 
obtained from two piglets [5]. This observation suggests 
that experiments on intestinal organoids should be per‑
formed in parallel with several organoid lines obtained 
from different animals in order to cover inter‑individ‑
ual variability. A study showed that the age‑dependent 
expression of genes used as markers of intestinal matu‑
ration (e.g. lactase and sucrase‑isomaltase) were not 
reproduced in jejunum enteroids generated from piglets 
at several developmental stages (embryonic, suckling and 
post‑weaning) [30]. These results suggest that enteroids 

Figure 3 Morphological features of porcine gut organoids 
obtained from frozen tissues. Organoids are derived from: A 
duodenum (7 days, passage 3), B jejunum (7 days, passage 1), C ileum 
(7 days, passage 3) and D colon (8 days, passage 1). Observation by 
phase contrast microscopy. Bars: 200 µm. Images are representative 
of organoids obtained from 4 pigs for each digestive segment.
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do not retain the epithelial phenotype associated with 
the age of the animal used for crypt isolation. More stud‑
ies are needed to confirm this result with other digestive 
segments, other markers of developmental stage (e.g. 
related to innate immunity) and by testing different cul‑
ture conditions. Future experiments using single‑cell 
RNA sequencing will also be helpful to further character‑
ize each epithelial cell type present in livestock intestinal 
organoids.

3.2  Epithelial polarization
IEC are highly polarized and interactions with luminal 
components (nutrients, microorganisms or toxins) occur 
at their apical side. The localization of apical surface 
markers (actin or villin) or visualization of microvilli by 
transmission electronic microscopy at the luminal side 
indicates that epithelial cells are also polarized in  vitro 
in intestinal organoids from pig, cow, chicken and rab‑
bit [16, 20, 22, 25, 31] (Figures 4A, F and 5A). Although 
physiologically relevant, this 3D organization leads to a 
basolateral exposure of experimental treatments added 
in the culture medium. Thus, the apical side of organoid 
epithelial cells is not directly accessible. The microinjec‑
tion technique was used to inject micro‑organisms into 
organoid lumen [32]. This procedure is labor‑intensive 

and to our knowledge, no study using micro‑injection 
in livestock intestinal organoids has been published yet. 
Moreover, it requires a hollow structure in the organoid 
(lumen) that is often reduced in differentiated organoids. 
We have successfully used this technique with pig colon 
organoids (Cherbuy et  al., unpublished data) (Figure  6). 
However, concerns have been raised regarding repro‑
ducibility of this technique due to the variable volume 
injected in each organoid and unintended leak into the 
medium. A recent study showed that human enteroid 
cell polarity can be reversed by removal of the extracel‑
lular matrix [33]. The method developed by Co et al. was 
applied to reverse epithelial polarity in pig jejunum enter‑
oids in suspension cultures [34]. However, in this study, 
the polarity failed to be reversed in ~20% organoids after 
3  days, which indicates phenotypic variability in these 
culture conditions. We also have observed that the trans‑
fer of pig colon organoids from Matrigel™ to suspension 
culture for 24  h induces epithelial polarity reversal in 
some but not all organoids (Figure 5B, additional file 1) 
(Beaumont et al., unpublished data). This polarity inver‑
sion was associated with the loss of the organoid hol‑
low structure (lumen), as observed previously in human 
enteroids [33]. In our hands, we observed a rapid viability 
loss of organoids cultured in suspension (< 3 days) which 

Figure 4 Characterization of intestinal organoids from farm animals. A Pig colon organoids stained for Villin (orange). Scale bar: 20 µm. 
B Monolayer of rabbit caecum organoid cells stained for actin (red). Scale bar: 100 µm. C Pig colon organoid stained for E‑cadherin (red), and 
proliferating cell nuclear antigen (PCNA, green). The arrow indicates a proliferative zone in the organoid bud. Scale bar: 100 µm. D Pig colon 
organoid cells were seeded in Transwell inserts at several densities. Transepithelial electrical resistance (TEER) of pig organoid cell monolayers was 
measured 3 days post‑seeding. Kruskal–Wallis test indicated a significant effect of cell density on TEER. E Pig colon organoid stained for mucins 
(Periodic Acid‑Schiff staining). Scale bar: 20 µm. F Characterization of chicken intestinal organoid by transmission electron microscopy. The 
polarized organization of the cells, the brush border and the intracellular dense vesicles containing packaged mucins (marked with asterisk) were 
morphologically distinguishable. L: lumen. Scale bar: 2 µm. G Pig colon organoid stained for chromogranin A (CgA, orange). Scale bar: 20 µm. A, B, C 
and G: DNA (nuclei) is stained in blue.
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restricts the use of this culture condition to short‑term 

experimental treatments. Alternatively, incubation of 
human intestinal organoids with an inflammatory cock‑
tail composed of tumor necrosis factor‑alpha, interleu‑
kin‑6 and interleukin‑1 induced the inversion of organoid 

polarity [35]. This technique has not been applied yet to 
reverse epithelial polarity in farm animal organoids.

The culture of 2D monolayers of organoid epithelial 
cells is another method to facilitate the access to the api‑
cal side and it has been applied to pig, rabbit and bovine 
intestinal organoids [16, 19, 21, 23, 36–38] (Figure  4B). 
To our knowledge, this model has not been developed 
in chicken and other farm animals yet. The principle is 
to seed dissociated intestinal organoid cells in Tran‑
swells inserts or 96‑well plates previously incubated with 
diluted Matrigel™ (0.5–2.5% v/v) or collagen. This coating 
procedure produces a thin layer of extracellular matrix, 
which allows the attachment and growth of organoid epi‑
thelial cells in 2D but not in 3D. The culture of pig, rabbit 
and bovine intestinal organoid cells in Transwell inserts 
produced a tight monolayer and the increased transepi‑
thelial electrical resistance (TEER) overtime indicated 
the gradual formation of an intact epithelial barrier [19, 
23]. In this 2D setting, the apical side of organoid epithe‑
lial cells faces up and is thus accessible to experimental 
treatments [16, 19, 37]. Epithelial differentiation can be 
induced in 2D monolayer by removing niche factors (as 
described above) or by using an air liquid interface, as 
shown for pig enteroids [37]. In the latter case, pig orga‑
noid cell monolayers were cultured on Transwells for two 
days in proliferation medium before establishment of 

Figure 5 Reversal of epithelial polarity in piglet colon organoid. After 7 days of culture in Matrigel™ (A), piglet colon organoids were cultured 
in suspension for 24 h (B). Organoids were observed by confocal laser scanning microscopy to visualize horizontal (xy, A1 and B1) and vertical 
(xz, A2 and B2) sections. Phalloidin staining (red) shows actin and DAPI staining (blue) shows nuclei. Arrows indicate the apical side of epithelial cells. 
L Lumen.

Figure 6 Microinjection in a pig colon organoid to access the 
luminal side: initial experiments using a non-toxic food dye. The 
micro‑injection was monitored under a microscope and successively 
shows the insertion of the needle into the organoid (A and B), the 
injection of the dye into the pig organoid (B and C) and the removal 
of the needle (D). Organoid size: 200 µm.
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the air liquid interface on the third day by removal of the 
medium in the upper (apical) compartment combined 
with the switch to differentiation medium lacking Wnt in 
the lower (basal) compartment [37]. The main limitation 
of monolayers of epithelial cells is the loss of the complex 
3D organization of intestinal organoids such as buddings 
that reproduces in vitro crypt domains.

3.3  Barrier function
A crucial function of the intestinal epithelium is to form 
a physical and immunological barrier to prevent the 
entry in the organism of harmful luminal components. 
The constant renewal of IEC is an important mecha‑
nism to maintain epithelial integrity. Stem/progeni‑
tor cells and proliferation markers (LGR5, SOX9, KI67, 
PCNA) are expressed in pig, rabbit, horse, chicken and 
cow organoids, which indicates that epithelial prolif‑
eration is maintained in vitro [14–16, 19, 21–23, 25, 27, 
39–41] (Figure 4C). Epithelial permeability is controlled 
by tight and adherens junction proteins (TJP1, OCLN, 
CDH1) that are expressed in pig, rabbit and bovine intes‑
tinal organoids [5, 16, 22, 23, 42]. TEER measurement 
and analysis of apical‑to‑basal transport of fluorescent 
probes indicated that 2D monolayer of pig, rabbit and 
bovine organoid cells is an efficient model to study para‑
cellular epithelial permeability [16, 19, 23] (Figure  4D, 
Additional file 1). Mucin 2, the main gel‑forming mucin 
secreted by goblet cells, is expressed by intestinal orga‑
noids from pig, rabbit, horse and cows [16, 19–23, 25, 
27, 43] (Figure   4E and F). Expression of antimicrobial 
peptides or Paneth cell markers (REG3G, LYZ) was also 
detected in pig, horse, cow and rabbit organoids [16, 19, 
22, 25, 39]. Overall, the main cellular and molecular com‑
ponents required to study the epithelial barrier function 
are reproduced in vitro in livestock intestinal organoids. 
For instance, experiments in pig intestinal organoids 
showed that the food contaminant mycotoxin deoxyni‑
valenol impairs epithelial renewal [18]. Another study in 
pig enteroids showed that in vitro heat stress (42 °C ver‑
sus 37 °C) reduced the expression of proliferation mark‑
ers and tight junction proteins in pig enteroids [26].

3.4  Nutrient absorption
Besides its role of barrier, the intestinal epithelium also 
contributes to food digestion, nutrient absorption and 
hormonal regulation. Markers of absorptive enterocytes 
(ALPI, KRT20), digestive enzymes (sucrase‑isomaltase), 
ion/nutrient transporters (MCT1, SGLT1, NHE3) are 
expressed with the appropriate cellular localization in 
pig, rabbit, chicken and cow organoids [15, 16, 19–21, 37, 
39, 41]. Moreover, the characteristic microvilli of mature 
enterocytes were observed in pig and chicken enteroids 
[19, 40] (Figure  4F). Markers of enteroendocrine cells 

(PYY, CHGA) that are involved in digestive hormone 
secretion are also expressed in pig, rabbit and bovine 
organoids [16, 19–21, 23, 25, 27, 39] (Figure  4G). Thus, 
farm animal intestinal organoids have a great potential to 
study nutrient transport and gut hormone production, 
as it has already been performed in mouse or human 
enteroids [33, 44]. Experiments in 2D monolayers of pig 
organoid cells demonstrated that nutrients (amino acids, 
vitamins and choline) were transported from the api‑
cal to the basolateral side of epithelial cells, indicating 
functional nutrient absorption [5]. Intestinal organoids 
can also be used to test the effects of nutrients on epi‑
thelial homeostasis. For instance, the treatment of piglet 
organoids with dietary vitamin A reduced buddings and 
markers for differentiated cells while it increased stem 
cell markers [45]. In another study, treatment of pig orga‑
noids with glutamate increased epithelial proliferation 
[46].

4  Host‑microbe interactions in livestock intestinal 
organoids

4.1  Enteric infections modeling
Intestinal 3D and 2D organoid models can be used to 
characterize the effects of enteric pathogens on the epi‑
thelium, providing valuable insights into host–microbe 
interactions. Indeed, the different steps of the infection 
can be modelled. For example, the mechanisms of entry 
(on the basolateral or apical side), intracellular replication 
and propagation but also the exit of pathogens can be dis‑
sected with the help of organoids. More particularly, the 
role of specific cell types in these processes or the impact 
of the infection on the intestinal epithelium development 
and cell differentiation was impossible to study in  vitro 
prior to the development of organoids. From now on, the 
inflammatory responses induced by pathogens may be 
reproduced in  vitro thanks to the organoid model. For 
example, studies using intestinal organoids infected with 
pathogens may give insights into the effects of microbial 
antigens on the function of Paneth cells, leading to the 
release of antimicrobial factors into the gut lumen.

Livestock intestinal organoids were successfully 
infected by a variety of enteric pathogens. Pig intestinal 
organoids were infected by several swine coronaviruses 
(porcine epidemic diarrhea virus (PEDV), transmissible 
gastroenteritis virus (TGEV) and porcine deltacoronavi‑
rus (PDCoV)) [21, 29, 34, 38], by the bacteria Salmonella 
Typhimurium [20] and Lawsonia intracellularis [36] 
and by the protozoan parasite Toxoplasma gondii [20]. 
Bovine intestinal organoids were infected by Salmonella 
Typhimurium, Toxoplasma gondii and by group A rotavi‑
ruses [20, 24]. To study the infection process, it is essen‑
tial to replicate the physiological route of entry of enteric 
pathogen. Apical‑out organoids and 2D organoid cell 
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monolayers can be used to study enteric pathogens that 
penetrate epithelial cells through the apical side, as per‑
formed for the study of swine coronaviruses or Lawsonia 
intracellularis in pig intestinal organoids [21, 29, 34, 36, 
38]. Alternatively, the apical surface of organoid epithelial 
cells can be exposed to luminal components when orga‑
noids are mechanically disrupted during the subculture 
process, as performed for Toxoplasma gondii or Salmo-
nella Typhimurium infection in pig and bovine intesti‑
nal organoids [20]. However, both apical and basolateral 
sides of organoid cells are exposed in this setting, which 
might not be physiologically relevant.

The multicellular composition of intestinal organoids 
enables the identification of epithelial cell types targeted 
by enteric pathogens. For instance, double immunostain‑
ing experiments in pig enteroids revealed that PEDV 
and PDCoV infected mainly enterocytes, stem cells and 
goblet cells [21, 29, 38]. Intestinal organoids can also be 
used to unravel the digestive‑segment tropism of enteric 
pathogens. Indeed, intestinal organoids retain in  vitro 
the phenotype of their digestive segment of origin, as 
discussed above for pig enteroids [5, 29]. The suscepti‑
bility to PEDV and PDCoV infection was higher in pig 
small intestine organoids when compared to colon orga‑
noids, reflecting in vivo observations [21, 29]. In the case 
of PDCoV, the jejunum tropism was associated with a 
higher expression of the PDCoV entry receptor amin‑
opeptidase N in jejunum enteroids, when compared to 
organoids derived from other digestive segments [29]. 
Intestinal organoids can also be used to study epithelial 
innate immune responses triggered by enteric patho‑
gens. For instance, swine coronaviruses (PEDV, PDCoV 
and TGEV) regulated the gene expression of type‑I inter‑
ferons and inflammatory cytokines [21, 29, 38]. Finally, 
intestinal organoids are suitable to study the effects of 
toxins produced by enteric pathogens. For instance, the 
treatment of bovine ileal enteroids with Shiga toxin‑con‑
taining supernatant from Escherichia coli reduced orga‑
noid growth [47].

4.2  Microbiota-epithelium interactions
In vivo, the gut epithelium is in constant contact with a 
vast array of commensal microorganisms, collectively 
called the gut microbiota. Intestinal epithelial cells play 
a major role in maintaining the balance between the 
tolerance of commensal microbes and defense against 
them [1]. In turn, the gut microbiota regulates the main 
functions of the intestinal epithelium (i.e. digestion and 
nutrient absorption, barrier function). In recent stud‑
ies, intestinal organoids have been used as accurate 
in  vitro models to further decipher the complex inter‑
play between individual resident microorganisms and the 
epithelium. For instance, studies using murine intestinal 

organoids revealed a link between gut microbiota and 
epithelial regeneration. The underlying mechanisms 
involve a constituent of bacterial cell walls [48] and com‑
mensal bacteria‑derived short‑chain fatty acids [49]. In 
another study, mouse ileal organoids were exposed to two 
specific commensal gut bacteria Akkermansia mucin-
iphila and Faecalibacterium prausnitzii or to bacterial 
metabolites [50]. This study revealed a modulation in the 
expression of genes involved in host lipid metabolism 
and epigenetic activation/silencing of gene transcription 
[50]. Besides monoculture of bacteria with organoids, a 
complex human gut microbiota was cultivated for 4 days 
after microinjection in colon organoids [51].

Only few studies in livestock intestinal organoids 
have started exploring microbiota‑epithelium interac‑
tions. The probiotic strain Lactobacillus acidophilus and 
the TLR2 ligand Pam3CSK4 promoted the growth of 
chicken embryo intestinal epithelial organoids [31]. A 
recent study has investigated the impact of gut microbi‑
ota‑derived metabolites on rabbit cecum organoids [52]. 
Sterile supernatant of caecal contents prepared from 
suckling rabbits ingesting or not solid foods were incu‑
bated with rabbit caecal organoids. Data shows that the 
changes in the luminal environment (i.e. metabolites) at 
the suckling‑to‑weaning transition regulate gene expres‑
sion in epithelial cells, and can contribute to the matu‑
ration of the gut barrier [52]. Future developments are 
needed to colonize livestock intestinal organoids with 
monoculture of commensal bacteria or with a complex 
microbiota. The culture of intestinal organoids from 
germ‑free farm animals would also highlight the role of 
the gut microbiota on epithelial physiology. In the com‑
ing years, intestinal organoids will be helpful to under‑
stand the role of the gut microbiota in the regulation of 
key digestive functions such as nutrient absorption and 
resistance to enteric infections in farm animals.

5  Future directions of research with livestock 
intestinal organoids

Since organoids develop from stem cells, they provide 
an ideal source of material for genome editing strategies, 
producing transgenic cells ready to clonally expand and 
differentiate. In genotype‑to‑phenotype research in farm 
animals, organoids make powerful systems for testing 
candidate causal mutations in intestinal epithelial cells 
[53]. Genome editing in livestock intestinal organoids 
also has a great potential to explore molecular mecha‑
nisms, such as the identification of receptors involved in 
enteric pathogen invasion. Pig intestinal organoids have 
been successfully transduced with lentivirus [25]. Orga‑
noids are also amenable to gene editing by CRISPR‑Cas9 
technologies but, to our knowledge, it has not been used 
in farm animal intestinal organoids yet. Alternatively, 
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enteroids obtained from genetically edited animals can 
be used to study intestinal epithelial biology. For instance, 
enteroids were produced from pigs genetically edited to 
express a mutation in the MYO5B gene, which is involved 
in microvillus inclusion disease in humans [37]. MYO5B 
mutant pig enteroids displayed a poorly developed brush 
border and an abnormal localization of several trans‑
porters, these epithelial phenotypes being also observed 
in vivo in mutant pigs and in human patients [37]. Over‑
all, farm animal intestinal organoids represent a powerful 
in vitro tool to study the impact of genome modifications 
on epithelial physiology.

Livestock intestinal organoids derived from tissue‑
IESC are composed only of epithelial cells. This feature 
is a clear advantage to study direct effects of experimen‑
tal treatments on epithelial cells. However, the complex‑
ity of the intestinal mucosa is not reproduced in these 
organoids obtained from tissue‑derived IESC. Immune, 
neuronal, mesenchyme and vascular cells are lack‑
ing. Oxygen gradients, mechanical forces (peristalsis 
motions and shear stress) and the microbiota are also not 
reproduced in current models of farm animal intestinal 
organoids despite all these factors are key regulators of 
intestinal physiology. In order to increase the complexity 
of livestock intestinal organoids, efforts should be made 
to develop: (i) co‑culture models (e.g. epithelial organoids 
and immune cells), (ii) iPS/ES‑derived organoid culture 
containing mesenchymal cells, (iii) 3D‑bioprinting of epi‑
thelial and non‑epithelial cells and (iv) microfluidic intes‑
tine‑on‑a‑chip models. The latter devices were initially 
developed with cell lines such as Caco‑2 [54] and recently 
with gut organoid [55, 56]. In these models, organoid 
dissociated cells are cultured on a porous extracellular 
matrix‑coated membrane within a microfluidic device 
under flow. This allows multi‑lineage differentiation and 
the formation of epithelium architecture similar to that 
of intestinal organoids but with normal cell–cell and cell‑
lumen interfaces and mimicking the complex physical 
and biochemical microenvironment. To our knowledge, 
intestine‑on‑a‑chip technology has not been applied to 
farm animals.

Experiments performed in livestock intestinal orga‑
noids can provide ground data for less‑ and/or better‑
defined experiments and validations of hypotheses 
in vivo. This has a strong ethical benefit for reducing the 
number of animals used in  vivo (3R rule: reduce, refine 
and replace). The creation of biobanks for farm animal 
intestinal organoids available as open‑resources to the 
research community would also greatly contribute to 
the reduction of experiments in live animals. As a pre‑
requisite for the creation of shared‑biobanks, harmo‑
nization of protocols used for the culture of livestock 
intestinal organoid (e.g. culture media composition) and 

the proposal of guidelines to ensure the reproducibility 
of models across laboratories would be required. Indeed, 
methods to culture intestinal organoids from livestock 
animals are clearly not unified yet (Tables 1, 2 and 3). So 
far, the protocols used to culture farm animal intestinal 
organoids have been directly inspired from those devel‑
oped for mice or humans. It may be judicious to take into 
account the specificities related to the intestinal physiol‑
ogy of each of the animal species studied (e.g. in relation 
with the presence or absence of Paneth cells). It is also 
crucial to fully characterize the status of animals from 
which IESC are isolated to produced intestinal organoids 
(e.g. developmental stage, diet, gut microbiota, infectious 
status) since IESC imprinting in vivo might impact long 
term epithelial phenotype in organoids in vitro [57, 58]. 
However, human studies showed that traces of epigenetic 
regulation in intestinal organoids (related for example to 
effects of microbiota or chronic disease condition) were 
progressively erased during cell culture passaging for 
amplification [59]. Study of epigenetic regulations in live‑
stock intestinal organoids is another important field that 
has not been explored yet.

In many areas, organoids are replacing all traditional 
in  vitro models. In livestock, the development of this 
biological tool is all the more important as it repre‑
sents the only cell models available for certain species. 
It is important to note that intestinal organoid models 
have not been developed for all farm animals yet. For 
instance, the development of fish intestinal organoids 
could clearly benefit the fish farming sector. The fields of 
potential application of intestinal organoids in livestock 
are multiple (Figure 1C) ranging from studies of pheno‑
typing, genome editing, screening of molecules/microbes 
or basic science in relation to production traits such as 
resilience, feed efficiency, and susceptibility/resistance to 
disease. Most of these applications rely on the possibility 
of high throughput screening. It is therefore necessary to 
look for the optimal conditions to carry out these tests 
based on organoids, for example in terms of homogene‑
ity between culture wells, sufficient cell production (e.g. 
large number are required for monolayer cultures) and 
cost‑effective solutions.

6  Conclusions
In this review, we described the current state of the art of 
the emerging field of intestinal organoids obtained from 
tissue‑derived IESC in livestock species. Culture methods 
are now available to generate intestinal organoids from 
the main farm animals (pig, bovine, horse, sheep, rabbit 
and chicken). Like their mouse and human counterparts, 
farm animal intestinal organoids retain characteristics 
of their digestive segment of origin, contain all epithelial 
cell types and recapitulate the main epithelial functions. 
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Most of the studies with farm animal intestinal organoids 
aimed to model enteric infections but numerous other 
applications are foreseen in veterinary, agricultural and 
biomedical sciences. Further developments of livestock 
intestinal organoids are still required to facilitate the 
access to the lumen, to increase cellular complexity and 
to reproduce essential features of the gut environment, 
including the presence of the microbiota. Creation of 
shared biobanks of cryopreserved farm animal intestinal 
organoids and harmonization of culture conditions will 
be needed to increase accessibility and reproducibility 
of these innovative in vitro culture systems of the intes‑
tinal epithelium. Finally, the development of livestock 
intestinal organoids represents a great opportunity to 
reduce efficiently the number of animals used for in vivo 
experiments.
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