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Abstract

With the introduction of various advanced deep learning algorithms, initiatives for image

classification systems have transitioned over from traditional machine learning algorithms

(e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A

prerequisite in applying CNN to real world applications is a system that collects meaningful

and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are

capable of monitoring natural environment phenomena using tiny and low-power cameras

on resource-limited embedded devices, can be considered as an effective means of data

collection. However, with limited battery resources, sending high-resolution raw images to

the backend server is a burdensome task that has direct impact on network lifetime. To

address this problem, we propose an energy-efficient pre- and post- processing mechanism

using image resizing and color quantization that can significantly reduce the amount of data

transferred while maintaining the classification accuracy in the CNN at the backend server.

We show that, if well designed, an image in its highly compressed form can be well-classi-

fied with a CNN model trained in advance using adequately compressed data. Our evalua-

tion using a real image dataset shows that an embedded device can reduce the amount of

transmitted data by *71% while maintaining a classification accuracy of *98%. Under the

same conditions, this process naturally reduces energy consumption by *71% compared

to a WISN that sends the original uncompressed images.

1 Introduction

For many years, various wireless sensor networks (WSNs) have been deployed to digitalize

and understand many physical aspects in the real-world. Early generation of WSNs focused

mostly on data collection where the goal of these deployments were simply to gather data,

report these information to the data managing personnel, and allow for offline analysis on the

data [1–3]. Following generation of WSNs started to involve some form of in-network process-

ing. The purpose of in-network processing was to reduce unnecessary transmission of
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redundant data and collect improved-quality data by pre-processing the data closer to the data

source. Furthermore, in some cases, this processing led to multiple levels of actuation in the

target environment [4]. Nevertheless, energy efficiency of the devices has been the key concern

for WSNs, and researchers have proposed many schemes to minimize the energy usage on the

battery operated, resource limited sensing platforms (e.g., motes [5, 6]). While many WSN

deployments began with simple sensing modalities such as temperature and humidity sensors,

the improvements in processing power allowed the introduction of more advanced sensing

modalities such as cameras, introducing wireless image sensor networks (WISNs).

WISNs are typically implemented on low-power, low-cost embedded platforms such as

Cyclops [9], FireFly Mosaic [10] and WiSN [11]. These networks are used for applications

such as surveillance systems [12], environmental monitoring systems [13, 14] and animal habi-

tat monitoring applications [8, 15, 16]. In addition to sensor networks, recent advances in

machine learning and deep learning algorithms are providing a software platform for domain

scientists to better understand the data collected from various environments [17–19]. Unlike

traditional image classification algorithms (e.g. Support vector machine (SVM), Multi-layer

perceptron (MLP), K-Nearest Neighbors (K-NN)), deep neural networks’ strength is in the

fact that it allows for a full autonomous operation since these schemes extract data-related fea-

tures with minimal human input or prior knowledge of the data. Nevertheless, learning algo-

rithms are still very complex and are challenging to apply in WSNs directly due to their

computational overhead and energy constraints. Instead, these data analytics tools can func-

tion on the backend server if the sensor nodes can collect enough data for the model training

process. However, to train these machine learning models, large amount of data points are

required. For WSNs that collect small-sized sensing information, this data collection process

may be less of an overhead, while sensor networks that focus on multimedia contents, such as

images, may need to use too much of its resources just to collect effective training data points.

Given the limited resources on the embedded sensing platforms, WISNs may not be able to

produce high-resolution images, and thus the images may be even difficult for humans to dis-

tinguish and understand in some cases (e.g. Fig 1).

In this paper, we present an autonomous environmental monitoring system composed of a

WISN and a CNN-based image classifier [20]. WISN is responsible for collecting image data

with low-power camera sensor under battery-limited environment, and the CNN-based image

classifier classifies the content of the captured images from sensor nodes using a classification

model based on deep neural network. To showcase the effectiveness of our proposed system,

we use images collected from a real-world field deployment for bird nest monitoring at James

Reserve [8]. This dataset contains 102,173 images of the interior of bird nests [7]. The goal of

our proposed system is to understand the context of each bird nest autonomously so that accu-

rate information is reported to the domain scientists.

We first start this work by trying to understand the overhead of gathering the full data set of

original raw images for usage in CNNs. Given that the images are not small in size, the over-

head of exchanging image data, potentially over multiple hops, can negatively impact the sys-

tem lifetime. To minimize the energy usage and transmission overhead of exchanging raw

images with the data analytics server, this work introduces a set of image pre-processing tech-

niques which is essentially a lossy image compression algorithm that combines color quantiza-

tion and image resizing techniques. We then show that our design of the compression scheme

does not negatively impact the classification accuracy of the CNN model.

The focus of our system design is to make sure that we have a compressed image that can

lessen the transmission overhead of image-containing packet transmissions, while keeping the

complexity of the image pre-processing algorithms to a reasonable level. Despite dropping the

quality of the images collected from the WISNs, we show that intelligently compressing these
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Fig 1. Sample bird nest images [7] from a WISN deployment in [8].

https://doi.org/10.1371/journal.pone.0196251.g001
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images can maintain the context detection accuracy of a CNN at *98% while reducing net-

work transmission overhead by *71%.

The contributions of this work is as follows.

• We identify the high energy consumption problem in the image collection-classification pro-

cess on wireless image sensor network and suggest a system scenario for energy efficient

operation.

• We design a low computational overhead lossy image compression scheme for embedded

devices in wireless image sensor network to reduce battery consumption of WISN nodes sig-

nificantly, while maintaining the classification accuracy of CNN at the backend server. Our

design combines color quantization and resizing techniques appropriately, for training and

testing data, to achieve this goal.

• We apply our approach to image dataset from real world deployments of wireless image sen-

sor network and show that our approach achieves high accuracy along with high compres-

sion ratios. We also identify that convolutional neural networks work robustly on top of

lossy image compression algorithm.

The remainder of this paper is structured as follows. In Section 2, we introduce our target

scenario and system design to identify how our proposed system would be used. In Sections 3

and 4, we introduce our proposed lossy image compression scheme and show its impact from

the perspective of distortion and battery consumption, respectively. Section 5 presents the

CNN model using the lossy-compressed images and describe how our model is built. Here, we

also evaluate the classification accuracy of our system. Finally, we discuss related work in Sec-

tion 6 and conclude this paper in Section 7.

2 Scenario and system design

Many wireless sensor networks require a classification of the incoming data as a way for

domain scientists to better understand the collected data, or with the purpose of performing

different types of actuation in the environment. For wireless image sensor networks where

embedded devices deployed at many geological points gather a large amount of image data,

providing a contextual summary or classification result can help researchers easily understand

what is occurring in the environment. However, nodes used in wireless sensing systems are

typically resource-scarce. The widely used TelosB mote platform has a 16bit MCU with 8 MHz

clock, 10 KB of RAM and 48 KB of flash [5, 21]. Merely being enough to capture and store a

single image, complex operations cannot take place on these devices themselves. For this rea-

son, sensor nodes equipped with a small-sized low-resolution camera will typically report their

sensor readings to the backend server, while the server performs some form of image classifica-

tion and/or acts as a data repository.

On the other hand, recent advances in various deep learning algorithms and tools made it

seem plausible to approach such a system using deep learning. To train a neural network at the

backend server, it is important and widely thought of that a set of high quality images are

required, potentially in large quantities. However, for resource limited wireless sensor net-

works, providing such image data set itself can be a burden. Note that sensor networks

deployed in the environment typically target for uninterrupted system lifetimes of multiple

months to years. Sending raw, high-resolution image data using wireless radios can quickly

drain the devices’ batteries and decrease the system lifetime significantly.

To this end, this work focuses on maximizing the effectiveness of a wireless image sensor

network that uses deep learning algorithms for image classification at the backend data
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collection server. We propose to send compressed images to the backend server using lossy
compression which achieves high compression ratios, but keep the loss of quality minimal to

the level which the backend deep learning classifier can make proper decisions. This is done

using two core techniques, namely color quantization and image scaling, and applying them

adequately and differently for training and test data.

Fig 2 illustrates the flow of our system as two different pipeline phases. First, as the Fig 2(a)

shows, a level of human interaction is required to provide the ground truth for training the

CNN model. Note that, as we will detail in Section 3, nodes perform color quantization on the

raw images prior to sending the data. With this “compressed” data, domain scientists can label

the images on the backend server prior to training the CNN model. This is a human-involved

process that cannot be avoided in training machine learning models. We agree that it may be

more accurate for domain scientists to label uncompressed original images rather than the

compressed images. Nevertheless, lower quality images can be “good enough” for the labeling

purpose, and they can also allow the system to be more efficient (e.g., use less energy/band-

width resources). We will present the visual quality of the compressed images in Section 3, sug-

gesting that compression will minimally affect the ground-truth labeling process. On the other

hand, when sending data during normal operations (e.g., the CNN model is pre-trained and

classification is in progress), an additional step of image resizing takes place at the sensor node

to further reduce the image size for energy efficient transmissions (c.f., Fig 2(b)).

As a application example to better motivate and explain our system, we choose a bird nest

monitoring system as the target application [8, 15]. Using this scenario and the images as an

example, we will discuss how the proposed image classification pipeline for WISNs can pro-

vide an energy efficient method for implementing various image-based sensing & classification

systems. Specifically, we use the 102,273 images collected from the work by Paek et al. [7, 8], in

which the authors developed the Cyclops platform to monitor bird nests at the James San

Jacinto Mountain Reserve. The work was done with a tight collaboration with avian biologists

Fig 2. System pipeline for (a) model training phase, and (b) model operation phase.

https://doi.org/10.1371/journal.pone.0196251.g002
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who tried to understand the activity of birds in their nests. The project installed a pair of

Cyclops and motes on 19 bird nests and captured 200 × 200 pixel 8 bits grayscale images of the

nest periodically every *15 minutes. As illustrated in Fig 3, the images were transmitted to a

backend server, possibly over multihop, and were stored for a system deployment duration of

4 months. From these collected images, our goal is to classify them as {“Empty Nest”, “Bird

Presence”, “Egg & Hatching” and “Child bird”} as shown in Fig 1.

In the work by Ko et al. [15], the authors perform bird nest context classification using tra-

ditional machine learning algorithms, such as feature key point (SIFT) based support vector

machine (SVM) and Hidden Markov Models. While this approach showed good accuracy

(e.g., 82% and 84% for bird presence/absence and egg counting, respectively), it required raw

(best possible quality) images to be sent to the server at all times. Our approach tries to lessen

the transmission overhead of battery limited sensor nodes by performing a level of in-network

processing to compress the image size prior to transmissions. While this approach adds addi-

tional complexity to the sensor nodes, as we show later in Section 3, since radio transmissions

are a dominant energy user in typical wireless sensor motes, this leads to a meaningful amount

of energy usage reduction, leading to longer system lifetimes.

Based on our observations and lessons learned from previous work, the design goals of our

system are as follows.

• To reduce energy consumption on wireless sensor nodes, each node should reduce the

amount of data being sent to the backend server. This suggests that some form on in-net-

work data compression is needed in the system.

• Compressed images from the nodes should be of sufficient quality to be annotated (or

labeled) by domain experts. This means that excessive lossy compression is not an option for

our system. Thus, we compare the SSIM of the compressed images with the original image.

• An autonomous monitoring system should be able to make classification decisions using the

compressed images (only). Therefore, there is a need for a comprehensive study on how

much we can compress the images without loss of classification accuracy.

Fig 3. System architecture for bird nest monitoring [7].

https://doi.org/10.1371/journal.pone.0196251.g003
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• When nodes capture images with their camera module, the images are often broken due to

the limited resources on the nodes. Such outlier images confuse the classification model;

thus, there should be a mechanism to filter out corrupted images.

The sections that follow provide details on how images are processed on the wireless sensor

nodes to perform size compression for the sake of minimizing the packet transmission

overhead.

3 Decreasing resolution

An effective way to reduce the size of data transmitted over the radio is to compress the image

itself. While the images taken from the deployment of our interest is only 200 × 200 pixels in

resolution, the size of a single image (40 KB) is still relatively larger than what these platforms

were designed for. Therefore, reducing the pixel count further is a direct way to significantly

reduce the energy usage of the resource-limited nodes. Even if we had more advanced plat-

forms, same approach would apply since we would then want relatively higher resolution

images. Additionally, given that each pixel is represented using 256 grayscale, performing

color quantization to reduce the number of bits that represent a single pixel can also help

reduce the image size. Again, same approach applies even if we have 256 × 256 × 256 RGB col-

ors. This section focuses on providing details on these two mechanisms that are used to reduce

the image size.

Despite reducing the size, a design goal of our scheme is to maintain high image similarity

with the original image. This is important for both the ground truth labeling and model train-

ing phase, and also for the operational phase as well. For the sake of comparing the image qual-

ity of the compressed image with the original image, we calculate and compare the structural

similarity (SSIM) index of the two images. SSIM is a widely-used similarity metric between

two images [22]. Generally, the SSIM index is used to identify similarity between an original

image and a distorted image or the reconstruction of a lossy compressed image. This metric is

known to be more effective than mean square error (MSE) or peak signal-to-noise ratio

(PSNR). SSIM is a normalized metric on a range from zero to one so that it is easy to recognize

how compressed images are distorted (i.e., higher SSIM means lower distortion). Another rea-

son for using the SSIM index is that we train and classify with the compressed images on the

CNN at the backend sever. Note that the first layer of the CNN architecture is a convolutional

layer which is designed for identifying low-level features such as colors, edges and curves [23].

Therefore, the SSIM index, which is a metric that compares the similarity of structural charac-

teristics, is more suitable in identifying the quality degradation, if any, compared to other

image quality representation metrics [24].

3.1 Color quantization

Color quantization is a process that tries to reduce the number of colors that represent a single

pixel. Specifically, this process reduces the number of colors on a “palette” and re-draws the

image using the limited number of colors on the palette. This palette represents a finite set of

colors that a single pixel can represent. In our sample application, pixels in the images use 8

grayscale bits in the palette; thus, representing 28 = 256 different colors. The goal of color

quantization phase is to re-draw an image with a smaller number of colors that minimally

impacts the quality of the image.

On the sensor network node’s perspective, by reducing the number of bits per pixel, the

color quantization process can help reduce the size of the image. By reducing the number of

per-pixel bits from eight to five (e.g., 32 colors), we can significantly reduce the image size,

Convolutional neural network-based classification system design with compressed wireless sensor network images
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which in turn can also reduce the energy usage caused from image transmissions. Here, for

simplification, we select the number of colors per palette to be a power of 2. As a result, by

applying 3 - 7 bits per pixel (e.g., 8 - 128 colors), the absolute amount of data can be com-

pressed by 38% to 88% of the original size. As we will show later, this reduction in image size

leads directly to reduced radio on time on a resource-limited sensor node, thus increased node

lifetimes.

Algorithm 1 colorQuantization(image[w × h], bpp)

Color Quantization using fixed palette.
First for loop generates the palette
Second for loop replace each pixel to nearest color in the palette
Input: An Image, bits per pixel (bpp)
Output: Color quantized image
palette[0] = 27−bpp − 1
for n = 1 to 2bpp − 1 do
palette[n] = palette[0] + 28−bpp�n

for pixel = 0 to w × h do
image[pixel] = get nearest centroid in palette

Return Simage

Note that there can be many ways of approaching a color palette for image drawing. The

most popular approaches include fixed palette, median-cut palette, and palette using clustering

algorithms such as Linde-Buzo-Gray (LBG) [25] or K-means clustering [26].

For example, the widely used median-cut color quantization starts from identifying the

smallest box containing all the colors, and this box is repeatedly divided as the median point of

the longest direction into smaller rectangle. This iteration is performed until K boxes remain

and the averages of each boxes are used as the palette item. On the other hand, clustering

based color quantization tries to identify centroids (a palette) among the original image’s color

distribution. The goal of clustering is to partition the original color set (e.g., 256 in our case)

into K centroids.

Generally, the goals of color quantization algorithms are mostly in minimizing the root

mean square error (RMSE) and weighted root mean square error (WRMSE), which are the

core performance metrics of color quantization [27]. Among many existing algorithms, the

fixed palette algorithm is the least complex, but can result in a relatively high RMSE and

WRMSE. Other approaches, in general, show relatively better performance, but require a

higher level of computational overhead [27] given the complexity of computing the palette.

For us, the higher computational costs naturally leads to higher energy consumption on the

resource-limited sensor nodes. Thus, from our system’s perspective, it is most beneficial to use

a fixed palette approach that is shared between the server and individual motes. This approach

eliminates the complexity of sharing a newly computed palette between the nodes and the

server.

The proposed color quantiation process, including the fixed palette construction, is detailed

in Algorithm 1. First, to construct the fixed color palette which is represented as an arithmetic

sequence, we set the first number of the palette arithmetic sequence as 2(7 − bpp) − 1. This first

element is selected so that an equal number of colors (e.g., among the 256 full color set) are

uniformly associated with the K centroids we select. The first for loop in Algorithm 1 generates

the remaining elements in the color palette’s arithmetic sequence. For example, for a target K
of 8, the resulting color palette (or the arithmetic sequence) would be {15, 47, 79, 111, 143, 175,

207, 239}. As the second step, we take the color bits for each pixel and compute which centroid

(among the K) is the nearest to this pixel value. Eq (1) presents the equation for this process.

Convolutional neural network-based classification system design with compressed wireless sensor network images
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Once identifying the nearest centroid using Eq (2), we substitute the original color value to the

value from the palette. Note that from Algorithm 1, the palette creation and sharing with the

server is a one-time process introducing minimal amortized overhead.

index ¼ argmin
k
fjoriginal image½i�½j� � palette½k�jg ð1Þ

new image½i�½j� ¼ palette½index� ð2Þ

To validate the effectiveness of our fixed palette approach, we compute the SSIM index to

confirm how the color quantization process (negatively) impacts the quality of the image.

Again, since the goal of our system is to run the images on a CNN, we focus on the SSIM index

rather than the RMSE or WRMSE metrics. Fig 4 plots the SSIM index values after applying

color quantization with a palette of three different color sets (32, 16, 8 colors) on sample

images from the bird nest monitoring deployment. From the figures, we can see that 32, 16

color quantization has little impact on the image quality, maintaining a high SSIM of 0.95,

where as using 8 colors would drop the SSIM to below 0.8.

3.2 Image resize

Adjusting the image size can be done in two different ways. One easier approach is to exploit

the configuration capability of the camera module itself, if provided, to adaptively select

between different image resolutions. However, this is effectively equal to sub-sampling the pix-

els without consideration for significance or magnitude of any given pixel. Furthermore, it

excludes the possibility of obtaining the original full resolution image in case needed. The

other approach is to take a full resolution image and post-process the image. Given that the

images we collected from our target deployments are fixed in size, we also take a similar

method of post-processing the pre-collected images to alter the image size.

Specifically, image resizing, or image scaling, is a geometric image transformation which

modifies the image size based on an image interpolation algorithm. This image scaling process

can increase or decrease the resolution of a target image so that the absolute size of image data

is adjusted. The three most widely used algorithms for performing image interpolation are

nearest-neighbor, bilinear, and bicubic interpolation [28]. The results from these three algo-

rithms show differences in their characteristics such as quality, computational burden and

memory requirements. Among these three algorithms, we select to use the bilinear interpola-

tion algorithm for our image scaling process. As we show in Fig 5, bilinear interpolation-based

image scaling typically offers a better image quality performance (e.g., edge blurring, disconti-

nuities in edges and checkerboard effects) compared to the nearest-neighbor method, but can

show worse performance compared to the bicubic approach. On the contrary, bilinear interpo-

lation can run with a lower computational cost and memory requirement than bicubic inter-

polation-based image scaling. As a result, we select to use the bilinear interpolation-based

image scaling method, given that this touches the middle ground of the image quality and

computations complexity trade off.

When performing image scaling, bilinear interpolation computes a new pixel using a linear

combination of four weighted input pixels. Fig 6 shows how bilinear interpolation works for

interpolating a pixel P in □ABCD, which is composed of known pixels A, B, C and D. Here, α
and β are the proportion of the height divided by h1 and h2 and similarly, p and q are the

Convolutional neural network-based classification system design with compressed wireless sensor network images
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Fig 4. SSIM of sample images after color quantization with 32 colors, 16 colors, 8 colors on four classes of images: (a) Bird Presence (b)

Empty nest (c) Egg Laying (d) Child Bird. The size images for each cases are, Original: 40KB, 32 colors: 25KB, 16 colors: 20KB and 8 colors:

15KB. Note: Original images are from [7].

https://doi.org/10.1371/journal.pone.0196251.g004
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Fig 5. Results of image scaling by using (b) nearest neighbor, (c) bilinear and (d) bicubic interpolation, respectively, where (a) is

the original sample image from [7].

https://doi.org/10.1371/journal.pone.0196251.g005
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proportion of the width divided by w1 and w2.

a ¼
h1

h1 þ h2

; b ¼
h2

h1 þ h2

; p ¼
w1

w1 þ w2

; q ¼
w2

w1 þ w2

ð3Þ

Then, the pixel P can be calculated with Eq (4).

V ¼ qðbAþ aBÞ;

V0 ¼ pðbDþ aCÞ;

P ¼ V þ V0

ð4Þ

The principle of Eq (4) is that V is calculated using the interpolation between pixel A and

pixel B, and V0 is calculated with the interpolation between pixel C and pixel D. Finally, the

interpolation between V and V0, pixel P is computed.

Fig 7 presents sample results from the image rescaling process. Here we show the SSIM

index and the percentage of pixel counts compared to the original image size of 200 × 200.

While the image scaling process maintains a high SSIM index of *0.8, the size of the image

reduces significantly to as much as 25%.

Fig 8 presents the mean SSIM of the full image data set after performing both image resizing

and color quantizaiton. Intuitively, when the image size reduces, the mean SSIM is also

Fig 6. Illustration of a situation that calculates pixel P in □ABCD using bilinear interpolation.

https://doi.org/10.1371/journal.pone.0196251.g006
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Fig 7. SSIM comparison between original 200 × 200 image and resized images. For calculating SSIM, we resize again back to original size 200 × 200. The

percentage in parenthesis represents the amount of reduction in size. (Original image from [7].)

https://doi.org/10.1371/journal.pone.0196251.g007

Fig 8. Mean SSIM between original images and modified images after color quantization.

https://doi.org/10.1371/journal.pone.0196251.g008

Convolutional neural network-based classification system design with compressed wireless sensor network images

PLOS ONE | https://doi.org/10.1371/journal.pone.0196251 May 8, 2018 13 / 25

https://doi.org/10.1371/journal.pone.0196251.g007
https://doi.org/10.1371/journal.pone.0196251.g008
https://doi.org/10.1371/journal.pone.0196251


reduced monotonically. We can also observe here that 32 and 16 color quantization do not

show significant quality differences compared to the 256 colored original image. The 8 color

quantization, however, shows a more noticeable distortion compared to the other quantization

levels.

Finally, another way to reduce the size of image data is to crop the image. Image cropping

is, however, not appropriate for our system because of the following reasons. First, the cropped

image should contain all of the meaningful features. To do this, the nodes need to self-identify

the region of interest (ROI) within the image. Widely used algorithms to extract ROI can be

classified into three types; thresholding, clustering and contour detection. Thresholding is the

simplest method, and it is easy to implement with low computational cost. However, it

requires a manually fine-tuned threshold parameter, which is difficult to configure in environ-

ment monitoring applications due to the sun ray changes over time, making the amount of

illumination and distribution of light change continuously. Clustering and contour detection

may show better results, but they require higher computational cost unsuitable for resource

limited nodes. Second, cropping is not appropriate for CNNs. Training set for a CNN model

has to contain the classes’ conventional shape. However, if cropping is performed incorrectly,

the image may lose significant properties (shape, space occupied by feature in image) of them-

selves. For these reasons, we did not employ image cropping in our system design.

4 Computational cost and energy usage

Our findings until now show that using a combination of the color quantization and image

scaling, we can effectively reduce the image sizes, and thus the amount of data that a wireless

sensor node transmits. However, we note that the two image modification operations require a

level of computational overhead to the resource limited embedded platform. In turn, this addi-

tional computational overhead induces energy usage as well. Therefore, it is important to con-

firm that the additional computational overhead does not negatively impact the lifetime of our

devices. This section examines the impact of color quantization and image scaling on the

computational cost and energy usage.

For our measurements, we use the Atmel SAM R21 XPlained board as the embedded sensor

node platform [29], which is based on a system-on-chip combining an ARM Cortex-M0

+ MCU and an IEEE 802.15.4 radio. Although it is not the identical platform used in the prior

actual deployments, characteristics of the device are similar to those. Given that the SAM R21

board is used in a number of recent sensor network deployments [1], our measurements on

this platform offers us a chance to observe how our findings can be employed in many newer

sensor network deployments with advanced hardware specifications. To accurately measure

the energy usage and the operation time of the various operations we are interested in, we use

the Monsoon power monitor [30]. We then configure an experiment setting of quantizing

image colors into a set of 8 to 256 colors, and resize the original 200 × 200 pixel images to as

low as 100 × 100.

Table 1 shows the running time and energy usage on our SAM R21 embedded board for

executing the color quantization and image resize processes. We can see here that the color

quantization process does not introduce a significant amount of overhead, both in terms of

operation time and energy usage. Specifically, the operational latency takes less than a millisec-

ond itself. Note that our minimum unit of measurement is in milliseconds. As mentioned in

Section 3.1, we use a fixed palette for color quantization; therefore, regardless of the quatiza-

tion level, in the worst case of using a 200 × 200 pixel image, 40K integer comparison opera-

tions with the palette is the only computational operation required. This result suggests that

the added overhead of using color quantization is negligible; thus, suitable for our system.
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On the other hand, Table 1 suggests that the image resizing operation shows a more variable

performance in operation time and energy usage with respect to the target image size. The

main cause of this latency is the time required to write the modified contents to the memory.

Therefore, it is no surprise that the operation time and energy usage of the image scaling pro-

cess is somewhat proportional to the target image size. We note that when performing color

quantization by itself, the process would require a memory write phase as well. As a result,

more time and energy would be needed to complete the process. However, when combining

with the image scaling operations, the added latency and energy overhead will be minimal as

the results in Table 1 imply.

Table 2 shows the amount of time and energy used when transmitting images of different

color quantization levels and sizes on the embedded board’s IEEE 802.15.4 radio. Fig 9 plots

this result with a linear regression line.

Table 1. Running time and energy usage measurements of color quantization and image resize operations from

200 × 200 to 100 × 100.

Operation Operation Time (ms) Energy Usage (mJ)

Color Quantization <1 0.03

Image resize from 200 × 200 150 × 150 1670 66.11

140 × 140 1463 57.96

130 × 130 1262 50.01

120 × 120 1064 42.15

110 × 110 874 34.71

100 × 100 755 29.96

https://doi.org/10.1371/journal.pone.0196251.t001

Table 2. Operation time and energy usage measurements on wireless transmission of images with images sizes ranging from 200 × 200 to 100 × 100.

Transmit image size (row & col) 8 colors 16 colors

Operation Time (ms) Energy Usage (mJ) Operation Time (ms) Energy Usage (mJ)

200 1991.8 92.38 2748.8 127.91

150 1101.4 51.20 1457.8 67.93

140 963.9 44.88 1250.9 58.50

130 846.9 39.67 1109.4 51.52

120 718 33.91 969.8 44.74

110 569.8 27.17 787.2 36.66

100 477.4 22.42 617.6 29.27

Transmit image size (row & col) 32 colors 256 colors

Operation Time (ms) Energy Usage (mJ) Operation Time (ms) Energy Usage (mJ)

200 3353.6 155.89 5034.6 234.53

150 1792.6 83.96 3127.2 145.52

140 1695.2 78.39 2624.2 122.16

130 1382.9 65.48 2245 104.42

120 1121.6 52.98 1828.4 85.51

110 1057.2 49.13 1681.4 78.39

100 841.9 40.43 1257.4 59.00

https://doi.org/10.1371/journal.pone.0196251.t002
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These results together that there is a linearly increasing trend in both operation time and

energy costs with increasing images sizes, which is an expected behavior. Furthermore, in this

case, the color levels (e.g., bits per pixel) also have a heavy impact on the message transmission

overhead.

Overall, these experimental results suggest the need to perform image compression, given

that the energy savings from sending a lighter-weight image outweighs the costs to perform

on-board pre-processing on the images. Take for example an image compressed to 100 × 100

pixels with 8 colors. The additional power cost would be *29.99 mJ (i.e., energy for scaling

(*29.96 mJ) plus color quantization (0.03 mJ)), whereas the gain in energy from reduced

transmissions is more than 212.11 mJ. While being the most extreme case, we use this example

to show that image pre-processing at embedded sensor nodes can be heavily beneficial.

5 Image classification

Until now, we have described how images are modified at the individual sensor nodes and

have shown the impact on the nodes’ resource usage. We now focus on the operations that

occur on the server side, and make sure that our image size reduction does not impact the

application’s classification accuracy. As we mentioned earlier, we build a classification model

at the server using a convolutional neural network (CNN). Given that the field of CNNs for

image classification is well-studied, we focus on exploiting four of the existing, widely used

CNN models; AlexNet [31], VGG-16 [32], GoogLeNet(Inception-V1) [33], ResNet-50 [34].

Table 3 is a summary of the different CNN architectures we used to evaluate the classification

performance using differently compressed images.

We note that the current trend in CNNs, as per the operations of AlexNet [31], is to

increase the depth of the neural networks. Deeper networks can offer higher classification

accuracy due to the increased non-linearity of the model. However, on the downside, the

model becomes difficult to optimize and the chances of overfitting tends in increase with deep

networks [23]. Using empirical evaluations, we also investigate the impact of network depth

on the classification performance.

5.1 Convolutional neural networks for image classification

In deep neural network paradigm, convolutional neural networks can be considered the main-

stream classifier for image data classification. Despite the efforts from the research community

Fig 9. Image transmission latency and energy usage for differently compressed images.

https://doi.org/10.1371/journal.pone.0196251.g009
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to perform visual target recognition and classification using traditional machine learning

methods, CNNs rapidly dominated the visual recognition domain with its high accuracy classi-

fication results. As in many deep neural network designs, CNNs require minimal a priori
knowledge on the training data compared to traditional machine learning algorithms. This is a

major advantage of using CNNs compared to pre-existing learning methods.

A CNN consists of multiple hidden layers and an input and an output layer. Hidden layers

in a CNN consist of convolutional layers, pooling layers, fully connected layers and normaliza-

tion layers. The input (in our case) is the target image to be classified and the output is the con-

text of the bird nest within the image. In addition, there is a cost function used to find the

most fitted set of parameters and activation functions to determine the final output.

Our system chooses to use a CNN-based classification model at the backend server to accu-

rately identify the context of bird nests. This relieves us from the concern that CNNs are com-

putationally heavy for sensor devices. Instead, given that CNNs are strong in classifying

images of various types, we saw this as an opportunity in applying low-quality images to the

training and classification data sets via the image scaling and color quantization procedures

within the WISN. Another motivation of using CNNs at the server as the classification model

is that the CNN can be easily extended towards more detailed detection of objects in the

image, beyond the high-level context [35, 36]. For example, from our dataset, we can train the

model to detect more detailed observations such as the posture of birds in their nests, or egg

count, which can be useful information for the domain scientists [15].

5.2 Filtering corrupted images

In wireless image sensor networks, due to limited resources at the individual sensor nodes, it is

common to see a large number of “broken” images. For example, the limitations in the nodes’

RAM can result in images to overlap in corrupted patterns as they can be mis-aligned in the

limited memory space. The training set data for the CNN will be mostly labeled by experts;

thus, there is only a small chance of such broken images making it to the actual training data

set. However, when in operation, the image context classification process should happen

autonomously. As a result, there must be a way to identify broken images and filter these

images from being classified. Fig 10A presents samples of images that are corrupted due to the

mis-alignment of image pixels in the limited RAM.

Table 3. Characteristic of famous convolutional neural networks architectures.

AlexNet VGG-16 GoogLeNet (Inception V1) ResNet-50

Input Size 227 × 227 224 × 224 224 × 224 224 × 224

# of convolutional layers 5 16 21 49

# of weights 2.3 M 14.7 M 6 M 23.5 M

# of Mult-Adds� 666 M 15.3 G 1.43 G 3.86 G

# of fully connected layers 3 3 1 1

# of weights, Mult-Adds 58.6 M 124 M 1 M 2 M

Total Weights 61 M 138 M 7 M 25.5 M

Total Mult-Adds 724 M 15.5 G 1.43 G 3.9 G

� Mult-Adds means that “Multiply” and “Add” operations.

https://doi.org/10.1371/journal.pone.0196251.t003
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In our system, filtering of these corrupted images occur in two steps. The first step occurs

on the sensor nodes themselves. As a camera-generated image is temporarily stored at the sen-

sor nodes’ RAM, nodes will draw a small white circle to the upper-right corner of the image.

The location of where the circle should be plotted can be easily identified at the node given

that the embedded camera’s image (pixel) size is already known. The diameter of this circle is
width

10
. For example, for the original 200 × 200 pixel images, the area of the circle is approximately

200

10

� �2
� p � 1257 pixels2, occupying approximately 3% of the entire image. Eventually, as the

system operates, the images are sent to the server for context classification.

Before the CNN-based classification takes place, the second step of corrupted image filter-

ing is performed. Specifically, the server, once receiving images from the sensor nodes, checks

the location of this small white circle. As Fig 10B shows, if the images are not corrupted, the

server will identify white circles at the upper-right corner of the images, whereas, for corrupted

images as Fig 10C exemplifies, the location of the circle will be detected at a different location.

This two phase process allows our system to easily identify corrupted images caused from

memory alignment errors at the wireless image sensor nodes.

5.3 Building and evaluating the CNN model

Based on the classification criteria of previous work [15], we define four different contextual

cases for the image set of our interest. Specifically, the target of our system is to classify the

bird nest images into “Bird presence—Bluebird”, “Bird presence—Swallow”, “Empty nest”,

“Egg Laying” and “Child Bird” states. Fig 4 shows sample images for each context state.

From the full data set, we select 60% of the images to be the training set, 20% as the valida-

tion set and 20% of the images as the test set. We note that we extracted a balanced number of

images from different sensor nodes in the field. Since each node’s camera can have different

background patterns (due to hardware installation differences or lighting effects), balanced

selection of images allow the CNN model to well-understand the per-node image properties.

In terms of the quantity, images that are classified as “empty nest” or “bird presence” are

dominant in the original 100K image data set. However, since images are sent to the server

every *15 minutes and given the everyday living patterns of birds, there can be many images

that are very similar in content. While the bird presence state images show some differences at

Fig 10. ‘Broken’, ‘Marked Normal’, and ‘Marked Broken’ image samples from [7].

https://doi.org/10.1371/journal.pone.0196251.g010
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the least, many of the “empty nest” images were almost identical and practically redundant.

For this reason, we manually deleted 60K redundant empty nest images from the dataset. We

summarize the actual quantity of data used in our work using Table 4. We note that having an

asymmetric dataset can result in biased classification results. This is especially true if there is

only a limited number of common patterns for images in a single class. Luckily, while our data-

set is also asymmetic (c.f., Table 4), given that each class of images are uniquely distinct from

the others (in most cases), we later show that our model does not face issues of biased classifi-

cation results.

For utilizing CNN classification on our server, we use the Caffe Deep Learning Framework

[37]. In this environment, we train and test with four popular CNN models, AlexNet [31],

VGG-16 [32], GoogLeNet [33] and ResNet-50 [34]. Our models are trained with four GPUs

with 60 epochs for all network models and confirm that this is enough for all the models to

converge. We also leverage transfer learning in our system design. The base idea of transfer

learning is that we initially train a model using a base dataset and a base CNN architecture,

then transfer the trained-weights for adapting to a target dataset. The most popular base data-

set for images is ImageNet dataset [38], which contains 1.2 million images with 1000 catego-

ries. There are models pre-trained using popular CNN architecture with the ImageNet dataset

in Model Zoo [39] for Caffe. Transfer learning is enticing to train a CNN model starting from

a small dataset [40], train the model faster and give a chance to build a more accurate model.

Specifically, the process of transfer learning can be summarized to two steps: (1) removing the

final fully-connected layer of the base CNN architecture and (2) re-training the convolutional

layer of pre-trained model in order to adapt the model to the target dataset and update the

weights through a back-propagation process. In the training and validation of the model, we

use four different data sets for each of the CNN models: one original image set and three color

quantized (i.e. 32, 16 and 8 colors) image sets, all without image scaling (e.g., all image sizes

are 200 × 200 pixels). Therefore, overall, we are left with 16 different CNN models to evaluate.

With the four different CNN models, we now generate 27 additional image data sets with 4

different bits per pixel (bpp) counts of 3, 4, 5 and 8 (8, 16, 32 and 256 colors), and 7 different

width lengths 100, 110, 120, 130, 140, 150, and 200. The height of the image is set to be identi-

cal to the adjusted width. These data sets were generated using the test data, and were used to

evaluate the performance of the four different CNN models we trained. Note that these values

represent the average of three experimental runs. Fig 11 presents a summarized result on the

accuracy of our four models with different bpp values. It can be seen that, regardless of the

CNN model used, the accuracy results are high, being above 94% for all cases even for the

most distorted image sets with 8 colors and 100 × 100 scaling. As a reference point, if we train

and test the CNN model with original uncompressed data set, we achieved 98% classification

accuracy.

Table 4. Number image samples in the training, validation and test set for each class.

Class Training Set (60%) Validation Set (20%) Test Set (20%) Total (100%)

Bird Swallow 6988 2329 2329 11646

Bluebird 4166 1389 1388 6943

Child 2152 717 718 3587

Egg 1240 413 414 2067

Empty 9266 3089 3089 15444

https://doi.org/10.1371/journal.pone.0196251.t004
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In case of the two deepest network models, ResNet-50 and GoogLeNet, we can see from the

results that when images are severely distorted (e.g., with heavy scaling or small bpp value), the

classification accuracy decreases noticeably. The AlexNet-based CNN model, the most shallow

network model (i.e., 5 layers), is less affected from the impact of image distortion. We conjec-

ture that this is an effect caused from the number of fully-connected layers in the ResNet-50

and GoogLeNet models (e.g., 1 fully connected layer compared to 3 of AlexNet and VGG-16).

Another interesting observation to make from this plot is that VGG-16 shows higher classifica-

tion accuracy for images with 16 colors than any of the other cases. However, the difference in

performance is small, and we plan to investigate deeper on why such accuracy was observed as

part of our future work. Nevertheless, these results suggest that decreasing the image quality at

the sensor nodes in order to reduce the transmission size and improve the energy efficiency of

resource limited nodes, if well designed, does not severely impact the context classification

performance at the server. We note that the results with the images scaled to size of 50 × 50

also showed similar trends with Fig 11 as well. While we focus on the object identification

application for bird nests, other applications such as bird localization or segmentation within

the nest may require higher-quality images. Nevertheless, minimal degradation of image

Fig 11. Classification results from four CNN models.

https://doi.org/10.1371/journal.pone.0196251.g011

Convolutional neural network-based classification system design with compressed wireless sensor network images

PLOS ONE | https://doi.org/10.1371/journal.pone.0196251 May 8, 2018 20 / 25

https://doi.org/10.1371/journal.pone.0196251.g011
https://doi.org/10.1371/journal.pone.0196251


quality (e.g., SSIM) suggests that our image compression approach can potentially be applied

for other purposes as well. We leave the process of identifying image quality degradation limits

while maintaining the accuracy as part of our future work.

To gain additional intuition on the performance of our system design, we present in

Table 5 the confusion matrix generated from the GoogLeNet model using test set processed as

16 color quantization and 150 × 150 image scaling. This test case considered a mid-level accu-

racy case, as we had cases with both higher and lower accuracy levels in our experiments. The

first column in Table 5 show the ground truth labels along with the number of image samples

included in each class. Note here that overall the classification was accurate, but similar look-

ing images as we present in Fig 12 introduce some inaccuracies to our model.

Fig 12 presents representative mis-classified cases, with the classification result from the

CNN and the ground truth context. Note from these images that most of the mis-classified

Table 5. Confusion matrix of the classification results.

Ground Truth Prediction

Class Bird - Swallow Bird - Bluebird Child Bird Egg Laying Empty Nest

Bird - Swallow (3717) 2294 (98.5%) 15 (0.6%) 14 (0.6%) 4 (0.2%) 2 (0.1%)

Bird - bluebird (3717) 4 (0.3%) 1381 (99.5%) 3 (0.2%) 0 (0.0%) 0 (0%)

Child Bird (718) 10 (1.4%) 20 (2.8%) 687 (95.7%) 1 (0.1%) 0 (0%)

Egg Laying (414) 4 (1.0%) 13 (3.1%) 5 (1.2%) 392 (94.7%) 0 (0%)

Empty Nest (3089) 0 (0.0%) 2 (0.1%) 0 (0.0%) 0 (0%) 3087 (99.9%)

https://doi.org/10.1371/journal.pone.0196251.t005

Fig 12. Sample mis-classification cases for 16 colors, 150 × 150 images. (a) the parent bird is feeding children birds. (b) children birds are growing to be adult birds.

(c) there are eggs but a bird sits down on its nest and the tail causes mis-classification. (d) some “Empty Nest” images including feathers can be mis-classified as “Child

bird”. Original images are from [7].

https://doi.org/10.1371/journal.pone.0196251.g012
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cases were due to mixed classes of contexts (e.g., Fig 12A-12C). Furthermore, as we see in

Fig 12D, objects within the image such as feathers and luminance issues are reasons behind

mis-classification results that classify “Empty nest” images to “Child bird”.

6 Related work

Wireless image sensor networks have been used to monitor various environmental phenom-

ena. As we have already detailed, the image dataset that we have used for this work is from the

bird nest monitoring deployment in [8]. The work in [15] is another similar and earlier

deployment for the bird nests at James Reserve, and it investigates use of machine learning

techniques at the backend server for feature detection. There has been WISN for vineyard

monitoring [41] and agricultural monitoring [42] as well.

In these wireless image sensor networks, image compression is one of the important issues

for reducing energy consumption from wireless transmission. JPEG is widely used method of

lossy image compression. However, it has been shown that the energy usage of image compres-

sion using JPEG outweighs the benefit of size reduction when ran on resource-limted plat-

froms [43]. JPEG 2000 [44] is another standard of image compression based on discrete

wavelet transform (DWT) and embedded block coding with optimized truncation (EBCOT).

JPEG 2000 shows better compression performance than JPEG by *20%, but typically at the

cost of even higher computational overhead. Thus, there has been several work within WISN

domain which attempted to design light-weight compression schemes suited for embedded

platforms. Mostefa et al. [45] proposed an image compression technique using background

subtraction. However, to determine that two images are different, the threshold had to be con-

figured manually with domain knowledge. Furthermore, their proposal assumed indoor envi-

ronment. In contrast, our target scenario is environmental monitoring where sun ray changes

during a day. This would produce differences in the lightness of images periodically, and back-

ground subtraction would not work in this case. Paek et al. [46] proposed an image compres-

sion scheme using color quantization based on K-means clustering. K-means clustering based

color quantization shows good compression ratio with reasonable image quality. However, the

energy cost of K-means clustering outweighs the benefit from data reductions, and thus the

work proposed to send raw images periodically, have the server compute the K centroids, and

send the result back to the sensor nodes for compressing subsequent images.

Prior to the recent interest in deep neural networks, the majority of image classification

works for wireless image sensor networks focused on feature extraction based machine learn-

ing with the help of domain experts. Recently with deep learning, the need for domain scien-

tists’ hands-on efforts is decreasing. For example, the work by Ko et al. [15], classify the

context of a bird nest using a SVM. Features in this work are detected using image processing

techniques such as SIFT, and the classifier shows an accuracy of 82%. While this work is a pio-

neering work in bird nest monitoring wireless image sensor networks, our work argues that

the improvement in data analytics models can help design a more efficient sensing system.

Recently, apart from sensor network domain, Mohanty et al. [47] proposed a CNN-based

plant disease detection model. The authors annotate leaf images for 38 class labels and show

results for how AlexNet and GoogLeNet perform with different pre-processing techniques.

While similar to our work, this work does not consider images taken from embedded devices

and do not take the resource limitations of wireless image sensor networks into account.

7 Conclusion

Autonomous image classification on top of wireless image sensor networks can enable various

useful applications. However, with limited battery resources, running image classification
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algorithms on the sensor nodes or sending high-resolution raw images to the backend server

are both burdensome tasks for embedded devices that has direct impact on the lifetime of the

system. To address this problem, we propose an energy-efficient image processing mechanism

combining image scaling and color quantization techniques that can significantly reduce the

amount of data transferred on resource limited nodes, while maintaining the classification

accuracy of the a CNN model at the backend server. Specifically, we have shown that, if well

designed, an image in its highly compressed form can be well-classified with a CNN model

trained in advance using adequately compressed training data. Our evaluation using a real

image dataset shows that an embedded device can reduce the amount of transmitted data by

*71% while maintaining a classification accuracy of *98%. When compared with the same

conditions, this reduces the energy consumption by *71% compared to a WISN that sends

the original raw images. We also identify that convolutional neural networks can operate

robustly on top of lossy image compression algorithm, making them suitable for use in many

sensor network deployments.
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