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Abstract

The anti-tuberculosis-vaccine Bacillus Calmette-Guérin (BCG) is the most widely used vaccine in the world. In addition to its
effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects against certain forms of malignancy
and against infections with unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are
mediated through epigenetic reprogramming of monocytes, a process called trained immunity. In the present study we
demonstrate that autophagy contributes to trained immunity induced by BCG. Pharmacologic inhibition of autophagy
blocked trained immunity induced in vitro by stimuli such as b–glucans or BCG. Single nucleotide polymorphisms (SNPs) in
the autophagy genes ATG2B (rs3759601) and ATG5 (rs2245214) influenced both the in vitro and in vivo training effect of BCG
upon restimulation with unrelated bacterial or fungal stimuli. Furthermore, pharmacologic or genetic inhibition of
autophagy blocked epigenetic reprogramming of monocytes at the level of H3K4 trimethylation. Finally, we demonstrate
that rs3759601 in ATG2B correlates with progression and recurrence of bladder cancer after BCG intravesical instillation
therapy. These findings identify a key role of autophagy for the nonspecific protective effects of BCG.
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Introduction

Immunological memory has long been viewed as being

exclusively mediated by T and B cells. However, an increasing

body of evidence indicates enhanced nonspecific protection against

reinfections in plants [1] and insects [2] which lack adaptive

immunity. Similarly, mammalian innate immune cells such as

natural killer cells show features of immunological memory [3,4].

Recently, we proposed the term trained immunity to describe the

memory properties of innate immune cells [5]. Candida albicans or

its major cell wall component b-glucan, as well as BCG, are

prominent stimuli that can induce trained immunity through

epigenetic reprogramming of monocytes [6,7]. However, little is

known regarding the intracellular events controlling the induction of

trained immunity, impairing the ability to fully harness the

therapeutic potential of this important immunological process.

Therefore, we investigated the trained immunity-induced signaling

pathways, discovering autophagy being one of the main players.

PLOS Pathogens | www.plospathogens.org 1 October 2014 | Volume 10 | Issue 10 | e1004485

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1004485&domain=pdf


Results

b-glucan training induces the transcription of
autophagy-related proteins

To identify new signaling pathways specifically activated upon

training of monocytes with bacterial components, we compared

the transcriptional profile of b-glucan-trained human primary

monocytes isolated from healthy volunteers to the profile of

monocytes stimulated with Escherichia coli-derived lipopolysac-

charide (LPS), which stimulates inflammation but is unable to

induce long-term training [5]. Transcriptomic assessment of these

monocytes by microarrays and pathway analysis revealed specific

clusters of genes significantly induced by b-glucan training with an

intriguing signal found in the ubiquitin-related proteins and

associated catabolic processes (Figure 1a). Since ubiquitination

plays an important role in autophagy [8], a process that has

previously been shown to improve intracellular processing of BCG

[9,10], we examined the role of autophagy in the induction of

trained immunity.

Autophagy is essential for b-glucan and BCG training in
monocytes

Using an in vitro model of trained immunity [6,7], adherent

monocytes from healthy human volunteers were stimulated for

24 h with RPMI, BCG or b-glucan alone or in combination with

the autophagy inhibitors 3-methyladenine (3MA) or wortmannin.

After washing of cells and a resting period of 6 days in medium

supplemented with 10% human serum, cytokine production was

measured after a second stimulation with the unrelated stimuli

LPS or Borrelia burgdorferi (B. burgdorferi) (Figure 1b). IL-6 and

TNF-a production increased significantly in BCG- and b-glucan-

trained cells compared to non-trained cells. When autophagy was

blocked by 3MA or wortmannin, neither b–glucan nor BCG

induced trained immunity (Figure 1c–f; Figure S1a–h). Notably,

the putative cytotoxic effects of autophagy inhibitors used in this

study were assessed by LDH measurements. None of the inhibitors

used during the 24 h of primary cell stimulation enhanced LDH

release compared to RPMI-treated cells (Figure S2 a–c), demon-

strating that the molecules were not toxic to the cells.

Single nucleotide polymorphisms in ATG2B and ATG5
negatively influence trained immunity

To further explore the role of autophagy in the nonspecific

protection of BCG in innate immune cells, we examined the effects

of genetic polymorphisms in autophagy genes for the BCG-

induced trained immunity in vitro and in vivo. The genotypes of

nine SNPs in eight autophagy genes were correlated with the

capacity of BCG to induce trained immunity in a group of 72

volunteers. The rs3759601 ATG2B SNP was found to be strongly

associated with trained immunity; the ability to develop training

characteristics following BCG treatment was observed in mono-

cytes isolated from individuals carrying the GG (major) or CG

genotype but not in those carrying the CC (minor) genotype (plus

strand coding) (Figure 2a–f). A similar effect, though less clear, was

apparent for the rs2245214 ATG5 SNP (Figure 2g–i). No

significant association was found between the nonspecific protec-

tion of BCG and polymorphisms in ATG10, ATG16L1, EREG,

IRGM, LAMP3 and WIPI (Figure S3).

To test the possibility that the association between SNPs and

differences in cytokine production of BCG-trained monocytes was

due to differential intrinsic capacity of the cells to produce

cytokines, we stimulated monocytes bearing different ATG2B
(Figure 2j) or ATG5 (Figure 2k) alleles with LPS or B. burgdorferi
for 24 hours. We noted no differences in cytokine release,

indicating that the capacity of cells to release proinflammatory

cytokines upon stimulation was not responsible for the observed

association between autophagy SNPs and BCG-induced trained

immunity. Next to that, the effect of the rs3759601 SNP on the

transcription of the ATG2B gene was assessed after training. We

observed increased levels of ATG2B transcripts in BCG-trained

cells of individuals carrying the GG genotype but not in those

carrying the CC genotype (Figure 2l). Increased ATG2B levels

could also be found in b-glucan trained individuals carrying the

GG genotype (Figure S4a) but no difference in ATG2B levels

could be found in the two groups after LPS stimulation (Figure

S4b). The reduced expression of ATG2B in individuals carrying

the CC genotype of the SNP upon training with BCG could

indicate a role for autophagy in trained immunity since it has been

shown that the ATG2 proteins are essential for the formation of

autophagosomes [11].

Autophagy is influenced by ATG2B single nucleotide
polymorphism

To identify the effect of rs3759601 in ATG2B on autophagy,

the amount of LC3+ vesicles in BCG stimulated monocytes of

individuals carrying the major or minor variant of the SNP have

been compared. A decrease in autophagosome formation of

individuals carrying the CC genotype can be seen as demonstrated

by a lower percentage of LC3+ monocytes (Figure 3a–b).

ATG2B single nucleotide polymorphism influences in vivo
training of monocytes

To corroborate the above data, we investigated BCG-induced

training of monocytes in vivo by testing individuals carrying

different ATG2B alleles. Monocytes were isolated from 16 healthy

volunteers, before and 3 months after vaccination with BCG.

Following stimulation with LPS (Figure S5a–b) or B. burgdorferi
(Figure 4a–b), IL-1b and TNF-a production was significantly

higher 3 months after vaccination in individuals who were bearing

at least one G allele of the ATG2B SNP (n = 12), while monocytes

Author Summary

Next to its effects against tuberculosis, BCG vaccination
also induces non-specific beneficial effects on immune
cells to increase their ability to control unrelated patho-
gens. It has been recently proposed that the non-specific
effects of BCG are mediated through epigenetic repro-
gramming of monocytes, a process called trained immu-
nity. Little is known regarding the intracellular events
controlling its induction. In this study we identified
autophagy as a key player in trained immunity. Pharma-
cological inhibition of autophagy as well as polymor-
phisms in autophagy-related genes blocked BCG-induced
trained immunity. Furthermore, BCG vaccine is also used to
treat bladder cancer. Genetic polymorphisms in autopha-
gy-related genes correlated with progression and recur-
rence of bladder cancer after treatment with BCG therapy.
These findings open new possibilities for improvement of
future BCG-based vaccines to be used against infections
and malignancies.

Autophagy Controls Trained Immunity
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isolated from individuals carrying the CC genotype (n = 4) showed

no change in cytokine production after BCG vaccination.

SNP in ATG2B correlates with the progression and
recurrence of bladder cancer after BCG intravesical
instillation therapy

In addition to the protective effects of BCG against secondary

infections, non-specific therapy with intravesical BCG is also used

as a therapeutic strategy for patients with non-muscle invasive

bladder cancer (NMIBC; stages: Ta, T1, CIS) [12]. In a cohort of

192 NMIBC patients treated with at least 6 intravesical

instillations of BCG we evaluated the association between the

ATG2B SNP and prognosis in terms of recurrence and

progression during the first five years after the primary NMIBC

diagnosis. Analyses learned that those patients that carry one or

two C alleles for ATG2B rs3759601 showed increased risk of

recurrence (CG vs. GG: hazard ratio (HR) = 1.73 (95% confidence

interval (CI): 0.99–3.03) and CC vs. GG: HR = 1.68 (95% CI:

0.78–3.27)) (Figure 4c) and progression (CG vs. GG: HR = 1.57

(95% CI: 0.79–3.12) and CC vs. GG: HR = 2.15 (95% CI: 1.00–

4.66)) (Figure 4d). This finding of a correlation between the

polymorphism in ATG2B to progression and recurrence of

bladder cancer supports the hypothesis of a clinical relevance of

the autophagy gene for the non-specific protective effects exerted

by BCG. In addition, the responsiveness of circulating monocytes

of bladder cancer patients has been investigated before and after

BCG-therapy. Of high interest, individuals who received intra-

vesical BCG therapy showed an increased cytokine response of

their monocytes after stimulation with LPS in vitro (Figure 4e–g).

Pharmacologic or genetic inhibition of autophagy blocks
epigenetic reprogramming of monocytes in response to
BCG training

Epigenetic reprogramming of monocytes is a crucial immuno-

logical mechanism underlying nonspecific protection by BCG.

Stable changes in histone trimethylation at the level of lysine 4 of

Figure 1. Role of autophagy for the training of monocytes. (a) Transcriptome profiling and pathway analysis of b-glucan training of
monocytes compared to LPS stimulation. Factorial design analysis was performed on genes in each K-means cluster to assess significance of response
differences elicited by LPS and b-glucan (Benjamini-Hochberg (BH)-adjusted p,0.05). The signal:noise ratio is shown as heatmaps. Functional
enrichment (or molecular concept) map was generated for genes exhibiting significantly weaker LPS response relative to b-glucan response. This
map summarizes the extent of mutual overlap between gene sets and identifies a cluster of strongly connected gene sets that are enriched among
genes showing stronger b-glucan response. Only enriched gene sets in the significant range with gene set enrichment score (2Log10(p).1.3; p,
0.05) are shown. Nodes denote enriched gene sets or ‘‘annotation terms/categories’’, assembled from (K) KEGG pathways, (G) Gene Ontology, (P)
Panther pathways, (R) Reactome. Node size corresponds to the number of gene members in each gene set. Node color denotes the gene set
enrichment score. Please refer to graphical legend (boxed) in figure. The extent of mutually overlapping genes between gene sets is represented by
thickness and color intensity of edges connecting nodes. The overlap score is the average of the Jaccard and Overlap coefficients. Strongly connected
network components were identified using Tarjan’s algorithm. Important ubiquitin-related processes in map are highlighted. (b) Diagram showing
the course of the in vitro preincubation experiment. (c–f) BCG (c–d) or b-glucan (e–f) training in vitro in the presence or absence of 3MA using freshly
isolated human monocytes and different stimuli for restimulation (LPS, B. burgdorferi). *P,0.05, **P,0.01.
doi:10.1371/journal.ppat.1004485.g001

Autophagy Controls Trained Immunity
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Figure 2. Polymorphisms in ATG2B or ATG5 diminish the training capacity of human monocytes. (a–i) Blood was collected from
volunteers and genotyped for ATG2B rs3759601 (a–f) and ATG5 rs2245214 (g–i). Human monocytes were trained with BCG for 24 h, washed and
incubated in RPMI (10% human serum) for 6 d, after which they were restimulated for 24 h with a second stimulus (LPS, Bb, or C. albicans).
Proinflammatory cytokine production (IL-6 and TNF-a) was assessed by ELISA in the supernatants. (j–k) PBMCs isolated from volunteers carrying
different genotypes for SNPs rs3759601 or rs2245214 were stimulated for 24 h with LPS or B. burgdorferi. IL-6 was measured in the supernatants by
ELISA. (l) Human monocytes carrying different genotypes for SNP rs3759601 were trained with BCG for 4 h. Expression of ATG2B was assessed by
qPCR *P,0.05, **P,0.01.
doi:10.1371/journal.ppat.1004485.g002
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histone 3 (H3K4), a post-translational modification associated with

the regulation of immune-related genes [13], is one of the

mechanisms responsible for enhanced cytokine production after

re-stimulation of trained monocytes [5–7]. Therefore, we assessed

whether trimethylation of H3K4 due to nonspecific training by

BCG was influenced by the ATG2B polymorphism or inhibition

of autophagy by 3MA. Consistent with our hypothesis, H3K4

trimethylation was significantly increased at the IL-6 and TNF-a
promoters in BCG-trained monocytes from volunteers bearing the

ATG2B G allele (Figure 5a–b). In contrast, volunteers homozy-

gous for the ATG2B C allele did not show any increase in

trimethylation at H3K4 at the cytokine promoters after BCG-

training. Furthermore, inhibition of autophagy by 3MA blocked

the H3K4 trimethylation at IL-6 and TNF-a promoters in BCG-

trained monocytes (Figure 5c–d), supporting the hypothesis of a

central role of autophagy in the epigenetic reprogramming of

monocytes induced by BCG.

Discussion

BCG is a live attenuated vaccine which is routinely adminis-

tered at birth in low-income countries, protecting newborns

against disseminated tuberculosis and tuberculosis meningitis [14].

However, in addition to its specific protection against childhood

tuberculosis, epidemiological studies have demonstrated that BCG

protects against infant mortality independent of its effect on

tuberculosis, suggesting a nonspecific protection against unrelated

infections [15–24]. Next to that, BCG treatment has long been

used as a non-specific immunostimulatory therapy in urothelial

cell carcinomas [25]. Recently, these non-specific protective

mechanisms of BCG have been associated with epigenetic

reprogramming of innate immune cells in a process called trained
immunity [7]. In the present study we show that autophagy is a

central event modulating trained immunity induced by BCG.

Moreover, polymorphisms in autophagy genes such as ATG2B
control trained immunity in both in vitro and in vivo models, as

well as the non-specific therapeutic effects of BCG in patients with

bladder cancer.

An important difference has to be noted between the effect of

ATG2B polymorphism on BCG training against secondary

infections and BCG used as a treatment against non-muscle

invasive bladder cancer. BCG training of monocytes against

unrelated secondary infections could only be modulated by an

ATG2B polymorphism expressed on both alleles. Heterozygote

individuals were still trainable with the vaccine. On the contrary,

the prognosis in terms of recurrence and progression of non-

muscle invasive bladder cancer decreased with only one affected

allele. The different route of BCG administration, as well as

several disease-related mechanisms could be the explanation of

this event. To further unravel the different mechanisms behind this

phenomenon, a pilot study has been performed to investigate

whether BCG installation in the bladder could induce a state of

trained immunity. The cytokine response of ex-vivo stimulated

monocytes of BCG treated bladder cancer patients increased in

response to LPS compared to the pre-treatment response.

In addition to the aspects discussed above, there are also a few

limitations of the current study. Thus, although we demonstrate

the role of autophagy for BCG-induced trained immunity,

additional studies are needed to decipher the precise pathway

linking autophagy to the epigenetic modifications observed during

trained immunity. A second important aspect is the fact that the

genetic study has been performed in a relatively small cohort of

patients with bladder carcinoma, and it needs to be validated by

independent studies. Finally, the role of autophagy gene SNPs for

the effects of BCG on infections also needs to be evaluated. The

role of BCG for protection against infection is currently

investigated by a large Danish study in 4500 newborn children

(http://calmette-studiet.dk/), and the effect of the autophagy

polymorphisms on the effects of BCG is an important aspect to be

assessed.

A key question regarding trained immunity refers to the

signaling and molecular mechanisms responsible for its induction.

As shown previously, exposure of monoctyes to BCG induces high

levels of H3K4 trimethylation at the promoter level of inflamma-

tory genes, which correlates with long-term increased production

of proinflammatory cytokines, a hallmark of trained immunity

[6,7]. Next to that, the blockage of histone acetyltransferases

inhibits the training of monoctyes [26] suggesting also an

important role of acetylation in trained immunity which will be

further studied in the future.

The discovery that autophagy modulates trained immunity may

have important consequences. It provides understanding of an

important immunological process, although future studies are

warranted to identify the molecular mechanisms through which

autophagy mediates the epigenetic changes responsible for trained

immunity. Restriction of reactive oxygen species release from

damaged mitochondria, or processing of microbial ligands such as

peptidoglycans [9], may represent two potential candidate

mechanisms. Furthermore, identification of autophagy as a driver

of trained immunity opens new possibilities for improvement of

future BCG-based vaccines to be used against infections and

malignancies.

Materials and Methods

Ethics statement
All human experiments were conducted according to the

principles expressed in the Declaration of Helsinki. Before taking

blood, informed written consent of each human subject was

obtained. The study was approved by the review board of the

department of Medicine of the Radboud University Nijmegen

Medical Centre. The BCG in vivo study was approved by the

Arnhem-Nijmegen Ethical Committee. For the NBCS, all

participants gave written informed consent and the study was

approved by the Institutional Review Board of the RUMC. All

data analyzed were anonymized.

Healthy volunteers
In vitro cytokine stimulation experiments were performed with

PBMCs isolated from buffy coats obtained from healthy volunteers

(Sanquin Bloodbank, Nijmegen, the Netherlands). To analyze the

Figure 3. Autophagy affected by SNP in ATG2B. (a–b) Monocytes
genotyped for ATG2B rs3759601 were seeded on coverslips, and
stimulated with BCG. After 1 hour of stimulation, cells were fixed and
stained with an antibody against LC3. Slides were analyzed by confocal
microscopy. Data are representative for 3 experiments.
doi:10.1371/journal.ppat.1004485.g003
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effect of gene polymorphisms on trained immunity, blood was

drawn from a group of healthy volunteers (age 23–73). For the in
vivo BCG model, subjects (aged 20–36) who were scheduled to

receive a BCG vaccination at the public health service, due to

travel or work in tuberculosis-endemic countries, were asked to

participate in this trial. Blood was drawn before and 3 months

after the BCG vaccination. Informed consent was obtained from

all human subjects.

The bladder cancer patients included in this study were selected

from a total of 1,602 patients with primary urinary bladder cancer

(UBC) from the Nijmegen Bladder Cancer Study (NBCS). The

NBCS served as the Dutch discovery population in the UBC

genome-wide association study led by Radboud University

Medical Centre (RUMC, Nijmegen, the Netherlands) and

deCODE Genetics (Reykjavik, Iceland). The NBCS has been

described in detail before [27]. Cases with a previous or

simultaneous diagnosis of upper urinary tract cancer, based on

information from the Netherlands Cancer Registry, were exclud-

ed. Detailed clinical data concerning diagnosis, stage, treatment,

and disease course (tumor recurrence and progression) were

collected retrospectively based on a medical file survey. In the

analysis we included a total of 192 cases with non-muscle invasive

bladder cancer (NMIBC; stage Ta/T1/CIS) that received at least

6 intravesical BCG instillations as initial treatment (median follow-

up time from initial transurethral resection of bladder tumor until

last urological check-up visit was 5.2 years (range: 0.4–20)). All

patients were from Caucasian background.

Microorganisms
C. albicans ATCC MYA-3573 (UC 820) yeast was heat-

inactivated for 30 min at 95uC. B. burgdorferi, ATCC strain

35210, was cultured at 33uC in Barbour-Stoenner-Kelley (BSK)-H

medium (Sigma-Aldrich) supplemented with 6% rabbit serum.

Spirochetes were grown to late-logarithmic phase and examined

for motility by dark-field microscopy. Bacteria were harvested by

centrifugation of the culture at 70006 g for 15 min and washed

twice with sterile PBS (pH 7.4).

Stimulation experiments
The mononuclear cell fraction was obtained by density

centrifugation of blood diluted 1:1 in pyrogen-free saline over

Ficoll-Paque (Pharmacia Biotech, Pittsburgh, Pennsylvania, USA).

Figure 4. SNP in ATG2B affects the efficacy of in vivo BCG-induced trained immunity. (a–b) Monocytes isolated before and 3 months after
vaccination of 16 naı̈ve (nonexposed) volunteers were stimulated in vitro with B. burgdorferi. Proinflammatory cytokine production (IL-1b [a], TNF-a
[b]) was assessed by ELISA in the supernatants. (c–d) Kaplan-Meier curves for recurrence-free (c) and progression-free (d) survival according to
rs3759601 SNP genotype of 192 patients suffering from non-muscle invasive bladder cancer treated with $6 intravesical instillations of BCG. Each
drop in a probability curve indicates one or more events in that group. Vertical lines indicate censored patients, i.e. those who reached the end of
their follow-up without experiencing the event. Total number of patients and number of events (between brackets) per genotype category are
indicated next to the corresponding curve. Numbers of patients at risk at selected time points for each genotype category are given below the plots.
(e–g) Monocytes of bladder cancer patients isolated before and after 6 intravesical BCG instillations as initial treatment were stimulated in vitro with
LPS. Proinflammatory cytokine production (IL-1b [e], IL-6 [f], TNF-a [g]) was assessed by ELISA in the supernatants *P,0.05, **P,0.01.
doi:10.1371/journal.ppat.1004485.g004

Figure 5. Impairment of autophagy decreases trimethylation at H3K4 in human monocytes. ChIP analysis of the enrichment of H3K4me3
at the promoter of (A) TNF-a and (B) IL-6 in human monocytes isolated from volunteers carrying the major variant (GG) or minor variant (CC) alleles
for ATG2B after training with BCG. ChIP analysis of the enrichment of H3K4me3 at the promoter of (C) TNF-a and (D) IL-6 in human monocytes trained
with BCG in the presence or absence of 3MA *p,0.05, **p,0.01.
doi:10.1371/journal.ppat.1004485.g005

Autophagy Controls Trained Immunity
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Cells were washed twice in saline and resuspended in culture medium

(RPMI; Invitrogen, Carlsbad, California, USA) supplemented with

50 mg/L gentamicin, 2 mM L-glutamine and 1 mM pyruvate.

PBMCs were counted in a Coulter counter (Coulter Electronics,

Brea, California, USA) and their number was adjusted to 56106

cells/ml. A total of 56105 cells in a 100 ml volume was added to

round-bottom 96-well plates (Greiner) with RPMI, E. coli LPS

(10 ng/ml) or B. burgdorferi (16106/ml). After 24 h, the superna-

tants were collected and stored at 220uC until being assayed.

For training experiments, PBMCs (56105 for cytokine analysis;

106106 for ChIP analysis) were incubated for 1 h at 37uC in 5%

CO2. Adherent monocytes were selected by washing out

nonadherent cells with warm PBS. Thereafter, cells were

preincubated with RPMI, BCG vaccine (1 mg/ml BCG vaccine

SSI from the Netherlands Vaccine Institute) or b-1,3-(D)-glucan

(b-glucan) (10 ng/ml; kindly provided by Professor David

Williams) for 24 h (4 h for Real-time PCR). After a resting period

of 6 d in RPMI including 10% serum, cells were stimulated with

E. coli LPS (10 ng/ml), C. albicans (16106/ml), B. burgdorferi
(16106/ml), or RPMI for an additional 24 h. Supernatants were

stored at 220uC until ELISA was performed. In the ‘‘inhibition’’

experiments, before training with BCG or b-glucan, the adherent

monocytes were preincubated for 1 h with 10 mM 3-methyl

adenine (3MA, Sigma).

Cytokine measurements
Concentrations of human IL-1b, IL-6 and TNF-a were

determined in duplicates using commercial ELISA kits (Sanquin,

Amsterdam, or R&D Systems, Minneapolis), in accordance with

the manufacturers’ instructions.

Real-time PCR
RNA from stimulated monocytes was isolated using TRIzol

reagent (Invitrogen) according to the manufacturer’s instructions.

Isolated RNA was reverse-transcribed into complementary DNA

using iScript cDNA synthesis kit (Bio-Rad). Quantitative real-time

PCR was performed using Power SYBR Green PCR Master Mix

(Applied Biosystems) using a 7300 Real-time PCR system (Applied

Biosystems). In each PCR a melting curve analysis was included to

control for a specific PCR amplification. Primers used for the

experiments (final concentration 10 mM) are shown below. Real-

time quantitative PCR data were corrected for expression of the

housekeeping gene B2M. Human ATG2B forward: ACCAGA-

GATAGCACCTTCTGAC and reverse: CCAATTAACCGTC-

CAATCTG; human B2M forward: ATGAGTATGCCTG-

CCGTGTG and reverse: CCAAATGCGGCATCTTCAAAC.

Isolation of genomic DNA and single nucleotide
polymorphism analysis

In vitro training experiment: Using NCBI SNP database we

selected SNPs in autophagy genes previously associated to diseases

or with a minor allele frequency of at least 5% (ATG10
(rs1864183), ATG10 (rs3734114), ATG16L1 (rs2241880), ATG2B
(rs3759601) [allele frequency: G = 70%; C = 30%], ATG5
(rs2245214), EREG (rs78803121), IRGM (rs4958847), LAMP3
(rs482912), WIPI (rs883541)). Blood samples were obtained by

venapuncture. Genomic DNA was isolated from EDTA blood

using standard methods, and 5 ng of DNA was used for

genotyping. Multiplex assays were designed using Mass ARRAY

Designer Software (Sequenom) and genotypes were determined

using Sequenom MALDI-TOF MS according to manufacturer’s

instructions (Sequenom Inc., San Diego, CA, USA) as described

previously [28].

In vivo BCG-cohort: DNA was isolated using the Gentra Pure

Gene Blood kit (Qiagen), in accordance with the manufacturer’s

protocol for whole blood. DNA was dissolved in a final volume of

100 ml buffer. Genotyping of single nucleotide polymorphisms

(SNPs) was performed using a pre-designed TaqMan H SNP

genotyping assay (Applied Biosystems) according to the manufac-

turer’s protocol.

NBCS: All bladder cancer patients were genotyped using the

Illumina Infinium HumanCNV370-duo Bead-Chips. Imputation

was performed (IMPUTE version 2.1 software) using the 1000

Genomes low-coverage pilot haplotypes (released June 2010, 120

chromosomes) and the HapMap3 haplotypes (released February

2009, 1920 chromosomes) as a combined reference panel [27].

SNP rs3759601 was imputed with IMPUTE info_score 0.99. The

SNP followed Hardy-Weinberg equilibrium.

Transcriptome analysis
Gene expression was performed as described previously [29]

and assessed using Illumina Human HT-12 Expression BeadChip

according to manufacturer’s instructions. The Illumina LIMS

platform, BeadStudio was employed to perform image analysis,

bead-level processing, and quantile normalization of array data.

Chromatin immunoprecipitation
Adherent monocytes were cultured as described above (see

Stimulation Experiments). ChIP was performed using antibodies

against H3K4me3 (Diagenode). ChIPed DNA was processed

further for qPCR analysis. The following primers were used in the

reaction (59-39): TNF-a forward: CAGGCAGGTTCTCT-

TCCTCT, TNF-a reverse: GCTTTCAGTGCTCATGGTGT;

IL-6 forward: TCGTGCATGACTTCAGCTTT, IL-6 reverse:

GCGCTAAGAAGCAGAACCAC; myoglobin forward: AG-

CATGGTGCCACTGTGCT, myoglobin reverse: GGCTTAAT-

CTCTGCCTCATGAT.

Immunofluorescence staining
For immunofluorescence imaging, monocytes were seeded on

coverslips pretreated with polylysine, fixed with 4% PFA for

15 min at room temperature followed by 10 min of fixation with

ice-cold methanol at 220uC. After two washing steps with PBS,

cells were permeabilized by 0.1% saponin (Sigma-Aldrich),

blocked for 30 min in PBS plus 2% BSA, incubated for 1 h with

a mouse mAb to LC3 (1:50; Nanotools), washed twice in PBS plus

2% BSA and stained by a secondary Alexa Fluor 555 goat anti-

mouse Ab (1:500; Molecular Probes), followed by DNA staining

with 10 mM TO-PRO-3 iodide (642/661; Invitrogen). After the

washing steps, slides were mounted in Prolong Gold antifade

media (Molecular Probes). Images were acquired using a laser-

scanning spectral confocal microscope (TCS SP2; Leica Micro-

systems) and LCS Lite software (Leica microsystems). 2 fields/

donor including at least 40 cells each were counted and compared

for the amount of LC3.

Statistical analysis
Data are expressed as mean 6 SEM unless mentioned

otherwise. Differences between experimental groups were tested

using the non-parametrical two-sided Mann-Whitney U test (no

normal distribution of measured cytokines); differences between

multiple time points within one group (before versus after

treatment) were tested using the Wilcoxon matched pair test

(unless stated otherwise) performed on GraphPad Prism 4.0

software (GraphPad). P values of #0.05 were considered

statistically significant.
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Kaplan-Meier survival and Cox proportional hazard regression

analyses were performed to evaluate the association between

rs3759601 and recurrence- and progression-free survival. Log-

rank tests were calculated to compare survival curves between

genotype categories. Imputed genotype probabilities were trans-

formed to hard genotype calls based on a probability threshold of

.0.90. Statistical analyses were performed using IBM SPSS

Statistics for Windows 20 (IBM Corp., Armonk, NY, USA) and

survival plots were drawn using R software v3.0.2 (package

‘survival’) (R Development Core Team, Vienna, Austria).

Supporting Information

Figure S1 Role of autophagy for the training of monocytes.

BCG (a–b, e–f) or b-glucan (c–d, g–h) training in vitro in the

presence or absence of 3MA or wortmannin using freshly isolated

human monocytes and different stimuli for restimulation (LPS, B.
burgdorferi). TNF-a (a–d) and IL-6 (e–h) were assessed by ELISA

in the supernatants. *P,0.05, **P,0.01.

(TIF)

Figure S2 Viability of monocytes after chemical blocking of

autophagy for 24 h. BCG or b-glucan training in vitro in the

presence or absence of 3MA or wortmannin using freshly isolated

human monocytes. Cell viability tested by CytoTox 96 NonRa-

dioactive Cytotoxicity Assay after 24 h (a), 3 days (b) and 6 days

(c).

(TIF)

Figure S3 Polymorphisms in ATG10, ATG16L1, EREG,
IRGM, LAMP3 and ATG18 do not diminish the training

capacity of human monocytes. Blood was collected from

volunteers and genotyped for ATG10 rs1864183 and rs3734114

(a–d), ATG16L1 rs2241880 (e–f), EREG rs78803121 (g–h), IRGM
rs4958847 (i–j), LAMP3 rs482912 (k–l) and ATG18 rs8835411

(m–n). Human monocytes were trained with BCG for 24 h,

washed and incubated in RPMI (10% human serum) for 6 d, after

which they were restimulated for 24 h with a second stimulus (LPS

or Bb). Proinflammatory cytokine production (TNF-a) was

assessed by ELISA in the supernatants.

(TIF)

Figure S4 SNP in ATG2B affects its expression after training

but not stimulation. Human monocytes carrying different

genotypes for SNP rs3759601 were trained with b-glucan [a] or

stimulated with LPS [b] for 4 h. Expression of ATG2B was

assessed by qPCR.

(TIF)

Figure S5 SNP in ATG2B affects the efficacy of in vivo BCG-

induced trained immunity. Monocytes isolated before and 3

months after vaccination of 16 naı̈ve (nonexposed) volunteers were

stimulated in vitro with LPS. Proinflammatory cytokine produc-

tion (IL-1b [a], TNF-a [b]) was assessed by ELISA in the

supernatants.

(TIF)
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