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Since autophagy and the immune microenvironment are deeply involved in the tumor
development and progression of Lower-grade gliomas (LGG), our study aimed to
construct an autophagy-related risk model for prognosis prediction and investigate the
relationship between the immune microenvironment and risk signature in LGG. Therefore,
we identified six autophagy-related genes (BAG1, PTK6, EEF2, PEA15, ITGA6, and
MAP1LC3C) to build in the training cohort (n � 305 patients) and verify the prognostic
model in the validation cohort (n � 128) and the whole cohort (n � 433), based on the data
from The Cancer Genome Atlas (TCGA). The six-gene risk signature could divide LGG
patients into high- and low-risk groups with distinct overall survival in multiple cohorts (all
p < 0.001). The prognostic effect was assessed by area under the time-dependent ROC
(t-ROC) analysis in the training, validation, and whole cohorts, in which the AUC value at the
survival time of 5 years was 0.837, 0.755, and 0.803, respectively. Cox regression analysis
demonstrated that the risk model was an independent risk predictor of OS (HR > 1, p <
0.05). A nomogram including the traditional clinical parameters and risk signature was
constructed, and t-ROC, C-index, and calibration curves confirmed its robust predictive
capacity. KM analysis revealed a significant difference in the subgroup analyses’ survival.
Functional enrichment analysis revealed that these autophagy-related signatures were
mainly involved in the phagosome and immune-related pathways. Besides, we also found
significant differences in immune cell infiltration and immunotherapy targets between risk
groups. In conclusion, we built a powerful predictive signature and explored immune
components (including immune cells and emerging immunotherapy targets) in LGG.
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INTRODUCTION

Diffuse low-grade and intermediate-grade gliomas including WHO
grades II and III, hereafter called lower-grade gliomas (LGG)
(Cancer Genome Atlas Research et al., 2015). Lower-grade
gliomas (LGG) constitute about 15 percent of all primary brain
tumors that originate from glial cells, showing great heterogeneity in
clinical outcomes (Ostrom et al., 2013; Zeng et al., 2018). So far,
maximum surgery, subsequent-radiotherapy, and chemotherapy
have been the standard treatment modalities for LGG (Soffietti
et al., 2010). Although numerous efforts to prolong LGG patient
survival, more than half of them develop and progress to treatment-
resistant and aggressive high-grade glioma in the future (Claus et al.,
2015). Hence, it is urgent to search for novel prognostic biomarkers
and therapeutic targets of LGG. Several genetic biomarkers were
incorporated into the 2016 WHO classification, including
chromosome arms 1p and 19q codeletion, isocitrate
dehydrogenase (IDH) mutation, and O-6-methylguanine-DNA
methyltransferase (MGMT) methylation, to illuminate the
histological characteristics and guide the therapeutic approach
(Hartmann et al., 2010; Wick et al., 2013; Hainfellner et al., 2014;
Louis et al., 2016). Although these widely utilized biomarkers in LGG
have recently been discovered, the novel predictors of clinical
outcomes or therapeutic targets for LGG are not fully unraveled.

Autophagy is a highly conserved lysosomal degradation
process that is crucial for homeostasis, differentiation,
development, and survival (Rabinowitz and White, 2010) and
has been found involved in diverse pathologies, including cancer
(Kondo et al., 2005). By self-degradation of damaged proteins and
intracellular components, autophagy can suppress tumor
initiation, thereby mitigating cell injury and suppressing
chromosomal instability (Mathew et al., 2007; White et al.,
2010). But, autophagy can also facilitate cancer proliferation
by supplying nutritional substance in the context of hypoxic
and innutritious surroundings (Guo et al., 2011). Mostly,
autophagy is believed to impede cancer initiation and promote
tumor progression (Trejo-Solis et al., 2018). In addition,
autophagy can alter the tumor or stroma cell immunogenicity
within the tumor microenvironment (TME) and the
development of antitumor immunity through intertwining
with pattern recognition receptor (PRR), cell death pathways,
and inflammatory (Gerada and Ryan, 2020). Nevertheless, few
studies have reported the impact on prognosis and the correlation
with immune cells of autophagy in LGG.

In the study, we established a powerful prognostic signature
based on six autophagy-related genes, and then a nomogram was
built with the signature and traditional clinical parameters, to predict
clinical outcomes and assist clinical procedures. Moreover, the
association of autophagy-related genes signature with immune
cells and emerging immune targets and was further analyzed.

MATERIALS AND METHODS

Data Collection and Processing
The level 3 RNA-seq expression profiles and corresponding
clinicopathologic data including age, gender, grade, IDH

mutation status, chemotherapy, radiotherapy of LGG patients
were obtained from TCGA Lower Grade Glioma (LGG) of UCSC
Xena (https://xenabrowser.net/). All patients were diagnosed
with LGG, who were followed for more than 90 days and have
complete clinical information. Overall, 433 patients of the LGG
whole cohort met the screening rules. The patients were
randomly separated into a training cohort (n � 305) and a
validation cohort (n � 128) at a ratio of 7:3. mRNA
Expression profiles used in normal brain tissues were
downloaded from the Genome Tissue Expression (GTEx,
https://gtexportal.org/home/datasets) (Consortium, 2015). To
normalize expression data and eliminate the batch effects, the
“sva” R package was used.

Selection and Functional Enrichment of
Autophagy-Related Genes
The “limma” R package was employed to select differentially
expressed genes (DEGs) by comparing TCGA-LGG tissues and
GTEX-brain normal tissues, with the included criteria (Adj. p <
0.05 and |LogFC| > 1) (Ritchie et al., 2015). A volcano plot was
used to visualize the DEGs. The 232 autophagy-related genes
(ARGs) were extracted from the Human Autophagy Database
(HADb, http://www.autophagy.lu/) (Moussay et al., 2011). The
intersection of the DEGs and ARGs was selected as the significant
differentially expressed autophagy-related genes (DE-ARGs) for
further assessment and was then showed in Venn diagrams.

In the whole set, LGG patients were separated into two risk
groups, low- and high-risk groups, according to the optimal risk
cutoff obtained from the training set. To probe underlying
functions of DE-ARGs and risk model, the biological process
of GO and KEGG pathways analysis was performed and GESA
was conducted to identify the critical altered signaling pathways
between high- and low-risk groups, by the aid of the
“clusterProfiler” package in R 3.6.3 (Yu et al., 2012). The
“c2.cp.kegg.v7.0.symbols.gmt” KEGG gene set was adopted as
reference. The nominal p-value (NOM-P) for gene sets <0.05, the
absolute normalized enrichment score (|NES|) > 1.8 and the false
discovery rate (FDR) <0.05 were confirmed as threshold.

Construction and Validation of the Risk
Model Based on Autophagy-Related Genes
Performing univariate Cox regression analysis in the “survival” R
package, 13 of 53 DE-ARGs in the training cohort was identified
with prognosis significance (all p < 0.05) (Linden and Yarnold,
2017). The least absolute shrinkage and selection operator
(LASSO) (Friedman et al., 2010) analysis was utilized to
establish the risk model. The prognostic risk score model
according to a combination of LASSO coefficient and the
corresponding normalized expression level was built in the
following equation: risk score � sum (the normalized
expression level of each gene × corresponding LASSO
coefficient). Subsequently, a risk score was computed for each
patient. All patients were stratified into the low-risk and high-risk
groups based on the optimum cutoff of risk score (risk score �
−7.009) counted by ROC curve using the “survminer” package in

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6982842

Lin et al. Autophagy, Prognosis, and Tumor Immunity

https://xenabrowser.net/
https://gtexportal.org/home/datasets
http://www.autophagy.lu/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


R (Supplementary Figure S1). Next, a KM plot based on log-rank
test was applied to measure the survival difference between
patients with high- and low-risk groups. The prognostic
capacity of the ARG-based signature was investigated by using
Harrell’s concordance index (C-index), time-dependent receiver
operating characteristic (ROC) curve, and Principal component
analysis (PCA) with the R packages “survcomp,” “survivalROC,”
and “ scatterplot3d” (Harrell et al., 1996; Mächler and Ligges,
2003; Alba et al., 2017). Then, the prognostic effect of the
signature established by the training set was verified in the
validation cohort and the whole cohort using some similar
methods.

Moreover, to evaluated whether the predictive capacity of the
prognostic risk model could be independent of other clinic factors
(including age, gender, WHO grade, radiotherapy,
chemotherapy, and IDH status) for patients with LGG,
univariate Cox regression and multivariate Cox regression
analyses were applied in the TCGA training cohort, the
validation cohort, and the whole cohort. Next, by using “rms,”
“foreign,” and “survival” R packages, we established a nomogram
comprising of traditional clinical factors and risk score based on
the multivariate Cox regression analysis. The prognostic effect of
the prognostic nomogram was examined by Harrell’s
concordance index (C-index), time-dependent ROC curve, and
calibration plots of the nomogram for 3 and 5 years OS plotted to
assess the coincidence of actual observed rates with the predicted
survival probability. Time-dependent ROC analyses were
performed by the “timeROC” R package.

Associations Between Immune
Components and Autophagy-Related
Genes Signature
To identify the potential association between the signature and
immune components, both emerging immune targets and tumor-
infiltrating immune cells were included. The list of potential
immunotherapy targets involved in innate and adaptive immune
processes was extracted from a recent review (Burugu et al., 2018).
We Compared the target gene expression between different risk
groups. CIBERSORT algorithm, a novel deconvolution algorithm,
uses 547 reference gene expression values for estimating enrichment
of different immunocyte subpopulations (Newman et al., 2015). Our
study applied the CIBERSORT algorithm to examine the abundance
of 22 infiltrating immune cells in the high-risk and low-risk group in
the whole cohort. Utilizing the Monte-Carlo sampling, the
deconvolution p-values of samples were computed to offer
reliability in the assessment. Patients with p < 0.05 were
considered to be high reliability of the inferred cell composition.
Therefore, samples with a p value of <0.05 were retained for
subsequent analysis. The expression profiles of TCGA-LGG
patients were put on the CIBERSORT web tool (http://cibersort.
stanford.edu/) for analysis with the default signature matrix at 1,000
permutations.

Statistical Analysis
All data analyses were done on software R (version 3.6.3). The
student’s t-test and chi-square test were used to determine that

whether there is a difference in clinical parameters between the
training cohort and validation cohort and to evaluate the
association between clinical characteristics and the risk score.
Kaplan–Meier survival analysis was used to compare the
prognosis between risk groups. The significantly independent
prognostic factors in LGG were identified using univariate and
multivariate Cox regression. The predictive capacity of the
signature and other clinical parameters was determined by
ROC curves. A nomogram was constructed with the “rms”
package in R, by using multivariate Cox analysis. The C-index
and calibration plot with the bootstrap method were performed
to evaluate the predictive power of the nomogram. A p value
<0.05 is considered statistically significant.

RESULTS

Identification of Differentially Expressed
Autophagy-Related Genes and Enrichment
Analysis
RNA-seq expression data and clinical information of 529 lower-
grade glioma tissue samples were obtained from TCGA, and
1,035 non-tumor samples were selected from GTEX. Of those
patients, a total of 433 LGG patients who were followed for more
than 3 months and had complete clinical data were analyzed in
the study. After analyzing the TCGA-LGG expression data using
limma, 7,143 DEGs were found between LGG and normal tissues
and showed in the volcano plots (Figure 1A). Venn diagrams
revealed that the intersection of fifty-three significant DE-ARGs
were used for further analysis (Figure 1B).

Next, we performed functional enrichment analysis to identify
risk pathways and biological functions associated with the DE-
ARGs. Go enrichment analysis revealed that the biological
process of the DE-ARGs were significantly enriched in terms
of autophagy-related processes; the cellular component of the
DE-ARGs were significantly enriched in the terms
autophagosome membrane, autophagosome and vacuolar
membrane and the molecular function of the DE-ARGs were
significantly enriched in the terms ubiquitin and ubiquitin−like
protein ligase binding, and cyclin−dependent protein serine/
threonine kinase inhibitor activity (Figure 1C). In addition,
KEGG enrichment analysis showed that the DE-ARGs were
mainly involved in cancer-related pathways,
Autophagy−animal and Mitophagy–animal (Figure 1D).

Establishment of an Autophagy-Related
Model for Survival Prediction in the The
Cancer Genome Atlas Lower-Qrade
Qliomas Training Cohort
According to the screening conditions, we randomly separated
433 patients in TCGA-LGG into a training dataset (n � 305) and a
validation dataset (n � 128), using the “caret” package. The chi-
square test demonstrated no significant difference in basic clinical
factors between the two datasets (Table 1). Moreover, the
clinicopathological parameters of LGG patients based on risk
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signature constructed below was also examined (Supplementary
Table S2). After univariate Cox regression analysis, 13
significantly prognosis-associated genes were identified in the

training cohort of 305 LGG patients. These significant genes
entered into LASSO COX regression analyses, and the regression
coefficient was determined. As a result, the six most important

FIGURE 1 | Identification of differentially expressed autophagy-related genes (DE-ATGs) in low grade glioma (LGG) and enrichment analysis. (A) Volcano plot of
DEGs in 529 tumor tissues of The Cancer Genome Atlas (TCGA) dataset and 1,035 normal samples from The Genotype-Tissue Expression (GTEx). The vertical axis
indicates the–log [adjusted p value (adj. p value)], and the horizontal axis indicates the log2 [fold change (FC)]. The red dots represent upregulated genes, and the green
dots represent downregulated genes (adj. p value <0.01 and |log2(FC)| > 1). (B) Venn diagram showing the 53 DE-ARGs (the intersection of the DEGs and ARGs).
(C) Biological processes (BP), Cellular components (CC) and Molecular functions (MF) enriched in the DE-ARGs. (D) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways enriched in the DE-ARGs.

TABLE 1 | Demographics and clinicopathological data of 433 LGG patients from the TCGA database.

Clinical variables Total set number (%) Training
set number (%)

Validating
set number (%)

p Value

Age at diagnosis
<40 237 (54.73) 159 (52.13) 78 (60.94) 0.1155
≥40 196 (45.27) 146 (47.87) 50 (39.06)

Gender
FEMALE 197 (45.5) 135 (44.26) 62 (48.44) 0.4899
MALE 236 (54.5) 170 (55.74) 66 (51.56)

Grade
G2 206 (47.58) 141 (46.23) 65 (50.78) 0.4473
G3 227 (52.42) 164 (53.77) 63 (49.22)

Radiotherapy
NO 159 (36.72) 113 (37.05) 46 (35.94) 0.9126
YES 274 (63.28) 192 (62.95) 82 (64.06)

Chemotherapy
NO 182 (42.03) 134 (43.93) 48 (37.5) 0.258
YES 251 (57.97) 171 (56.07) 80 (62.5)

IDH status
Mutation 353 (81.52) 246 (80.66) 107 (83.59) 0.5598
Wild 80 (18.48) 59 (19.34) 21 (16.41)
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genes were identified as BAG Cochaperone 1 (BAG1), Protein
Tyrosine Kinase 6 (PTK6), Eukaryotic Translation Elongation
Factor 2 (EEF2), Proliferation and Apoptosis Adaptor Protein 15
(PEA15), Integrin Subunit Alpha 6 (ITGA6), and Microtubule
Associated Protein 1 Light Chain 3 Gamma 5 (MAP1LC3C). An
autophagy-related LGG risk score was constructed through a
linear combination of the expression values of the six autophagy-
related genes adjusted by the LASSO regression coefficient. The
risk score � −0.7733 × expression level of BAG1-0.2010 ×
expression level of PTK6-0.1621 × expression level of EEF2-
0.4639 × expression level of PEA15 + 0.0565 × expression level of
ITGA6 + 0.3223 × expression level of MAP1LC3C. The risk score
for each patient was calculated according to this equation
(Table 2).

Subsequently, we computed the risk score for each LGG
patient in the training cohort. The cutoff risk score (−7.009)
was counted using the “survminer” package in the TCGA-LGG
training cohort. All LGG patients were then separated into low-
(risk score < −7.009) and high-risk (risk score ≥ −7.009) groups
(Figure 2D). Kaplan–Meier survival analysis showed that
patients in high-risk group were associated with a relatively
poor OS as than those in the low-risk group (log-rank p �
1.554e-15, Figure 2A). The heatmap showed that six
prognostic expression profiles between two risk groups
(Figure 2C). Besides, multivariate Cox regression analysis
demonstrated that the risk score could independently predict
OS after adjusting for various clinicopathologic parameters in the
training cohort (Table 3). ROC analysis of 5 years overall survival
was applied to examine the predictive capacity of the six-gene
prognostic risk model. Moreover, the 5 years AUC of risk model
was 0.837, which was markedly higher than that of age (AUC �
0.684), gender (AUC � 0.538), WHO grade (AUC � 0.700),
radiotherapy (AUC � 0.671), IDH status (AUC � 0.293), and
chemotherapy (AUC � 0.616), indicating that it has a more
robust prediction of clinical outcome than the other clinical
parameters (Figure 2B).

Testing the Signature in the Validation
Cohort and the Whole Cohort
The validation dataset and the whole dataset were used to predict
OS and demonstrate the predictive capacity of the risk model. The
risk score in each LGG patient from the validation cohort was
calculated based on the formula. Then, we divided the validation
cohort into a high-risk group (n � 44) and a low-risk group (n �

84) depending on the optimal risk cutoff value in the training
cohort (risk score � −7.009, Figure 3D). Kaplan-Meier analysis
indicated that patients in the high-risk group had a poorer
prognosis compared to those in the low-risk group (log-rank
p � 7.382e-05, Figure 3A). The heatmap displayed that six
autophagy-related expression profiles between low- and high-
risk groups in the validation cohort (Figure 3C). Besides,
univariate and multivariate analysis revealed that the risk score
was significantly associated with OS after adjustment for other
clinical parameters such as age, gender, grade, radiotherapy,
chemotherapy, and IDH status (Table 3). Moreover, The ROC
curves for 5 years overall survival indicated that the risk score has
the best predictive capacity of OS (AUC � 0.755) among the
clinical parameters (Figure 3C).

We then further demonstrated the prognostic predictive
capacity of the six autophagy-related genes signature in the
whole dataset and achieved similar findings. As shown in
Figure 4D, the optimal risk cutoff value in the training cohort
was adopted to separate the whole dataset into a high-risk group
(n � 133) and a low-risk group (n � 300). KM analysis also revealed
that high-risk patients had a poorer prognosis than those in the
low-risk group (log-rank p value � 0e + 00, Figure 4A). Six
autophagy-related expression profiles between low- and high-
risk groups in the whole cohort were also showed in a heatmap
(Figure 4C). Univariate and multivariate analysis still indicated
that the risk signature was significantly associated with overall
survival after adjustment for clinical parameters (Table 3). The
ROC curves for 5 years overall survival also revealed that the risk
score has the best predictive power of OS (AUC � 0.803) than the
other traditional clinical parameters (Figure 4B). These results
suggested the autophagy-related risk signature performed well in
predicting clinical outcomes of LGG patients.

Last, we further compared the predictive capacity of our six
autophagy-related genes signature with the two previous models
based on autophagy-related genes, by performing ROC curves
and Principal component analysis (PCA). The ROC curves for
5 years overall survival revealed that the AUC values of these two
published signatures were 0.487 and 0.726 (Supplementary
Figure S2), which are lower than our signature. The PCA
analysis revealed that our six-autophagy-related genes
signature could clearly split the LGG patients into a high- and
low-risk group, and presents a best distinction effect compared
with other risk models (Supplementary Figure S3). These results
indicated that our risk model has greater predictive performance
in predicting prognosis compared with other signatures.

TABLE 2 | Six survival-related autophagy-related gene in the signature associated with overall survival in the TCGA-training set.

ID uniCox regression LASSO

HR Low 95% CI High 95% CI p value Coefficient

BAG1 0.060069 0.023310698 0.154791644 5.78E-09 −0.773344244
PTK6 0.175985 0.084795649 0.365238271 3.11E-06 −0.200973447
EEF2 0.362671 0.241460173 0.544727587 1.02E-06 −0.162054564
PEA15 0.335272 0.238622505 0.471066233 3.00E-10 −0.463926374
ITGA6 3.111707 1.844873426 5.248445579 2.08E-05 0.056506153
MAP1LC3C 2.274053 1.794350072 2.881999107 1.07E-11 0.322322447
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The Association Between the
Autophagy-Related Signature and
Clinicopathological Factors
To probe the relationship between the risk model and clinical
parameters, we firstly used a heatmap to show the distributions of
age, gender, WHO grade, radiotherapy, chemotherapy, and IDH

status between risk groups in the LGG whole cohort. Figure 5A
showed that the risk groups were significantly associated with
chemotherapy, radiotherapy, age, WHO grade, and survival
status. And there were no significant differences between risk
groups for gender. We next assessed the risk scores in various
subgroups stratified by age, survival status, grade, chemotherapy,
radiotherapy, and IDH status separately. Risk scores in patients

FIGURE 2 |Development of risk score based on the six autophagy-related gene signature of patients with TCGA-LGG training set. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with TCGA-LGG training cohort. (B) ROC curve for 5 years OS in training cohort. (C)
Heatmap of the six autophagy-related gene expression in the training cohort. (D) Risk plot of each point sorted based on risk score. The black dotted line is the optimal
cutoff (−7.009) classifying patients into low risk and high risk groups.
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above 40 years old were higher than those in the younger age
group (Figure 5B). Patients in the alive subtype had obviously
lower risk scores than those in the dead subtype (Figure 5C). For
the WHO grade, the risk scores in the G3 subgroup were higher
than those in the G2 subtype (Figure 5D). The risk scores of
patients receiving chemotherapy and radiotherapy were
separately higher than those without therapy (Figures 5E,F).
With regard to IDH status subtypes, the risk scores significantly
increased in the IDH-wild subtype than the IDH-mutation
subtype (Figure 5G).

We also examined the predictive effects of the six
autophagy-related risk model in different subgroups
stratified by age, gender, WHO grade, IDH status, and
history of radiotherapy or chemotherapy. In the two age
subtypes, higher risk scores predicted decreased survival in
both age subtypes (Figures 6A,B, p < 0.001). Risk scores could
separate patients with or without chemotherapy (Figures
6C,D, p < 0.001) or radiotherapy (Figure 6K,L, p < 0.001)
with distinct outcomes. Similar results were also found in the
IDH wild- and mutation-type groups (Figures 6I,J, p < 0.001),
WHO G2 and G3 groups (Figures 6G,H, p < 0.0001), and
gender groups (Figures 6E,F, p < 0.001).

Establishing a Nomogram as Prognostic
Prediction Model
By integrating the six-autophagy-related signature and six
traditional clinical parameters, we constructed a nomogram to
predict the survival probability at 3 and 5 years of LGG patients in
the whole cohort (Figure 7B). The C-index of the nomogram was

0.845. The AUCs of the nomogram for 3 and 5 years OS
predictions were 0.884 and 0.855, respectively (Figure 7A).
Meanwhile, the calibration plots also demonstrated a good
agreement with predicted and observed values with respect to
probabilities of 3 and 5 years survivals (Figures 7C,D). Together,
those findings indicated that the nomogram predicts precisely the
3 and 5 years survivals for LGG patients.

Functional Annotation and Pathway
Enrichment Analysis Between theHigh-Risk
Group and Low-Risk Group
To probe the potential biological function of risk groups, both the
biological process (BPs) of gene ontology, KEGG, and GSEA were
performed. By applying the limma package, the heatmap showed
1904 differentially expressed genes (Figure 8A) between risk groups.
Significantly enriched BPs were mainly involved in extracellular
matrix organization, T cell activation, and leukocyte cell-cell
adhesion (Figure 8B). As for KEGG pathways enriched in these
DEGs were cell adhesion molecules, phagosome, Th1 and Th2 cell
differentiation, and antigen processing and presentation
(Figure 8D). Functional enrichment analysis was then performed
between risk groups. GSEA illustrated that the most significant
pathways enriched in the high-risk group were Fc gamma receptor-
mediated phagocytosis, leukocyte transendothelial migration,
natural killer cell mediated cytotoxicity, regulation of actin
cytoskeleton, and toll like receptor signaling pathway, while no
significant pathways enriched in low-risk group (Figure 8C). A
complete list of GSEA results can be found in Supplementary
Table S1.

TABLE 3 | Univariate and multivariate Cox regression analysis in TCGA-LGG each cohorts.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

Training set (n � 305)
Age (<40/≥40) 3.908 (2.214–6.898) 2.5965E-06 2.750 (1.448–5.222) 0.00198857
Gender (female/male) 1.250 (0.765–2.042) 0.372437476 1.974 (1.160–3.360) 0.01221692
Grade (G2/G3) 3.459 (1.972–6.066) 1.49742E-05 1.774 (0.919–3.422) 0.08750485
Radiotherapy (no/yes) 3.045 (1.583–5.854) 0.000844437 1.507 (0.710–1.131) 0.28553912
IDH status (wild/mutation) 0.143 (0.088–0.234) 9.56649E-15 0.465 (0.191–1.131) 0.09129914
Chemotherapy (no/yes) 1.628 (0.977–2.712) 0.061242815 0.820 (0.470–1.432) 0.4854889
Risk score (low/high) 4.645 (3.353–6.435) 2.59641E-20 2.493 (1.336–4.651) 0.0041002

Validation set (n � 128)
Age (<40/≥40) 3.425 (1.427–8.220) 0.005861356 3.319 (1.097–10.05) 0.03372453
Gender (female/male) 0.794 (0.377–1.673) 0.544405373 1.059 (0.461–2.431) 0.89283856
Grade (G2/G3) 3.572 (1.572–8.117) 0.002367324 2.376 (0.817–6.911) 0.11217943
Radiotherapy (no/yes) 1.775 (0.761–4.140) 0.183865679 1.921 (0.669–5.517) 0.22532202
IDH status (wild/mutation) 0.116 (0.047–0.288) 3.63036E-06 0.776 (0.139–4.338) 0.77242088
Chemotherapy (no/yes) 0.865 (0.421–1.778) 0.693438967 0.218 (0.086–0.553) 0.00131428
Risk score (low/high) 4.334 (2.546–7.381) 6.64509E-08 3.583 (1.151–11.16) 0.02762528

Whole set (n � 433)
Age (<40/≥40) 3.541 (2.243–5.590) 5.70336E-08 2.918 (1.717–4.957) 7.4951E-05
Gender (female/male) 1.060 (0.713–1.576) 0.772843899 1.472 (0.964–2.248) 0.07342518
Grade (G2/G3) 3.307 (2.213–5.151) 1.22602E-07 1.880 (1.115–3.170) 0.01789178
Radiotherapy (no/yes) 2.535 (1.516–4.239) 0.000389848 1.484 (0.818–2.692) 0.19380046
IDH status (wild/mutation) 0.147 (0.098–0.222) 5.54714E-20 0.560 (0.272–1.154) 0.11614564
Chemotherapy (no/yes) 1.333 (0.881–2.016) 0.173180772 0.623 (0.394–0.985) 0.04287472
Risk score (low/high) 4.593 (3.487–6.050) 2.04139E-27 2.714 (1.644–4.482) 9.5588E-05
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Differential Expression of Potential
Immunotherapy Targets and the
Tumor-Infiltrating Immune Cells Between
Two Groups
Pathway enrichment between risk groups suggested that
autophagy-related genes signature was associated with some

immune-related pathways. Thus, we investigated the abundances
of the 22 immune cell types for each LGG patient from the whole
cohortwithin the low-risk group and the high-risk group, according to
the CIBERSORT algorithm. The comparison of 22 immune cells
between risk groups displayed in a radar plot (Figure 9A).
Macrophages M0, M1, and M2, and T cells CD8 were obviously
increased in the high-risk group than the low-risk group; however, the

FIGURE 3 | Development of risk score basedon the six autophagy-related gene signature of patientswith TCGA-LGGvalidation set. (A)Kaplan-Meier plot for overall survival (OS)
based on risk score of the six gene based signature of patients with TCGA-LGG validation cohort. (B)ROCcurve for 5 years OS in validation cohort. (C)Heatmap of the six autophagy-
related gene expression in the validation cohort. (D)Risk plot of each point sorted based on risk score. The black dotted line is the optimal cutoff (−7.009) classifying patients into low risk
and high risk groups.
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expression levels of Eosinophils, Mast cells activated, Monocytes, NK
cells activated, and Plasma cells were obviously lower in the high-risk
group (Figure 10). We also found the gene expressions of multiple
promising immunotherapy targets, includingCD47, CD276, CTLA-4,
LAG3, PD-1/L1, and TIM3, and tumormutation burden (TMB)were
significantly increased in the high-risk group, while the expression
levels of NKG2A was significantly upregulated in the low-risk group
than in the high-risk group (Figure 9B).

DISCUSSION

Autophagy has been reported involved in tumor formation and
progression, and therapy resistance of multiple cancers,
including glioma (Kondo et al., 2005; Mathew et al., 2007;
White et al., 2010). Besides, autophagy can alter the tumor or
stroma cell immunogenicity within the tumor
microenvironment and the response to immunotherapy

FIGURE 4 | Development of risk score based on the six autophagy-related gene signature of patients with TCGA-LGG whole set. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with TCGA-LGG whole cohort. (B) ROC curve for 5 years OS in whole cohort. (C) Heatmap
of the six autophagy-related gene expression in the whole cohort. (D) Risk plot of each point sorted based on risk score. The black dotted line is the optimal cutoff
(−7.009) classifying patients into low risk and high risk groups.
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(Gerada and Ryan, 2020). However, few studies have reported
the impact on prognosis and the correlation with immune cells
of autophagy in LGG. In this study, the whole samples of the
TCGA-LGG project were randomly separated into a training
set, and a validation set and the whole set were created for
further verification. We established a novel prognosis
signature of six autophagy-related genes of LGG in the
training dataset, and the signature was verified in the
validation and whole datasets. The risk score could well
separate patients into a low-risk group and a high-risk
group, with a significant difference in overall survival. The

AUC of the risk score in predicting the 5 years survival rate in
the training set, validation set, and the whole set was 0.837,
0.755, and 0.803, respectively, which suggested that the
prognostic signature performed better in predicting clinical
outcomes than other traditional clinical factors. The six
autophagy-related genes signature could serve as the
independent predictive factor of LGG patients, according to
multivariate analysis and Kaplan-Meier method. Furthermore,
our findings showed that significant differences in tumor
immune microenvironment and promising immunotherapy
targets between two risk groups in the whole cohort.

FIGURE 5 |Relationship between the signature risk scores and clinical factors. (A) The heatmap showed the relationship between the risk signature and the clinical
features (chemotherapy, IDH status, radiotherapy, grade, gender, age and survival status) in the LGG-whole cohort. (B–G) The box plots revealed the association
between risk score and clinical parameters. *p < 0.01, **p < 0.001, ***p < 0.0001.
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Autophagy was involved in a broad range of cellular processes
and human diseases, and it is responsible for both carcinogenesis
and sensitivity to various therapies in recent years (Mathew et al.,
2007; White et al., 2010; Gerada and Ryan, 2020). Hence, it was
important to construct the prognostic model based on
autophagy-related genes to predict overall survival of LGG
patients. Our study first selected 53 DE-ARGs and then
identified six genes significantly associated with prognosis.
Among them, BAG1, PTK6, EEF2, and PEA15 were protected
factors, but ITGA6 and MAP1LC3C were risk factors for LGG
patients in univariate Cox regression. BAG1 is a multifunctional
protein that associates with multiple cellular processes, such as
apoptosis, proliferation, growth, and motility (Ostrom et al.,
2013). Besides, BAG1 was reported to be a protective factor in
breast cancer (Papadakis et al., 2017). Protein Tyrosine Kinase 6
(PTK6) encodes a cytoplasmic nonreceptor protein kinase,
implicated in processes of proliferation, apoptosis, migration,

and invasion in cancer cells (Harvey and Crompton, 2004; Shen
et al., 2008; Xiang et al., 2008; Harvey et al., 2009; Locatelli et al.,
2012; Park et al., 2015). PTK6 was found to be upregulated in
many tumor tissues, including breast cancer (Barker et al., 1997),
bladder cancer (Xu et al., 2017), non-small cell lung cancer (Zhao
et al., 2013), and ovarian cancer (Schmandt et al., 2006), and is
associated with adverse outcomes. However, another study
showed that PTK6 expression was downregulated in laryngeal
squamous cell carcinoma and esophageal squamous cell
carcinoma tissues, and low expression levels of PTK6
predicted short survival (Liu et al., 2013; Chen et al., 2014).
EEF2 plays an essential role in the translocation of peptidyl-tRNA
during protein synthesis. Overexpression of EEF2 was
associated with disease progression of lung adenocarcinoma
cells (Chen et al., 2011). PEA15 is a 15-kDa phosphoprotein
that impedes cell proliferation via inhibiting ERK-dependent
proliferation and gene transcription (Formstecher et al., 2001;

FIGURE 6 | Kaplan-Meier survival curves showed prognostic values of the risk signature in different subgroups of LGG-whole cohort. (A) age ≥ 40; (B) age < 40;
(C) without chemotherapy; (D) chemotherapy; (E) Female; (F)Male; (G) G2; (H) G3; (I) IDH-mutation type; (J) IDH-wild type; (K) without radiotherapy; (L) radiotherapy.
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FIGURE 7 |Nomogram built to predict the prognosis of patients with LGG. (A)ROC analysis for 3 and 5 years OS predictions with the nomogram. (B) A nomogram
based on risk score and other clinical parameters for predicting 3 and 5 years OS of LGG. Calibration curves of nomogram for predicting probabilities of 3 years (C), and
5 years (D) overall survival of patients in the whole cohort. The calibration plots of for predicting probabilities of 3 years (E), and 5 years (F) overall survival of patients in the
training cohort. The calibration plots of for predicting probabilities of 3 years (G), and 5 years (H) overall survival of patients in the validation cohort. The blue line
indicates actual survival.
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Bartholomeusz et al., 2006). In addition, PEA15 was found to
induce autophagy via activation of the ERK1/2 pathway
(Bartholomeusz et al., 2008). ITGA6 is a member of the
integrin alpha chain family that conducts signals through
interacting with extracellular matrix proteins, serving crucial
roles in drug resistance of multiple cancers (Yamakawa et al.,
2012; Brooks et al., 2016; Wei et al., 2019). Additionally,
overexpression of ITGA6 is associated with shorter overall
survival (Zhang et al., 2016; Wei et al., 2019). MAP1LC3A
encodes a light chain subunit of the microtubule-associated
protein 1-light chain three family, participating in the
autophagy and cell mobility process. Giatromanolaki et al.
(2014) reported that the overexpression of MAP1LC3A was
correlated with impaired autophagic degradation activity,
which may facilitate the carcinogenesis of glioblastoma. In
addition, another study showed that the MAP1LC3A
expression at the surgical margins could be a poor biomarker
for clinical prognosis in oral squamous cell carcinoma (Terabe
et al., 2018). In summary, BAG1, PTK6, EEF2, PEA15, ITGA6,
and MAP1LC3C could serve as predictors for survival in
multiple cancers, involving in various biological processes
including autophagy. These ATGs may serve as promising

prognostic biomarkers and therapeutic targets for guiding
LGG therapy.

Then, we established and verified a novel six autophagy-
related genes risk model that improves the survival prediction
of LGG patients. According to the six autophagy-related
signature, LGG patients were separated into a high-risk group
and a low-risk group. Patients with high-risk scores predicted
worse OS compared to patients with low-risk scores. Afterward, it
was successfully validated in the validation and whole datasets,
indicating the good reproducibility of this signature. Moreover,
Cox regression analysis indicated that the risk score of
autophagy-related genes signature is an independent
prognostic factor of clinical outcome for LGG patients in
multiple cohorts. Additionally, we observed that the risk
scores were significantly associated with several clinical factors,
including age, grade, IDH mutation status, chemotherapy and
radiotherapy. As younger age, low grade glioma and IDH
mutation were prognostic factors associated with better
outcomes(Taillibert et al., 2004; Cancer Genome Atlas
Research et al., 2015; Ostrom et al., 2020), we can speculated
that these factors would associated with lower risk scores, which is
consistent with our results. Chemotherapy is recommended as an

FIGURE 8 | Functional annotation and pathway enrichment analysis of risk groups. (A) Volcano plot of differential gene expression analysis between high-risk and
low-risk groups. (B) Functional annotation for signature using GO biological process. (C) Gene set enrichment analysis of curated gene sets obtained from MSigDB
Collections. Pathways of interest with significant enrichment in high-risk group was shown. (D) Pathway enrichment analysis by KEGG.
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optional treatment alone or in combination with radiotherapy for
newly diagnosed LGG patients who cannot undergo gross total
resection (Ziu et al., 2015). The higher residual tumor volume
(Wijnenga et al., 2018) was reported correlated with shorter OS
after adjusting for other clinicopathological factors, suggesting
that chemotherapy and radiotherapy might associated with
unfavorable outcomes or higher risk scores, which is in

accordance with our findings. Moreover, our risk model can
classify LGG patients after clinicopathological parameters into
high- and low-risk groups with a distinct prognosis, making the
risk model can be used to guide individualize treatment. For
example, the median age at time of diagnosis for LGG patients
around 40 years and the older LGG patients more often
associated with unfavorable prognostic factors, including focal

FIGURE 9 | Immune characteristics of risk groups in the whole cohort. (A) The radar plot showed the 22 different immune cell levels between high-risk and low-risk
groups; (B,C) The levels of emerging immunotherapeutic targets and TMB between risk groups. *p < 0.01, **p < 0.001, ***p < 0.0001.
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deficits, larger residual tumor volumes, compared with younger
patients, which may be an explanation for advanced age patients
in LGG usually with a poor prognosis (Corell et al., 2018).
Additionally, previous study suggested undertreatment of the
elderly patients could also contributed to their decreased survival
(Kaloshi et al., 2009).Thus, it is crucial to predict the prognosis of
the elderly LGG patients, to guide whether the older patients
receive the active treatment or not. Fortunately, our autophagy-
related genes signature can divide patients with more than
40 years into high- and low-risk groups with distinct
outcomes, making the signature can be used to guide
individualize treatment. Lastly, we constructed a nomogram
comprising the risk score, age, gender, WHO grade,
radiotherapy, chemotherapy, and IDH status, Calibration
curves of the nomogram predicted the probabilities of 3 and
5 years survival, which corresponded closely with the actual
survival rates, suggesting that the nomogram has an excellent
predictive performance. Hence, our study identified a nomogram
that could help identify LGG patients with a high risk of short
survival and guide the selection of better treatment options,

which is credible to both physicians and patients. To date,
some autophagy-related prognostic classifiers of glioma were
published. We further compared the predictive capacity of our
risk model with two published signatures (Lin and Lin, 2021;
Wang et al., 2021), by performing ROC curves and PCA analysis.
These results proved that our six autophagy-related genes
signature has the best predictive performance than another
signatures, considering different selection criteria of
autophagy-related genes yield different outcomes.

The tumor immune microenvironment plays a crucial role in
cancer biology (Hanahan and Weinberg, 2011). Previous studies
have evaluated the tumor-infiltrating immune cells were deeply
involved in glioma development and progression (Perus and
Walsh, 2019; Wang et al., 2020). And autophagy and
immunity played a momentous role in the tumor
microenvironment. Some studies have demonstrated that
autophagy plays a critical role in innate immunity as well as
the activation of lymphocytes and survival (Germic et al., 2019).
Similar to previous findings, our functional analysis also indicated
that the significant biological processes and pathways enriched in

FIGURE 10 | The difference of significantly immune cells between risk groups. (A) Eosinophils; (B)Macrophages M0; (C)Macrophages M1; (D)Macrophages M2;
(E) Mast cells activated; (F) Monocytes; (G) NK cells activated; (H) Plasma cells; (I) T cells CD8.
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the high-risk group were involved in some immune-related
pathways, such as T cell activation, Th1 and Th2 cell
differentiation, and NK cell-mediated cytotoxicity. We further
evaluated the relationships of 22 types of immune cell between
risk groups in LGG patients. There is a distinctive difference of
the cellular component of innate immunity, such as eosinophils,
monocytes, macrophages, mast cells, and natural killer (NK) cells
between risk groups in the whole cohort. For the eosinophils, the
role of autophagy for regulating eosinophil remains largely
unknown, for less well studied. Mast cells activated were
hypothesized to act as sentinel cells that respond with
pathogens and trigger protective immune responses
(Piliponsky and Romani, 2018). However, little is known
about the mechanism of autophagy for regulating mast cell
functions. As for macrophages, the level of macrophages (M0,
M1, and M2 macrophages) were significantly increased in the
high-risk group than those in the low-risk group, but eosinophils,
mast cells activated, monocytes, and NK cells activated were
higher in the low-risk group. M2 macrophages comprised the
most considerable fraction of macrophages of the high-risk group
in our results, which is consistent with the previous study that
immunosuppressive M2 macrophages were the dominant type of
tumor-associate macrophage (TAM) infiltrations in gliomas (Xu
et al., 2020). M2 macrophages contributed to an
immunosuppressive tumor microenvironment and promote
glioma progression (Xu et al., 2020). Moreover, we found that
the high-risk group have a lower abundance levels of NK cell,
which have cytotoxic potential against tumor cells and its
infiltration is associated with better clinical outcomes (Eckl
et al., 2012). In addition, the high-risk group has higher
fractions of CD8+ T cells. Prior studies have demonstrated
that increased CD8+ T cells are related to prolonged survival
in gliomas (Yang et al., 2010). However, increased expression of
immune checkpoints (such as PD-1/L1, LAG3, TIM3) could
contribute T cell to a dysfunctional exhausted status following
activation (Woo et al., 2012). Our study found that the expression
of immune checkpoints was significantly upregulated in the high-
risk group compared to the low-risk group. Therefore, the
immunosuppressive M2 macrophages, the lower level of NK
cells, and the increased expression of immune checkpoints in
patients with high risk may be an explanation for their decreased
survival.

Cancer immunotherapy is now emerged as the fifth pillar of
cancer treatment, with surgery, chemotherapy, targeted pathway
inhibition, and radiation (Murciano-Goroff et al., 2020). Immune
checkpoint inhibitors (ICIs) have now become the first-line
therapies of choice in multiple cancers, such as advanced non-
small cell lung cancer and melanoma (Larkin et al., 2015; Reck
et al., 2016). However, upregulation of additional immune
checkpoints conferring to ICIs resistance, there is a need to
identify novel antitumor immune-activating agents. Emerging
immunotherapy targets involved in adaptive immunity and
innate immune processes, targeting these agents can greatly
enhance antitumor immunity, thus eradicating cancer cells
(Burugu et al., 2018). For example, LAG-3 has been reported
positive expression on the surface of tumor-infiltrating
lymphocytes (TILs) of multiple cancers (Deng et al., 2016;

Shapiro et al., 2017; Tassi et al., 2017), correlating with
aggressive clinical features. In preclinical mouse models, LAG-
3 inhibition reenergizes CD8+ T cell’s cytotoxicity function and
decreases Treg populations, combined with PD-1 inhibitor could
improve the antitumor effect (Woo et al., 2012; Huang et al.,
2015). Besides, TMB was a potential biomarker for PD-1
inhibitors and patients with high TMB receiving PD-1
inhibition have a higher objective response rate compared to
patients with low TMB (Zhu et al., 2019). Our study investigated
the immunotherapy target gene expression between different risk
groups. The result showed that the gene levels of multiple
potential immunotherapy targets, including CD276, CD47,
CTLA-4, LAG3, PD-1/L1, and TIM3, and TMB were
significantly increased in the high-risk group, while the
expression levels of NKG2A was significantly upregulated in
the low-risk group than in the high-risk group. Therefore, we
speculated that the high-risk patients may benefit from the
blockade of these immunotherapy targets in LGG.

The present study has some limitations. Firstly, we built the
autophagy-related prognosis signature only with the RNA-seq
expression profiles of LGG from TCGA. Although we have
separated whole samples into two sets of training cohort and
validation cohort, and then verified the performance of the risk
signature constructed in the training cohort with the data in the
validation and whole cohorts, our prognosis signature would be
more powerful with verified in independent external cohorts.
Secondly, more details about the molecular mechanisms of six
autophagy-related genes and the cross-talk between the
autophagy and immune cells in LGG patients required further
assessment.

CONCLUSION

In summary, we established a reliable autophagy-related six genes
signature that can effectively assess the prognosis of LGG patients.
Besides, we identified the immune microenvironments and immune
targets were different between risk groups, which could be an
explanation for poor prognosis in the high-risk group.
Furthermore, the six autophagy-related genes risk model might
guide the application of immunotherapy in LGG.
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