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Abstract 

Background:  In preventive drug trials such as intermittent preventive treatment for malaria prevention during 
pregnancy (IPTp), where there is repeated treatment administration, recurrence of adverse events (AEs) is expected. 
Challenges in modelling the risk of the AEs include accounting for time-to-AE and within-patient-correlation, beyond 
the conventional methods. The correlation comes from two sources; (a) individual patient unobserved heterogeneity 
(i.e. frailty) and (b) the dependence between AEs characterised by time-dependent treatment effects. Potential AE-
dependence can be modelled via time-dependent treatment effects, event-specific baseline and event-specific ran-
dom effect, while heterogeneity can be modelled via subject-specific random effect. Methods that can improve the 
estimation of both the unobserved heterogeneity and treatment effects can be useful in understanding the evolution 
of risk of AEs, especially in preventive trials where time-dependent treatment effect is expected.

Methods:  Using both a simulation study and the Chloroquine for Malaria in Pregnancy (NCT01443130) trial data 
to demonstrate the application of the models, we investigated whether the lognormal shared frailty models with 
restricted cubic splines and non-proportional hazards (LSF-NPH) assumption can improve estimates for both frailty 
variance and treatment effect compared to the conventional inverse Gaussian shared frailty model with proportional 
hazard (ISF-PH), in the presence of time-dependent treatment effects and unobserved patient heterogeneity. We 
assessed the bias, precision gain and coverage probability of 95% confidence interval of the frailty variance estimates 
for the models under varying known unobserved heterogeneity, sample sizes and time-dependent effects.

Results:  The ISF-PH model provided a better coverage probability of 95% confidence interval, less bias and less pre-
cise frailty variance estimates compared to the LSF-NPH models. The LSF-NPH models yielded unbiased hazard ratio 
estimates at the expense of imprecision and high mean square error compared to the ISF-PH model.

Conclusion:  The choice of the shared frailty model for the recurrent AEs analysis should be driven by the study 
objective. Using the LSF-NPH models is appropriate if unbiased hazard ratio estimation is of primary interest in the 
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Background
The development of a comprehensive drug safety profile 
in randomized controlled trials (RCTs) requires statisti-
cal methods that can adequately characterize the adverse 
event (AE) occurrence process (e.g. time of onset, recur-
rence and duration) [1]. Traditionally, analysis of AEs 
in IPTp trials, like all clinical trials, is predominantly 
descriptive and non-parametric such that advanced 
methods (e.g. parametric and semi-parametric) are rarely 
used [2–4]. The use of descriptive and non-parametric 
methods can lead to poor estimates of the effect of treat-
ment on AE recurrence. The descriptive and non-par-
ametric methods may not account for essential aspects 
of the data structure such as censoring, potential time-
varying treatment effect and the AE-dependence. For 
example, mean cumulative function is the simple and 
popular non-parametric method used to facilitate the 
development of trajectories of AEs profiles over the study 
period, where a patient may experience more than one 
AEs [5]. However, the method fails to explicitly account 
for the potential dependence of the AEs or individual 
patient heterogeneity. The utility of the existing recur-
rent event methods towards the AEs analysis has been 
recently considered [6]. However, adopting and interpret-
ing such recurrent events methods results in drug safety 
assessment setting remains a challenge. This motivates a 
need for further investigations on the clinical value and 
practical applicability of the advanced methods [7]. In the 
framework of benefit-risk assessment, two models (the 
Andersen Gill model and Prentice, Williams and Peterson 
model) have been demonstrated to be useful in providing 
both direct and indirect effects of treatment on AE recur-
rence [6]. However, these models yield unbiased esti-
mates if the AEs are uncorrelated and do not efficiently 
capture (i.e. account for) both potential time-dependent 
treatment effects and unobserved heterogeneity. This 
motivates the need to consider using flexible parametric 
shared frailty models that can optimally capture both the 
time-dependent effects and unobserved heterogeneity, to 
improve drug safety estimates.

In IPTp clinical trials, the potential of recurrent AEs 
is high because the preventive antimalarial drugs are 
repeatedly administered. Recurrent AEs may induce 
within-patient correlation that originates from two 
sources: the individual patient unobserved heterogeneity 

and the dependence between events [8]. The individ-
ual patient heterogeneity cannot be explained by the 
observed/known factors [9, 10], while the between-AE-
dependence can be explained based on the observed AEs. 
The unobserved heterogeneity arises from unmeasured 
information that partly explains the treatment effect. For 
example, in IPTp trials, unobserved heterogeneity can 
arise from the unmeasured inherent characteristics (e.g. 
physiological changes associated with foetus develop-
ment). The underlying individual patient-specific unob-
served heterogeneity can influence the susceptibility 
of patients to AE recurrence. In IPTp trials, as the case 
with some drug trials, the treatment effect depends on 
follow-up time. Such treatment effect that is a function of 
follow-up time is called time-varying or time-dependent 
treatment effect. In the presence of the time-dependent 
treatment effect, the relative effect of treatment changes 
over the follow-up time such that the proportional 
assumption is violated (on log hazard scale). Ignoring 
the time-dependent effects can lead to biased estimates. 
Therefore, accounting for the potential time-depend-
ent treatment effects in the analysis of recurrent events 
is necessary. However, in practice, identifying a model 
that can account for both unobserved heterogeneity and 
time-dependent effects can present a challenge. Since 
the recurrence of AEs can be a reflection of both time-
dependent treatment effects and underlying individual 
patient unobserved heterogeneity. Therefore, it is vital to 
consider models that account for both issues.

Currently, shared frailty is one of the prevalent mod-
els for the analysis of recurrent events. This model can 
account for both the observed and unobserved hetero-
geneity. However, the common current applications of 
the shared frailty model assume that the treatment effect 
estimate (i.e. hazard ratio) is constant over the follow-up 
time [11]. In preventive drug trial settings, where there 
is repeated treatment administration and a long patient 
follow-up time, the proportional hazard assumption can 
be invalid when treatment hazard rates, between/across 
arms, for recurrent events can vary over the follow-up 
time. For example, in the context of IPTp drug safety 
assessment, more recurrent AEs are expected close to 
the day(s) of taking the days. The potential presence of 
time-dependent treatment effects can pose a challenge 
in applying the shared frailty model to analyse recurrent 

presence of time-dependent treatment effects. However, ISF-PH model is appropriate if unbiased frailty variance 
estimation is of primary interest.
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events since it becomes complicated to separate time-
dependent effects from unobserved heterogeneity [12].

Recent developments in flexible parametric survival 
models can effectively capture both time-dependent 
effects and unobserved heterogeneity [13]. Research-
ers have established, mainly in univariate survival data 
context, that flexible parametric survival models with 
restricted cubic splines can accurately model time-
dependent effects [14, 15]. However, there is limited lit-
erature investigating the efficiency and utility of such 
methods in the context of multivariate survival data and 
drug safety assessment. Within multivariate survival data 
setting, Gasparini et  al. recently compared the standard 
and spline-based shared frailty models under varying 
heterogeneity and baseline hazard specification assum-
ing proportional hazards [16]. The shared parametric 
models with splines emerged to be more robust to model 
misspecification than the standard approaches. However, 
their work is limited to the context of the proportional 
hazards assumption. As highlighted above, a challenge 
arises in applying the shared frailty model when there 
are time-dependent effects. Using the standard semi-
parametric shared frailty models, Balan and Putter dem-
onstrated that the bias of frailty variance estimate, in the 
presence of time-dependent effects, can be mitigated as 
the cluster size (i.e. number of recurrent events within an 
individual) increases [12]. Based on the available litera-
ture, it is not clear whether the use of flexible parametric 
shared frailty with splines models can improve the frailty 
estimates compared to the standard shared frailty mod-
els in the presence of both time-dependent treatment and 
unobserved heterogeneity.

Our work aims at investigating whether the flexible 
parametric shared frailty model with non-proportional 
hazards and restricted cubic splines can improve both 
the frailty variance and hazard ratio estimates compared 
to the standard parametric shared frailty models, in the 
presence of both unobserved heterogeneity and time-
dependent treatment effects. The optimal shared frailty 
model can efficiently capture both unobserved hetero-
geneity and time-dependent effects. We evaluated the 
following models; (a) inverse Gaussian shared frailty 
(ISF-PH) model with proportional hazards and Weibull 
baseline hazard (b) Lognormal shared frailty model with 
non-proportional hazard and restricted cubic splines 
where we model the baseline hazard function with 1 
degree of freedom and model the time-dependent treat-
ment effect with 1 degree of freedom (LSF-NPHS1) 
and (c) Lognormal shared frailty model with non-pro-
portional hazard and restricted cubic splines where we 
model the baseline hazard function with 3 degrees of 
freedom and model the time-dependent treatment effect 
with 1 degree of freedom (LSF-NPHS3). We compare 

the models using a simulation study assuming an appli-
cation area of recurrent AEs in IPTp trials. Understand-
ing the statistical properties would enhance the informed 
choice of statistical methods for the analysis of recurrent 
AEs. The simulation offers an opportunity to effectively 
understand the properties of the statistical models since 
the true data distribution is known, unlike in a practical 
clinical trial setting. We present the remaining sections 
of the paper as follows: In the methods section, we pro-
vide a detailed review of the models under study, outline 
the simulation study design and describe the analysis 
approach. In the results section, we present the findings 
of our simulation study and apply the models to the 
analysis of recurrent AEs observed in Chloroquine for 
Malaria in pregnancy trial (NCT01443130). In the dis-
cussion section, we discuss the key findings of our work 
and provide a conclusion.

Methods
This section outlines notation and provides an overview 
of the three models that were compared in our simula-
tion study. Specifically, we briefly introduce and discuss 
the general inferential methodological framework of the 
models, focussing on model specification, parameter 
estimation and respective assumptions. The presenta-
tion of this section is customized to the context of drug 
safety assessment in clinical trials. For readers interested 
in detailed concepts, on recurrent events analysis, they 
can consult excellent introductory books on recurrent 
events analysis and frailty models methodology [10, 17, 
18], written for a wider audience.

Notation
We assume that the observation begins at enrolment, 
denoted as time t = 0. Let Tik be the total time of the kth 
event for the ith patient where i = 1, 2, ………n, k = 0, 1, 
2, ……. p and we assume Ti1 < Ti2 < … < Tik. The AEs are 
assumed to be recorded over a period of time interval [0, 
τ] such that the total number of AEs recorded per patient 
i over that time is =

∑∞
k=0 I(Tik ≤ t) . The history of the 

recorded number of events over given time t, denoted as 
N(t), 0 ≤ t, is defined as a counting process; this forms the 
basis for easy-to-implement recurrent events analysis. 
The frailty is defined as φi and interpreted as an unob-
served covariate common for all recurrent AEs within 
the patient. Covariate and regression coefficients vec-
tors are defined as Xik and β respectively. The covariates 
from the covariates vector are considered to be fixed. 
Under the simulation study design described below, one 
covariate is considered (i.e. treatment). For the non-pro-
portional hazard models, the treatment effect is allowed 
to be dependent on time (i.e. β(t)). These are further dis-
cussed in context in the section below.
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Statistical methods for recurrent events
Recurrent events modelling is popularly based on three 
main approaches; event counts, event intensity function 
and joint distribution of gap times between successive 
events. Event counts-based models are suitable when 
there are frequent events and event occurrence does 
not impact the occurrence of the subsequent events [17, 
19]. In the context of AEs, some mild AEs may not alter 
the event process (e.g. mild headache). When events 
are infrequent and the prediction of the next event is 
of interest, gap times methods are appropriate [20, 21]. 
To ensure that the event process history is appropriately 
incorporated, the intensity function is used; the func-
tion defines the instantaneous probability of an event 
occurring at time t given the event process history [17].

Where ∆N(t) is the number of events in the time inter-
val [t, ∆t), H(t) is the history of the event process at time 
t. Since event counts (i.e. Poisson process) modelling 
approach assumes that the events are independent such 
that the event history process at t, H(t), does not affect the 
instantaneous probability of an event at time t, the inten-
sity function is reduced to the rate function ρ(t) below;

This implies; ∆tρ(t) = E(∆N(t)). Hence if we let the 
expected cumulative rate at time t to be μ(t), we can 
derive the expected cumulative rate by integrating the 
rate function over the interval [0, t).

The gap/waiting times method is another alternative 
approach that focusses on modelling time between 
consecutive events. Methods based on gap time are 
suitable mainly in setting where the occurrence of the 
events is considered relatively infrequent [17]. The 
work in this paper is confined to multiplicative inten-
sity-based models because it permits deriving and 
interpretation of failure intensity relative to the treat-
ment under investigation. Shared frailty models are 
considered as important intensity-based models for 
the analysis of recurrent events that can account for 
both measured and unmeasured heterogeneity.

The shared frailty models
In practice, the common approach to account for unob-
served heterogeneity in recurrent events analysis is to use 

(M1)
�(t|H(t)) = lim

�→0

Pr
(

�N (t) = 1 | (H(t))

�t

(M2)�(t|H(t)) = lim
�→0

Pr (�N (t) = 1)

�t
= ρ(t)

(M3)µ(t) =

∫ t

0
ρ(s)ds

a robust variance (i.e. robust sandwich covariance matrix 
is used in estimating the log hazard ratio). Adjusting for 
within-subject unobserved heterogeneity using robust 
variance has been shown to be inadequate in some set-
tings [22]. One of the solutions to this is explicitly model-
ling the correlation using patient-specific random effect. 
Such a model is defined as a frailty model. Frailty mod-
els are hazard models having a multiplicative frailty fac-
tor [10]; these are conditional models. Overall, the model 
has frailty, linear predictor and the baseline hazard func-
tion as the multiplicative factors. The random effect 
introduced in frailty models describes the excess risk that 
cannot be explained by the measured/observed variables 
[10]. The unmeasured observations may introduce heter-
ogeneity between the analysis units e.g. for recurrent AEs, 
observations within a patient may be more similar com-
pared to different patients. Hence frailty model attempts 
to account for the within-patient correlation. Ignoring the 
potential heterogeneity in modelling recurrent events can 
lead to underestimation of treatment effect [23, 24].

For recurrent events, when the frailty is modelled as a 
common random effect for all events within a patient, it 
is defined as a shared frailty model (see model M4). The 
dependence accounted for in the shared frailty model is 
only due to the unobserved individual heterogeneity, φi. 
This measure of the extent of heterogeneity among the 
patients can follow several distributions [18]. Gamma and 
inverse Gaussian distributions are the common frailty 
distribution specifications, possibly due to their math-
ematical tractability and software availability. Across all 
the patients, the respective random effects are assumed 
to be independent and identically distributed.

If the baseline hazard, λ0(tij), is unspecified, the model 
is called a semi-parametric frailty model. Specifying 
the baseline hazard function ensures that an appropri-
ate shape of the hazard function is captured. However, 
miss-specification of the baseline hazard distribution 
may induce bias on regression coefficients [16]. There-
fore, caution needs to be exercised on the choice of the 
baseline hazard distribution by paying attention to the 
most clinically plausible hazard function. Traditionally, 
the hazards are assumed proportional over the whole 
follow-up time. Within the flexible parametric survival 
methods framework, the proportional hazards assump-
tion can be relaxed to accommodate time-dependent 
treatment effects (i.e. non-proportional hazards [13]). 
This can be implemented by interacting treatment 
with splines of log time as part of the linear predictor. 
Fitting such flexible non-proportional shared frailty 
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model on log hazard scale is helpful since it can effec-
tively accommodate interpretation and presentation of 
results. The shared frailty model with non-proportional 
hazards and restricted cubic splines can be written as;

The treatment xik is interacted with restricted 
cubic function of log time, s{log(t)| γ, k0}, such that 
γ is parameter vector and k0 is knot vector. Similarly, 
s{log(t)| δf, kf} represents a spline function of log time 
for the fth time-dependent effect with parameter vector 
δf and knots vector kf. Since the number of restricted 
cubic splines can determine the most appropriate 
model to use we considered to evaluate two flexible 
parametric shared frailty models as follows;

	(i)	 LSF-NPHS1: We considered a shared frailty model 
assuming lognormal frailty distribution and non-
proportional hazards with restricted cubic splines 
where the baseline hazard function is modelled 
using 1 degree of freedom and the time-dependent 
treatment effect is modelled using 1 degree of free-
dom.

	(ii)	 LSF-NPHS3: We also considered a shared frailty 
model was fitted assuming lognormal frailty dis-
tribution and non-proportional hazards with 
restricted cubic splines where the baseline hazard 
function is modelled using 3 degrees of freedom 
and the time-dependent treatment effect is mod-
elled using 1 degree of freedom.

Generally, under shared frailty models, depending 
on the model specification, parameter estimation can 
be done using expectation-maximization algorithm, 
maximum likelihood penalized partial likelihood and 
Markov chain Monte-Carlo methods [18]. Since in 
this paper we focus on parametric shared frailty mod-
els from a Frequentist perspective, the parameter esti-
mation is based on maximum likelihood estimation. 
It should be noted that in drug clinical trials not all 
patients may experience the AEs (i.e. some patients are 
censored). Censoring in this paper is considered inde-
pendent of the AE occurrence. Specifically, the model 
parameters can be estimated by maximizing marginal 
log-likelihood as shown below; Let Z be the vector con-
taining the observed patient-specific information such 
that

(M5)

log
{

�ik

(

tij|ϕi, Xik

)}

= s
{

log(t)|γ , k0
}

+ X
T

ikβ + log( ϕi)

+

F
∑

f=1

s
{
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xikf

where yij, ξij and xij are time to AE occurrence, AE occur-
rence indicator (1 for AE occurrence and 0 otherwise) 
and fixed covariate for patient i and jth AE occurrence, 
respectively. Let U be a vector containing the latent infor-
mation (the frailty terms) for n patients.

therefore, the marginal log-likelihood of the observed 
data Z can be written as:

where di represents the total number of events for patient 
and L(v)(.) represents the vth derivative of the Laplace 
transform for the derivative. Availability of the Laplace 
transform simplifies the maximization of the log-likeli-
hood in order to compute the desired model parameters. 
Under the time-dependent treatment effect, the fixed 
treatment effect β can be replaced by the time-dependent 
treatment effect β(t).

Simulation study
This simulation study was conducted and reported based 
on “Aims, Data generating process, Method of analysis, 
Estimands and Performance” approach [25] since it pro-
vides a scientifically coherent structured framework for 
designing, interpreting and reporting simulation studies.

Aim
There is a dearth of literature highlighting the perfor-
mance of recurrent statistical methods when both AE-
dependence and heterogeneity is accounted for in analysis 
of recurrent AEs in clinical trials. The aim of the simula-
tion study was to evaluate whether the use of Lognormal 
shared frailty model with restricted splines and non-pro-
portional hazards improves both the frailty variance and 
hazard ratio estimates in the presence of time-depend-
ent effects and unobserved heterogeneity under varying 
unobserved heterogeneity levels and sample sizes. The 
performance of this flexible model was compared against 
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the standard proportional hazards-based inverse Gauss-
ian shared frailty model with proportional hazard and 
Weibull baseline hazard distribution assumptions.

Data generating mechanisms
The data generating mechanism (DGM) in this simula-
tion study focussed on the specification and estimation 
of frailty variance and hazard ratio in the presence of 
time-dependent treatment effects and unobserved het-
erogeneity (Table  1). For each scenario, we considered 
1000 simulations, lognormal frailty distribution, Weibull 
baseline hazard, fixed effect treatment effect of log haz-
ard ratio 0.5 and up to a maximum of 4 AEs experienced 
by a patient. The choice of possible maximum of 4 AEs 
per patient was aimed at mimicking a setting for mod-
erately high occurrence of recurrent AEs, in IPTp trials. 
The choice of lognormal frailty distribution was driven 
by the mathematical tractability of the distribution, avail-
ability of software for implementation and interpretabil-
ity of the results in the context of AEs. The DGMs varied 
sample size (n = 300, n = 500), frailty distribution vari-
ance (0.25, 0.50, 0.75) and time-dependent effect (0.03, 
− 0.03). The choice of the sample size was intended to 
reflect sample sizes that are commonly employed in most 
IPTp trials. Choice of frailty variance (i.e. a measure of 
the strength of the unobserved heterogeneity within an 
individual) intended to represent a setting 0.25, 0.5 and 
0.75 represented weak variance, moderate variance and 
heavy variance respectively. The time-dependent treat-
ment effect allowed the fixed effect treatment effect of log 
hazard ratio 0.5 to decay over time (when set at − 0.03) 
or increase over time (when set at 0.03) or remain con-
stant when set at 0.0). All the DGMs were parametrically 
based, to accommodate the investigation of several sce-
narios unlike resampling that confines investigation to 
data with properties only for the application data under 
study [25]. Hence, we simulated recurrent AE data similar 
to common scenarios that are practically and theoretically 
expected in IPTp trials. In all the simulation scenarios, the 
data generation mimicked a randomized controlled trial 
with two treatment arms. In all scenarios under study, we 
assumed that there were no substantial competing risks 
observed during the trial such that censoring was consid-
ered independent. The individual follow-up times were 
simulated based on uniform distribution and maximum 
follow-up time of 12 months (i.e. administrative censor-
ing was set at 1 year), using Survsim package in stata. The 
choice of 12 months of follow-up time was motivated by 
the fact that most IPTp trials follow-up the mother for 
12 months from enrolment to beyond delivery.

The hazard functions were simulated using inver-
sion method, under Weibull baseline hazard function, 
accommodating both time-varying treatment effect and 

unobserved heterogeneity with lognormal frailty distri-
bution. The inversion method enabled sampling from 
a given distribution using uniform distribution and 
quantile function [26] where uniform distribution was 
assumed to have minimum 0 and maximum of 1. An 
overview of the investigated scenarios appears in Table 1 
below.

During the data generation process, convergence of 
the models was also continuously monitored. After the 
data generation descriptive summary statistics were also 
done to check for any abnormal observations. For each 
scenario, graphical exploration of the distribution of the 
estimates was done to ascertain the assumed underlying 
distribution of the generated data.

Simulation study targets
Of primary interest in this study was shared frailty mod-
els` ability to effectively capture the unobserved hetero-
geneity. Therefore, the primary estimand of interest was 
log frailty variance φi for each of the investigated models. 
Since our second interest was to assess the ability of the 
models in capturing time-dependent treatment effect, 
the log hazard ratio β computed at 3 months of follow-up 
time was considered as a secondary estimand. We opted 
for log hazard ratio at the specific follow-up time in order 
to ensure that the estimates from both the proportional 
and non-proportional hazard models are comparable.

Methods for data analysis
Each simulated data set was analysed using the three 
methods under investigation: ISF-PH, LSF-NPHS1 and 
LSF-NPHS3. Based on our simulation scenarios, the 
ISF-PH model miss-specified the proportionality of the 
hazards although it correctly specified the baseline haz-
ard function (i.e. the baseline hazard function for the 
ISF-PH was modelled using Weibull distribution). The 
LSF-NPHS1 and LSF-NPHS3 models correctly specified 
the proportionality of the hazards although the base-
line hazard function is approximated by the restricted 
cubic splines. When there are non-proportional haz-
ards, reporting of a single average HR is considered not 
practically useful. Therefore, in order to ensure that the 
performance measures for the HR estimates are com-
parable across the three models, we computed hazard 
ratio at 3 months of follow-up time since enrolment (i.e. 
LSF-NPHS1 and LSF-NPHS3 are non-proportional haz-
ard models and ISF-PH is a proportional hazard model). 
The choice of the time at which the HR was calculated 
was motivated by our practical experience where most 
patients take approximately half of their scheduled IPTp 
doses by third month of follow-up time.

The three shared frailty models (ISF-PH, LSF-
NPHS1 and LSF-NPHS3) are also used in the analysis 
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Table 1  Frailty variance estimates bias, coverage probability across shared frailty models in the presence of unobserved heterogeneity 
and non-proportional hazards

Data Generating Mechanisms ISF-PH Model LSF-NPHS1 
Model

LSF-NPHS3 
Model

% gain in precision relative to 
ISF-PH model

Scenarioa Sample size Frailty variance TDE Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

LSF-NPHS1% 
gain in 
precision 
(MCSE)

LSF-NPHS3% 
gain in precision 
(MCSE)

1 500 0.25 0.03 −0.0389 (0.0064), 
96.40 (0.5891), 
0.0423 (0.0021)

−0.0556 (0.0060), 
95.90 (0.6270), 
0.0386 (0.0020)

− 0.0263 
(0.0061), 96.20 
(0.6046), 0.0374 
(0.0019)

14.6985 (0.7269) 11.1644 (1.6768)

2 500 0.50 0.03 −0.0431 (0.0051), 
95.00 (0.6892), 
0.0278 (0.0012)

−0.1329 (0.0045), 
87.10 (1.0600), 
0.0375 (0.0015)

−0.1098 (0.0045), 
90.20 (0.9402), 
0.0323 (0.0014)

30.9883 (0.9472) 27.8901 (1.8680)

3 500 0.75 0.03 − 0.0689 (0.0048), 
92.80 (0.8174), 
0.0280 (0.0013)

− 0.2151 
(0.0041), 61.80 
(1.5365), 0.0628 
(0.0020)

−0.1939 (0.0041), 
69.10 (1.4612), 
0.0544 (0.0019)

40.7088 (1.0645) 38.4618 (1.9530)

4 300 0.25 0.03 −0.0363 (0.0079), 
97.20 (0.5217), 
0.0637 (0.0029)

−0.0542 (0.0073), 
97.50 (0.4937), 
0.0569 (0.0027)

− 0.0248 
(0.0075), 96.70 
(0.5649), 0.0561 
(0.0027)

12.5407 (1.8701) 12.5407 (1.8701)

5 300 0.50 0.03 −0.0557 (0.0069), 
94.90 (0.6957), 
0.0504 (0.0025)

−0.1448 (0.0061), 
90.60 (0.9228), 
0.0575 (0.0027)

− 0.1221 
(0.0061), 92.50 
(0.8329), 0.0518 
(0.0025)

29.3473 (0.9645) 28.3377 (1.8182)

6 300 0.75 0.03 − 0.0674 (0.0062), 
94.50 (0.7209), 
0.0431 (0.0020)

− 0.2141 
(0.0052), 76.60 
(1.3388), 0.0729 
(0.0026)

− 0.1950 
(0.0053), 80.90 
(1.2431), 0.0660 
(0.0025)

42.0668 (1.1767) 37.7659 (2.0100)

7 500 0.25 − 0.03 − 0.0212 (0.0063), 
96.10 (0.6122), 
0.0405 (0.0019)

− 0.0694 
(0.0060), 95.20 
(0.6760), 0.0413 
(0.0021)

− 0.0348 
(0.0061), 95.90 
(0.6270), 0.0384 
(0.0020)

9.7913 (0.6757) 7.8448 (1.5502)

8 500 0.50 − 0.03 −0.0317 (0.0051), 
95.30 (0.6693), 
0.0268 (0.0012)

− 0.1425 
(0.0045), 85.60 
(1.1102), 0.0405 
(0.0016)

− 0.1163 
(0.0045), 89.00 
(0.9894), 0.0341 
(0.0014)

27.3902 (0.9049) 25.1537 (1.7685)

9 500 0.75 −0.03 − 0.0605 (0.0048), 
93.30 (0.7906), 
0.0269 (0.0013)

− 0.2236 
(0.0041), 59.20 
(1.5541), 0.0668 
(0.0021)

− 0.1998 
(0.0041), 
67.70(1.4788), 
0.0569 (0.0019)

38.1980 (1.0547) 37.1299 (1.8588)

10 300 0.25 −0.03 − 0.0190 (0.0079), 
97.00 (0.5394), 
0.0621 (0.0027)

− 0.0680 
(0.0075), 97.70 
(0.4740), 0.0602 
(0.0028)

− 0.0335 
(0.0075), 97.00 
(0.5394), 0.0577 
(0.002)

11.1739 (0.7791) 9.1266 (1.7207)

11 300 0.50 −0.03 − 0.0454 (0.0069), 
94.80 (0.7021), 
0.0493 (0.0024)

− 0.1549 
(0.0061), 89.50 
(0.9694), 0.0614 
(0.0029)

− 0.1286 
(0.0061), 92.50 
(0.8329), 0.0537 
(0.0026)

26.3505 (0.9108) 26.8512 (1.7308)

12 300 0.75 −0.03 −0.0588 (0.0062), 
94.80 (0.7021), 
0.0418 (0.0019)

− 0.2219 
(0.0053), 75.70 
(1.3563), 0.0768 
(0.0027)

− 0.2005 
(0.0053), 79.90 
(1.2673), 0.0684 
(0.0026)

39.0878 (1.1318) 36.0944 (1.9042)

13 500 0.25 0 −0.0296 (0.0064), 
96.50 (0.5812), 
0.0412 (0.0020)

− 0.0619 
(0.0060), 95.70 
(0.6415), 0.0398 
(0.0020)

− 0.0300 
(0.0061), 95.90 
(0.6270), 0.0378 
(0.0019)

12.1870 (0.6812) 9.4918 (1.6201)

14 500 0.50 0 −0.0373 (0.0051), 
95.00 (0.6892), 
0.0272 (0.0012)

− 0.1373 
(0.0045), 86.80 
(1.0704), 0.0389 
(0.0016)

− 0.1127 
(0.0045), 89.70 
(0.9612), 0.0331 
(0.0014)

29.0623 (0.8985) 26.5314 (1.8048)
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of recurrent adverse events that were observed in the 
Chloroquine for Malaria Prevention in Pregnancy trial 
(NCT01443130) data. The motivating data description, 
data analysis and results appear in the application section 
of this paper, after simulation results presentation.

Performance measures
In this paper, our model performance measures of inter-
est were defined as described in Morris et  al [25]. Bias 
and MSE were main performance measures for our esti-
mands. For frailty variance estimand, we assessed the 
model performance based on precision, bias, MSE and 
coverage probability of 95% confidence interval of the 
frailty variance estimates. For the hazard ratio estimand, 
we assessed the model performance based on preci-
sion, bias and MSE. Point estimates of performance are 
reported including Monte Carlo standard errors in order 
to highlight the certainty of our point estimates.

We used bias in order to quantify whether the estima-
tor of interest targeted the true value of interest. Bias 
is defined as the difference between the expected value 
of an estimator and the true parameter value. Secondly, 
in order to integrate bias and variance of an estima-
tor into one performance measure, we computed the 
mean square error (MSE). MSE is defined as sum of the 
squared bias and variance of the estimator. In defining 
relative precision gain, ISF-PH model was considered as 
a reference model. Therefore, precision gain is defined 
as the inverse squared ratio of the empirical SE of the 
respective flexible parametric model (i.e. LSF-NPHS1 or 

LSF-NPHS3) to the empirical SE of the ISF-PH model. 
Additionally, coverage was also computed, defined as 
proportion of confidence intervals for an estimator that 
contain the true parameter value.

Software and computer hardware specification
The simulation study was conducted using user-written 
survsim and merlin packages in Stata version 15.1 [27–
29]. The analyses of the simulated and application data 
were also done using streg built-in function in Stata for 
the ISF-PH model.

The simulation study was performed using the Stata 
version 15.1 that was installed in a purposely-built 
Threadripper 3990X GT 1030 workstation, equipped 
with a Threadripper 3990X (288 MB Cache, 64x Cores, 
4.3GHz) turbo processor, MSI TRX40 PRO 10G AMD 
Ryzen Threadripper Motherboard, Nvidia GeForce RTX 
2070 SUPER OC Ed. 8GB GDDR6 GPU, Corsair Venge-
ance PRO RGB 3200 MHz 64 GB High-Performance 
Gaming, Hikvision E2000 1 TB M.2 SSD that reads up to 
3.5 GB/s and a 4 TB High-Performance Hard Disk Drive 
(HDD).

Ethical considerations
The Chloroquine for malaria in pregnancy trial was con-
ducted in accordance with the Declaration of Helsinki 
and Good Clinical Practice guidelines. The trial obtained 
ethical approval from the Institutional Review Board at 
the University of Maryland, the College of Medicine 
Research and Ethics Committee at the University of 

Table 1  (continued)

Data Generating Mechanisms ISF-PH Model LSF-NPHS1 
Model

LSF-NPHS3 
Model

% gain in precision relative to 
ISF-PH model

Scenarioa Sample size Frailty variance TDE Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

Bias (MCSE), 
Coverage 
(MCSE), MSE 
(MCSE)

LSF-NPHS1% 
gain in 
precision 
(MCSE)

LSF-NPHS3% 
gain in precision 
(MCSE)

15 500 0.75 0 −0.0644 (0.0048), 
93.00 (0.8068), 
0.0274 (0.0013)

−0.2188 (0.0041), 
61.30 (1.5402), 
0.0646 (0.0020)

−0.1964 (0.0041), 
68.80 (1.4651), 
0.0554 (0.0019)

39.4216 (1.0400) 37.9288 (1.8940)

16 300 0.25 0 −0.0273 (0.0079), 
97.10 (0.5307), 
0.0627 (0.0028)

− 0.0605 (0.0074) 
97.70 (0.4740), 
0.0583 (0.0028)

−0.0283 (0.0075), 
96.70 (0.5649), 
0.0567 (0.0027)

13.2530 (0.7841) 10.8368 (1.7814)

17 300 0.50 0 −0.0500 (0.0069), 
94.80 (0.7021), 
0.0495 (0.0024)

−0.1491 (0.0061), 
90.20 (0.9402), 
0.0591 (0.0028)

− 0.1249 
(0.0061), 92.60 
(0.8278), 0.0526 
(0.0026)

27.7522 (0.9164) 27.0827 (1.7637)

18 300 0.75 0 −0.0627 (0.0062), 
94.50 (0.7209) 
0.0423 (0.0020)

−0.2174 (0.0052), 
76.20 (1.3467), 
0.0745 (0.0027)

− 0.1972 
(0.0053), 80.60 
(1.250) 0.0668 
(0.0026)

40.6654 (1.1293) 37.0383 (1.9578)

TDE time dependent effect
a each scenario is based on 1000 simulations
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Malawi and the Malawi Pharmacy Medicines and Poi-
sons Board. The current study was approved by the Uni-
versity of the Witwatersrand’s Human Research Ethics 
Committee.

Results
Frailty variance estimates coverage probability, bias 
and MSE across the shared frailty models
Based on 1000 simulations for each scenario, we 
observed a 100% convergence rate of all the models that 
were fitted. Across all the scenarios, the magnitude of 
bias for the frailty variance estimates increased as the 
known unobserved heterogeneity variance increased 
from 0.25 to 0.75 whether the sample size was 300 or 500 
(Table 1). The observed bias across all the scenarios was 
negative suggesting underestimation of the unobserved 
heterogeneity. The magnitude of bias for the frailty vari-
ance estimates were slightly higher when the sample size 
was 300 compared to the sample size of 500. Overall, 
the coverage probability of the frailty variance estimates 
consistently decreased as the known unobserved hetero-
geneity variance increased from 0.25 to 0.75. The cover-
age probability across all the models was slightly above 
95% for scenarios where the unobserved heterogeneity 
variance was 0.25, suggesting some negligible over-cov-
erage. For example, for scenario 1, coverage (MCSE) was 
96.40 (0.5891), 95.90 (0.6270) and 96.20 (0.6046) for ISF-
PH, LSF-NPHS1 and LSF-NPHS3 models respectively. 
Overall, substantial under-coverage was observed for 
scenarios where the unobserved heterogeneity variance 
was 0.50 or 0.75 among the flexible parametric mod-
els (LSF-NPHS1 and LSF-NPHS3). The under-coverage 
worsened as the sample size increased from 300 to 500. 
Such under-coverage suggested inaccuracy of the frailty 
variance estimates obtained using the LSF-NPHS1 and 
LSF-NPHS3 models.

As expected, overall, among the non-proportional haz-
ard models with restricted cubic splines, the LSF-NPHS3 
had lower bias and higher coverage of the frailty vari-
ance estimates compared to the LSF-NPHS1. This result 
suggests that for the non-proportional hazard models 
with restricted cubic splines, increasing the number of 
degrees of freedom modelling the baseline hazard func-
tion from 1 to 3 improves the frailty variance estimates. 
For the scenarios where the known unobserved hetero-
geneity was 0.50 or 0.75, we observed a higher magnitude 
of bias of frailty variance estimates for the non-propor-
tional hazard models with restricted cubic splines models 
compared to the ISF-PH model. For the scenarios where 
the known unobserved heterogeneity variance was 0.25, 
we observed the lowest magnitude of bias for the frailty 
variance estimates in LSF-NPHS3 model followed by ISF-
PH model then LSF-NPHS1 model.. For example, under 

scenario 1, the frailty variance estimate bias (MCSE) was 
− 0.0389 (0.0064), − 0.0556 (0.0060), − 0.0263 (0.0061) 
for ISF-PH, LSF-NPHS1 and LSF-NPHS3 models respec-
tively. Pertaining to coverage, although the coverage 
probability decreased with increase in unobserved het-
erogeneity variance, decreasing the sample size from 500 
to 300 yielded results with higher coverage. The decrease 
in coverage probability for the frailty variance estimates 
with increased unobserved heterogeneity was more dras-
tic among the non-proportional hazards with restricted 
cubic splines models (LSF-NPHS1 or LSF-NPHS3) com-
pared to the ISF-PH model. Overall, the ISF-PH model 
consistently yielded coverage probability closer to the 
nominal level of 95% compared to the non-proportional 
hazards with restricted cubic splines models (LSF-
NPHS1 or LSF-NPHS3).

Overall, the MSE for the ISF-PH model frailty variance 
estimates were lower compared to the LSF-NPHS1 and 
LSF-NPHS3 models, except when the known unobserved 
heterogeneity variance was 0.25. Across all the 18 sce-
narios studied, we observed that the MSE estimates for 
the ISF-PH model decreased as the unobserved hetero-
geneity variance increased. However, the MSE estimates 
for the LSF-NPHS1 and LSF-NPHS1 models increased as 
the unobserved heterogeneity variance increased: Nota-
bly, the MSE for the LSF-NPHS3 model yielded lower 
MSE estimates compared to the LSF-NPHS1 model. 
As expected, increasing the sample size from 300 to 
500 reduced the MSE estimates for the corresponding 
scenarios.

Our investigation showed that LSF-NPHS1 and LSF-
NPHS3 models were more efficient than the ISF-PH 
model as demonstrated by the lower mean of model-
based standard errors (Fig.  1). The difference in model-
based standard errors between that LSF-NPHS1 and 
LSF-NPHS3 models was negligible. As expected, increas-
ing sample size from 300 to 500 improved the efficiency 
of the shared frailty models under study such that the 
model-based standard errors for the frailty variance esti-
mates decreased.

Percentage gain in precision for frailty variance estimates 
of non‑proportional hazards shared frailty models 
with restricted cubic splines relative to ISF‑PH model
Overall, as the unobserved heterogeneity increased, 
percentage gain in precision for frailty variance esti-
mates of non-proportional hazards shared frailty models 
with restricted cubic splines relative ISF-PH model also 
increased (Table  1). The gain in precision was higher 
when time-dependent treatment effects were increasing 
(i.e. TDE = 0.03) compared to the decaying time-depend-
ent treatment effects (TDE = -0.03). Across the mod-
els, the gain in precision was higher in the LSF-NPHS1 
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model compared to LSF-NPHS3 model. The observed 
gain in precision for LSF-NPHS1 and LSF-NPHS3 mod-
els compared to ISF-PH model under proportional haz-
ard scenarios (i.e. TDE = 0) was similar to the scenarios 
when time-dependent treatment effects were increasing 
(i.e. TDE = 0.03).

Bias and MSE for the estimated log hazard ratio estimates 
across the shared frailty models under varying unobserved 
heterogeneity and sample size
Overall, across all the three models under study, the 
MSE for the HR estimates increased as the unobserved 
heterogeneity variance increased (Table  2). The ISF-PH 
model consistently yielded lowest MSE estimates for the 
HRs across the three models regardless of the nature of 
the time-dependent treatment effect. Increasing the sam-
ple size from 300 to 500 also led to reduction in the esti-
mated MSE for the HRs. We observed a loss in precision 
of HR estimates for the ISF-PH model compared to the 
LSF-NPHS1 and LSF-NPHS3 model. The precision loss 
ranged from 9 to 20%. The highest precision loss was 
observed when the unobserved heterogeneity was low 

(i.e. frailty variance equal to 0.25). The precision loss esti-
mates were similar for both LSF-NPHS1 and LSF-NPHS3 
models. There was low precision loss in the absence of 
time-dependent treatment effects (TDE = 0). In the pres-
ence of time-dependent treatment effects (i.e. TDE = 0.03 
and TDE = -0.03), we observed higher magnitude of bias 
in the ISF-PH model compared to the LSF-NPHS1 and 
LSF-NPHS3 models. In the absence of the time-depend-
ent treatment effects, the bias for the HR estimates was 
lower in the ISF-PH model compared to the LSF-NPHS1 
and LSF-NPHS3 models. However, in the absence of the 
time-dependent treatment effects, the bias across all the 
three models was relatively lower (i.e. under 0.01) com-
pared to scenarios when time-dependent effects are 
present.

Example data application: Chloroquine for malaria 
in pregnancy trial
We illustrated the application of the three investigated 
shared frailty models above (ISF-PH, LSF-NPHS1 and 
LSF-NPHS3) to data on recurrent AEs collected from 
a clinical trial evaluating antimalarial drugs to prevent 

Fig. 1  Average model standard errors (SE) for the frailty variance estimates across shared frailty models under varying data-generating mechanisms
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malaria in pregnancy. The trial is called Chloroquine for 
malaria in pregnancy.

The current modelling focussed on investigating the 
effect of treatment on recurrent AEs. We included a 
population of 600 pregnant women in their first or sec-
ond trimesters who were randomized to receive IPTp of 
(a) sulfadoxine-pyrimethamine (SP, two doses, 4 weeks 
apart), (b) chloroquine (CQ, 600 mg on day 1, 600 mg on 
day 2, and 300 mg on day 3 two days apart). Although the 
original trial had three treatment arms, in the current 
analysis, we dropped the arm of CQ prophylaxis (to focus 
on IPTp arms) since its treatment schedule was radically 

different from the IPTp arms. Full details of the trial are 
published elsewhere [30].

Of the 600 pregnant women analysed in the current 
analysis, 474 (79%) experienced at least one AE. Cumu-
latively, more AEs were experienced in the CQ arm (895 
AEs) than those in the SP arm (650 AEs). We fitted ISF-
PH model followed by the LSF-NPHS1 and LSF-NPHS3 
models where IPTp treatment was an exposure of inter-
est. The SP treatment was considered as a reference 
treatment in the interpretation of the results. ISF-PH 
assumed the baseline hazard function followed Weibull 
distribution, unobserved heterogeneity followed inverse 

Table 2  Bias and mean square error (MSE) for log hazard ratio estimates, estimated at 3 months, across shared frailty models in the 
presence of both unobserved heterogeneity and non-proportional hazards

Data Generating Mechanisms ISF-PH Model LSF-NPHS1 
Model

LSF-NPHS3 
Model

% gain in precision relative to 
ISF-PH model

Scenarioa Sample size Frailty variance TDE Bias (MCSE), 
MSE (MCSE)

Bias (MCSE), 
MSE (MCSE)

Bias (MCSE), 
MSE (MCSE)

LSF-NPHS1% 
gain in 
precision 
(MCSE)

LSF-NPHS3% 
gain in precision 
(MCSE)

1 500 0.25 0.03 −0.0284 (0.0021), 
0.0050 (0.0002)

− 0.0033 (0.0023), 
0.0051 (0.0002)

0.0021 (0.0023), 
0.0052 (0.0002)

−17.4231 
(2.1208)

− 18.7145 (2.0875)

2 500 0.50 0.03 − 0.0285 (0.0024), 
0.0068 (0.0003)

− 0.0023 (0.0026), 
0.0067 (0.0003)

0.0031 (0.0026), 
0.0068 (0.0003)

−11.1578 
(1.9985)

−12.3537 (1.9639)

3 500 0.75 0.03 −0.0233 (0.0027), 
0.0076 (0.0004)

0.0035 (0.0029), 
0.0081 (0.0004)

0.0093 (0.0029), 
0.0083 (0.0004)

−12.7599 
(1.9452)

−14.1747 (1.8756)

4 300 0.25 0.03 − 0.0259 (0.0028), 
0.0085 (0.0004)

− 0.0015 (0.0030), 
0.0093 (0.0004)

0.0041 (0.0031), 
0.0096 (0.0004)

− 15.4391 
(2.0856)

− 18.0137 (2.0061)

5 300 0.50 0.03 − 0.0215 (0.0032), 
0.0105 (0.0005)

0.0047 (0.0033), 
0.0111 (0.0005)

0.0103 (0.0034), 
0.0114 (0.0005)

−9.4606 (2.1449) −11.4682 (2.0577)

6 300 0.75 0.03 −0.0252 (0.0035), 
0.0126 (0.0006)

0.0019 (0.0037) 
0.0134 (0.0006)

0.0069 (0.0037), 
0.0137 (0.0006)

− 10.3721 
(1.9615)

− 12.1647 (1.8949)

7 500 0.25 −0.03 0.0287 (0.0021), 
0.0051 (0.0002)

− 0.0075 (0.0023), 
0.0053 (0.0002)

0.0018 (0.0023), 
0.0053 (0.0002)

−18.3401 
(2.1438)

−19.5151 (2.1016)

8 500 0.50 −0.03 0.0289 (0.0024), 
0.0068 (0.0003),

− 0.0072 (0.0026), 
0.0069 (0.0003)

0.0021 (0.0026), 
0.0069 (0.0003)

−12.1807 
(2.0392)

− 13.6435 (1.9931)

9 500 0.75 −0.03 0.0341 (0.0027), 
0.0083 (0.0004)

−0.0011 (0.0029), 
0.0083 (0.0004)

0.0086 (0.0029), 
0.0085 (0.0004)

−14.1771 
(1.9844)

−15.7796 (1.9005)

10 300 0.25 −0.03 0.0311 (0.0028), 
0.0088 (0.0004)

− 0.0059 (0.0031), 
0.0095 (0.0004)

0.0035 (0.0031), 
0.0098(0.0004)

−16.7676 
(2.1182)

−19.2818 (2.0272)

11 300 0.50 −0.03 0.0361 (0.0032), 
0.0114 (0.0005)

0.0004 (0.0033), 
0.0112 (0.0005)

0.0096 (0.0034), 
0.0116 (0.0005)

−10.0998 
(2.1977)

−12.4175 (2.0889)

12 300 0.75 −0.03 0.0316 (0.0035), 
0.0130 (0.0006)

− 0.0032 (0.0037), 
0.0136 (0.0006)

0.0052 (0.0037), 
0.0139 (0.0007)

−11.6808 
(2.0013)

− 13.7017 (1.9235)

13 500 0.25 0 −0.0009 (0.0021), 
0.0042 (0.0002)

− 0.0051 (0.0023), 
0.0052(0.0002)

0.0020 (0.0023), 
0.0053 (0.0002)

−17.8005 
(2.1303)

−19.0529 (2.0932)

14 500 0.50 0 −0.0009 (0.0024), 
0.0059 (0.0003)

− 0.0044 (0.0026), 
0.0067 (0.0003)

0.0027(0.0026), 
0.0068 (0.0003)

−11.4262 
(2.0238)

−12.6627 (1.9860)

15 500 0.75 0 0.0044 (0.0027), 
0.0071 (0.0003)

0.0016 (0.0029), 
0.0082 (0.0004)

0.0091 (0.0029), 
0.0084 (0.0004)

−13.4164 
(1.9621)

−14.9156 (1.8853)

16 300 0.25 0 0.0017 (0.0028), 
0.0079 (0.0004)

−0.0032 (0.0031), 
0.0094 (0.0004)

0.0041 (0.0031), 
0.0097 (0.0004)

−15.8830 
(2.0985)

−18.3944 (2.0120)

17 300 0.50 0 0.0061 (0.0032), 
0.0101 (0.0005)

0.0027 (0.0033), 
0.0112 (0.0005)

0.0097 (0.0034), 
0.0115 (0.0005)

−9.7878 (2.1647) −11.9642 (2.0672)

18 300 0.75 0 0.0021 (0.0035), 
0.0120 (0.0006)

−0.0004 (0.0037), 
0.0134 (0.0006)

0.0062 (0.0037), 
0.0138 (0.0006)

−11.0009 
(1.9807)

−12.9017 (1.9108)
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Gaussian distribution and the hazard rates between the 
CQ and SP treatments were proportional over the fol-
low-up time. The non-proportional hazard models with 
restricted models (NPHS1 and LSF-NPHS3) assumed 
that unobserved heterogeneity followed lognormal dis-
tribution and time-dependent effects could be modelled 
using one degree of freedom. NPHS1 and LSF-NPHS3 
approximated the baseline hazard function using 1 and 2 
degrees of freedom respectively. We fitted adjusted and 
unadjusted model for all the three model under investiga-
tion. The adjusted model included the following covari-
ates: treatment, maternal age, maternal body mass index 
and gravidity (i.e. whether the pregnant woman had pre-
vious pregnancy or not). We adjusted for the same covar-
iates for the three models to ensure that the estimates 
were comparable. Since the results from the adjusted and 
unadjusted models were similar, our results reported in 
Table 3 below are based the unadjusted models since we 
considered them more parsimonious. The reported haz-
ard ratios across the three models are based on marginal 
hazard ratio, predicted hazard ratio at 14 days and 60 days 
of follow-up. Additionally, we plotted the hazard ratio 
estimates over the follow-up time.

In this clinical example for recurrent AEs data analy-
sis, the estimated marginal log hazard ratios were 0.2281 
(0.0499)0.2328(SE: 0.0517), 0.3090 (0.0769), 0.3360 
(SE:0.0850) and 0.3024(0.0746) for ISF-PH, LSF-NPHS1, 
LSF-NPHS2, LSF-NPHS3 and LSF-NPHS4 models 
respectively, indicating an increased risk of AEs among 
the women who took the CQ treatment arm compared 
to those in the SP treatment arm (Table 3). At 14 days, the 
Log HR across the non-proportional hazard models were 
similar ranging between 0.43 to 0.47 and were higher 
compared to the ISF-PH model. However, at 60 days only 
LSF-NPHS2, LSF-NPHS3 and yielded similar log HR 
estimates approximately 0.20 and were lower compared 
to the ISF-PH model estimates. The frailty variance esti-
mates generally higher among the non-proportional haz-
ard models compared to the ISF-PH model. Among the 
non-proportional hazards models with restricted cubic 
splines, the AIC estimates show that the model fit was 

good when the baseline hazard function was approxi-
mated with minimum of 2 degrees.

Discussion
The analysis of recurrent AEs in clinical trials rarely 
account for potential unobserved heterogeneity and 
time-dependent effects [2]. Using a simulation study, we 
investigated the performance of three statistical meth-
ods for recurrent events that can be adapted towards the 
analysis of recurrent AEs in clinical trials, in the presence 
of both time-dependent effects and unobserved hetero-
geneity. Our paper mainly focused on evaluating the abil-
ity of the flexible parametric shared frailty models with 
non-proportional hazards and restricted cubic splines 
to capture both the unobserved heterogeneity and time-
dependent treatment effects. We established that the 
inverse Gaussian shared frailty with proportional hazard 
model consistently yielded good coverage closer to the 
nominal level of 95%, lower bias and lower MSE of the 
frailty variance estimates at the expense of imprecision 
compared to the flexible shared frailty models with non-
proportional hazards and restricted cubic splines. Inter-
estingly, the frailty variance estimates coverage and bias, 
for the shared frailty models with non-proportional haz-
ards and restricted cubic splines, improved upon increas-
ing the number of degrees of freedom used to model the 
baseline hazard function. As expected, the flexible para-
metric shared frailty model with non-proportional haz-
ards and restricted cubic splines yielded better hazard 
ratio estimates, reflecting the time-dependent treatment 
effects, compared to the inverse Gaussian shared frailty 
with proportional hazard model. The flexible paramet-
ric shared frailty models with non-proportional hazards 
and restricted cubic splines yielded unbiased estimates 
of HRs at the expense of imprecision and inaccuracy 
(i.e. high MSE) compared to the ISF-PH model. There-
fore, our findings show that the more precise estimators 
were biased and imprecise estimators were unbiased. In 
drug safety assessment using methods that yield an unbi-
ased hazard ratio would be of primary interest such that 
the flexible parametric shared frailty model should be 

Table 3  Comparing sharing frailty models for analysis of recurrent AEs among pregnant women on IPTp treatment in Malawi

a Lognormal shared frailty model with non-proportional hazard and restricted cubic splines where the baseline hazard is modelled with 2 degrees of freedom and the 
time-dependent treatment effects is modelled with 1 degree of freedom
b Lognormal shared frailty model with non-proportional hazard and restricted cubic splines where the baseline hazard is modelled with 4 degrees of freedom and the 
time-dependent treatment effects is modelled with 1 degree of freedom

Estimate ISF-PH LSF-NPHS1 LSF-NPHS2a LSF-NPHS3 LSF-NPHS4b

Log HR at 14 days (SE) 0.2281 (0.0499) 0.4758 (0.3572) 0.4343 (0.3724) 0.4648 (0.4033) 0.4404 (0.3710)

log HR at 60 days (SE) 0.2281 (0.0499) 0.0236 (0.1240) 0.2011 (0.2562) 0.2251 (0.2831) 0.1837 (0.2441)

Marginal log HR (SE) 0.2281 (0.0499) 0.2328 (0.0517) 0.3090 (0.0769) 0.3360 (0.0850) 0.3024 (0.0746)

Frailty variance 0.0324 0.0476 0.4591 0.6440 0.3977

AIC 6562.57 19,922.40 19,658.30 19,651.20 19,570.70
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considered if there is the presence of both unobserved 
heterogeneity and time-dependent effects. However, 
such a decision should be made at the cost of impreci-
sion and loss of accuracy. Hence, we emphasize that the 
flexible shared frailty with non-proportional hazards and 
restricted cubic splines should be applied only when the 
proportional hazards assumption is violated. If interest is 
in estimating frailty variance, the inverse Gaussian model 
with proportional hazards can be considered sufficient 
even in the presence of both time-dependent treatment 
effect and unobserved heterogeneity.

The inverse Gaussian shared frailty with propor-
tional hazard probably effectively captured the unob-
served heterogeneity because we did not mis-specify 
the baseline hazard (i.e. Weibull distribution). Sec-
ondly, the longer follow-up period of 12 months made 
the population more homogeneous with time since the 
unobserved heterogeneity for inverse Gaussian frailty 
decays over the follow-up time [31]. Thirdly, the inverse 
Gaussian frailty is practically close to the lognormal 
frailty where the simulated data arose. The structure of 
the inverse Gaussian frailty would be considered more 
appropriate in the context of recurrent AEs in antima-
larial drug trials where there are more frequent AEs 
early in the clinical trial [18]. Unfortunately, the con-
ditional hazard ratio derived from the inverse Gauss-
ian shared frailty with proportional hazard is constant 
over the follow-up time which does not reflect the non-
proportionality of the hazards in the presence of time-
dependent treatment effect.

The interpretation of our results is confined to sce-
narios where the censoring is assumed to be non-
informative. In the presence of informative censoring, 
it will be interesting to understand how the models 
perform. Failure to account for time to medication pre-
sents a limitation in all the models considered in this 
work. Another key limitation of our study is relying on 
the assumption of constant unobserved heterogeneity. 
Future work can consider evaluating the performance 
of the shared frailty models accounting for both actual 
time to medication and time to AE occurrence under 
complicated scenarios where there is both time-var-
ying treatment effects and time-varying unobserved 
heterogeneity.

Generally, in drug clinical trials, understanding drug 
safety profile requires efficient modelling of the recur-
rent AEs including accounting for both unobserved het-
erogeneity and any non-linear effects of the investigated 
drug. The methods studied in this paper provide key 
knowledge on choosing the most appropriate model for 
analysing recurrent AE data presenting the unobserved 
heterogeneity and time-dependent effects issues. The 
flexible parametric shared methods accounting for both 

time-dependent effects and unobserved heterogene-
ity are directly useful in IPTp trials since physiological 
changes that occur during pregnancy are mostly unob-
served and can contribute to the heterogeneity of the 
treatment effect.

Based on our findings, we provide some practical rec-
ommendations on the studied shared frailty models to 
analyse the recurrent AEs when the hazards are non-
proportional and the potential unobserved heterogene-
ity. Overall, the choice of the most appropriate model 
should be driven by the objective of the analysis. For 
instance, if interest is mainly in estimating hazard ratios, 
a shared frailty model with non-proportional hazards and 
restricted cubic splines is appropriate. When interest is 
in obtaining the unobserved heterogeneity estimates, 
inverse Gaussian with proportional hazard can serve the 
purpose. In the absence of time-dependent effects, using 
a shared frailty model with non-proportional hazards and 
restricted cubic splines should be avoided since it leads to 
biased estimates due to model overfitting.
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