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Organic light-emitting diodes (OLEDs) have great potential for display, lighting, and near-
infrared (NIR) applications due to their outstanding advantages such as high efficiency, low
power consumption, and flexibility. Recently, it has been found that the ultrathin emitting
nanolayer technology plays a key role in OLEDs with simplified structures through the
undoped fabricated process, and exciplex-forming hosts can enhance the efficiency and
stability of OLEDs. However, the elementary structure and mechanism of the energy
transfer process of ultrathin emitting nanolayers within interface exciplexes are still unclear.
Therefore, it is imminently needed to explore the origin of ultrathin emitting nanolayers and
their energy process within exciplexes. Herein, the mechanism of films growing to set
ultrathin emitting nanolayers (<1 nm) and their energy transfer process within interface
exciplexes are reviewed and researched. The UEML phosphorescence dye plays a key
role in determining the lifetime of excitons between exciplex and non-exciplex interfaces.
The exciplex between TCTA and Bphen has longer lifetime decay than the non-exciplex
between TCTA and TAPC, facilitating exciton harvesting. The findings will be beneficial not
only to the further development of OLEDs but also to other related organic optoelectronic
technologies.
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INTRODUCTION

Organic light-emitting diodes (OLEDs) are considered and applied as a feasible technology in high-
quality display, solid-state lighting sources (SSLs), and near-infrared (NIR) applications, owing to the
excellent advantages including high efficiency, low power consumption, and flexibility. (Baek et al.,
2020; Helander et al., 2011; Wang et al., 2011; Wang et al., 2020; Xu et al., 2017; Greiner et al., 2012;
Zheng et al., 2013; Xu et al., 2021a). Nevertheless, previous studies usually adopted complicated
fabricated processes and device structures of OLEDs, which impede the popularizing of this
promising technology. (Zhu et al., 2011; Gao et al., 2020; Yuan et al., 2020; Xu et al., 2021a).
Therefore, simplifying the OLEDs is a challenge.

Recently, the ultrathin emitting layer (UEML) structure shows superiority applied in simply
fabricating OLEDs without the doping process. (Zhao et al., 2011; Liu et al., 2014a; Liu et al., 2014b;
Zhang et al., 2015; Wu et al., 2016; Xu et al., 2016; Xu et al., 2018a; Xu et al., 2018b; Luo et al., 2018;
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Luo et al., 2019a). To boost the efficiency of OLEDs, an exciplex is
applied due to its promoting energy transfer between the host and
guest. (Xu et al., 2017a; Li et al., 2019; Li and Liao, 2019; Xu et al.,
2019; Xu et al., 2021b; Huang et al., 2021). The other exciton
management strategies and energy transfer processes have been
developed. Triplet–triplet annihilation (TTA) was proposed as
another mechanism for the triplet harvesting process in TTA-
dominant exciplex-emitting OLEDs. (Jankus et al., 2013; Kim and
Kim, 2019). Furthermore, inspired by exciplex-based OLEDs, the
novel concept of long-persistent luminescence has been
confirmed by Adachi and co-workers. (Tan et al., 2021).
Sandwiching the UEML between the exciplex interface of the
hole transporting layer (HTL) and electron transport layer (ETL)
not only realizes high luminous efficiency due to improved carrier
injection and promoted exciton harvesting, (Xu et al., 2017b) but
also restrains efficiency roll-off, (Yao et al., 2019; Zhang et al.,
2021a; Xu et al., 2021c) and even extends the working lifetime,
owing to good excitonmanagement. (Li and Liao, 2019;Wei et al.,
2020; Zhang et al., 2020; Zhang et al., 2021b). In other words, the
UEML technology plays an important role in OLEDs with a
simplified structure by the undoped fabricated process, while
exciplex-forming hosts can help enhance the efficiency and
stability of OLEDs.

To date, the elementary structure and mechanism of the
energy transfer process of ultrathin emitting nanolayers within
interface exciplexes are still unclear. Therefore, it is imminently
needed to explore the origin of ultrathin emitting nanolayers and
their energy process within exciplexes. In the perspective of
growth kinetics of ultrathin organic films (<1 nm), the
elementary processes of organic ultrathin growth include
nucleation, aggregation, and coalescence of islands. (Winkler
and Wandelt, 2018). Between the deposit and substrate, three
growth relations are subsistent: 1) non-oriented, 2) texture
orientation, and 3) texture and azimuthal orientation. (Sitter
et al., 2008). Five modes of crystal growth can be
distinguished: Volmer–Weber mode (VW-mode), the

Frank–van der Merwe mode (FM-mode), the
Stranski–Krastanov mode (SK-mode), the columnar growth
mode (CG-mode), and the step flow mode (SF-mode).

Organic islands and discontinuous films are emerged by thin
films which grow in sketch diagram modes of the VW-mode,
FM-mode, and SK-mode, which play a leading role in the
ultrathin organic film exhibited in Figure 1A. (Kaganer et al.,
2009). As to the energy transfer process of the interface exciplex
with a charge transfer (CT) state, type A and type B of the
interface exciplex are classified according to direct contact or
not shown in Figure 1B. The type A interface exciplex can
transfer energy to the UEML within the type B interface exciplex
via the Förster energy transfer. (Schleifenbaum et al., 2014;
Becker et al., 2006; Kaur et al., 2020; Cortes and Jacob, 2018;
Jones and Bradshaw, 2019; Sanz-Paz et al., 2020). The direct
contact (type A) of different organic materials (hole transport
material (HTM) and electron transport material (ETM)) could
form the exciplex. Not all random combinations of the HTM
and ETM can form an exciplex. The formation of the exciplex
usually can be confirmed by photoluminescence (PL)
measurement of mixing of films of the HTM and ETM to
verify the CT state of the HTM and ETM. Generally, the
interface exciplex could be composed of an HTM and an
ETM, working as the electron donor and the electron
acceptor, respectively. The basic working principle of this
organic heterojunction attracted lots of research attention.
The diffusion mechanism of exciplexes is studied by time-
resolved photoluminescence (TRPL) spectroscopy by J.J. Kim.
(Kim and Kim, 2020). The amorphous thin films of TADF
donor–acceptor (D-A) exciplexes are observed under near-
infrared excitation with the maximum distance of ~6.9 nm
for two photon-excited exciplex formations. (Chen et al.,
2021). Long-range coupling of electron-hole pairs in spatially
separated electron-donating and electron-accepting molecules
as long as 10 nm spacer layers is reported, which is similar to
type B exhibited in Figure 1B. (Ingram et al., 2014; Ingram et al.,

FIGURE 1 | (A) Thin films grow sketch diagrammodes of ultrathin emitting nanolayers (1. Volmer–Weber, 2. Frank–van der Merwe, and 3. Stranski–Krastanov) and
(B) the ultrathin emitting nanolayers and their energy processes within the exciplex (Type A. and Type B.).
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2016; Nakanotani et al., 2016). However, why the interface of the
exciplex produces these positive results to the UEML and the
origin of the undoped UEML within interface exciplexes is still
unexplored. (Sitter et al., 2008). Herein, the origin of ultrathin
emitting nanolayers within interface exciplexes or non-
exciplexes is reviewed and researched.

EXPERIMENT DETAILS

Material and sample preparation: 4,7-Diphenyl-1,10-
phenanthroline (Bphen), 4,4′,4″-Tris (carbazol-9-yl)-
triphenylamine (TCTA), IridiuM(III) bis(4-phenylthieno [3,2-
c]pyridinato-N,C2′)acetylacetonate (PO-01), and Di-[4-(N,N-
ditolyl-amino)-phenyl] cyclohexan (TAPC) were purchased
from Xi’an Polymer Light Technology Corp and used as
received. Acetone and ethanol were consecutively used to
clean the quartz substrate with an ultrasonic bath. The quartz
substrates were further dried with a N2 flow. After 20 min of
ultraviolet light–ozone treatment, later, the samples (A, B, C, and
D) were vacuum deposited under 10−5 mbar with corresponding
thickness and functional materials showing in Table 1, in order to
probe the exciplex/non-exciplex interface and phosphorescence
UEMLs within the exciplex/non-exciplex interface. The
formation of interface exciplexes has been confirmed between
TCTA and Bphen (Zhao et al., 2017) while TCTA and TAPC both
working as the HTM cannot form interface exciplexes as a control
group. The tested sample was grown on a quartz substrate. In
order to accurately control the evaporation of ultrathin films, we
adopted physical vapor deposition to observe the film detecting
growth rate using quartz monitor crystals and termly calibrated
the film thickness.

Photoluminescence measurement: Time-integrated PL
measurement was conducted by directing the excitation laser
pulses to thin films. The PL was measured at a backscattering
angle of 145° by two lenses via an optical fiber coupled by using a
spectrometer (Acton, Spectra Pro 2500i) and a charge-coupled
device (CCD) (Princeton Instruments, Pixis 400B). TRPL was
collected using an Optronis OptoScope streak camera system
with an ultimate temporal resolution of 10 ps. The pump pulses
were generated from an optical parametric amplifier (Coherent
OPerA Solo) pumped by a 1-kHz regenerative amplifier
(Coherent Libra, 800 nm, 50 fs). The amplifier was seeded by
a mode-locked Ti: sapphire oscillator (Coherent Vitesse, 100 fs,
80 MHz). The excitation wavelength adapted for PL
measurement was set to 380 nm. The fluorescence spectrum of
the sample was measured at room temperature.

RESULTS AND DISCUSSION

Energy transfer processes of UEMLs within the exciplex interface
TCTA/Bpehn and the non-exciplex interface TCTA/TAPC are
summarized, as shown in Figures 2A, B, respectively, dividing
into type A contact coupling with UEMLs and type B long-range
coupling without UEMLs. Three consecutive steps of the energy
transfer process of UEMLs is included: 1) pumping electrons in
the ground state to electrons in the CT state (exciton generation;
T0~100 fs), 2) Förster and Dexter energy transfer to UEMLs
(energy transfer; τ1~100 ps), and 3) luminescence of UEMLs

TABLE 1 | Components of samples A, B, C, and D.

Film Components
of the sample

A Quartz/TCTA (20 nm)/PO-01 (0.5 nm)/Bphen (20 nm) (exciplex)
B Quartz/TCTA (20 nm)/PO-01 (0.5 nm)/TAPC (20 nm) (non-exciplex)
C Quartz/TCTA (20 nm)/Bphen (20 nm) (exciplex)
D Quartz/TCTA (20 nm)/TAPC (20 nm) (non-exciplex)

FIGURE 2 | Energy transfer process of ultrathin emitting nanolayers
within the exciplex interface (A) TCTA/Bphen and the non-exciplex interface
(B) TCTA/TAPC.
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(relaxation luminescence; τ2~100 ns), with a distinguishing time
scale is described with the energy structure of different organic
interfaces in Figure 2. (Ingram et al., 2014; Menke and Holmes,
2014; Gould et al., 1994). The energy level diagrams of organic
heterojunction interfaces are also exhibited in Figure 2. The test
sample of TAPC/Bphen exhibited exciplex emission, which is
similar to the results reported in the literature. (Zhao et al., 2017).

In general, the relatively intense absorption (Abs.) with a
wavelength from 300 to 400 nm is due to the absorption of
TAPC, TCTA, and Bphen. The larger band gap of Bphen

(~4 eV) than that of TCTA (~3.7 eV) strengthens the
absorption of samples A and C under 300 nm, compared with
the samples B and D, as shown in Figure 3A. There are slight
stronger Abs. of sample A, compared with that of sample C due to
adding UEML of PO-01. This UEML of PO-01 led to the PL peak
with an emission of about 560 nm, implying the energy of exciton
transfer from the interface of TAPC and Bphen to UEML, as
shown in Figure 3B.

The energy gap (Eg) of exciplexes is generally determined by
the energy distinction between the highest occupied molecular
orbital (HOMO) of the HTM and the lowest unoccupied
molecular orbital (LUMO) of the ETM. (Liu et al., 2013; Liu
et al., 2016; Luo et al., 2017; Xiao et al., 2018a). Therefore, the
emission peaks of exciplexes can be obtained via the energy
distinction. From Figure 2, it is noted that Eg of TCTA and
Bpehn (sample C) and Eg of TCTA and TAPC (sample D) are
3.1 and 3.3 eV, corresponding to the wavelength of ~400 and
~376 nm, respectively. The strong interface exciplex Abs. of
TCTA/Bpehn is observed from 400 to 450 nm in Figure 3A.
The wavelength of ~400 nm (Eg of TCTA/Bpehn) and ~376 nm
(Eg of TCTA/TAPC) are comparatively correlated with the
tendency of normalized Abs. (%) of sample C with a blue
line and sample D with a red line, as shown in Figure 3A.
Obviously, the lifetime decay of samples A and B presents a
typical timescale of phosphorescence due to the PL spectra from
UEML of PO-01, as shown in Figure 4.

To examine the energy transfer of excitons, transient PL
decay behaviors of four samples were explored. The
corresponding spectra and fitting data based on I(t) =
A1exp (-t/τ1)+A2exp (-t/τ2) are shown in Figure 4 and

FIGURE 3 | (A) Normalized absorption (Abs.) (%) and (B) PL spectra of film samples (A, B, C, and D).

FIGURE 4 | TRPL decay spectra of samples A, B, C, and D.

TABLE 2 | PL decays of different samples.

Film Components
of the sample

τ1 (ns) τ2 (ns)

A Quartz/TCTA (20 nm)/PO-01 (0.5 nm)/Bphen (20 nm) (exciplex) 17.9 391
B Quartz/TCTA (20 nm)/PO-01 (0.5 nm)/TAPC (20 nm) (non-exciplex) 26.4 386
C Quartz/TCTA (20 nm)/Bphen (20 nm) (exciplex) 1.34 1.64
D Quartz/TCTA (20 nm)/TAPC (20 nm) (non-exciplex) 1.26 1.54
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summarized in Table 2, respectively. It can be seen that TCTA/
TAPC and TCTA/Bphen with the similar peak PL emission
wavelength at 297 nm showed a comparable lifetime, which is
much shorter than samples with PO-01 due to the strong
influence of the phosphorescence dye. Furthermore, the PL
lifetime of the exciplex between TCTA and Bphen is a little
longer than that of the non-exciplex between TCTA and
TAPC, facilitating exciton harvesting. Therefore, such
findings are believed to provide guidelines to develop high-
performance OLEDs and other related optoelectronic devices,
particularly for the enhancement of the device performance
from the perspective of the innovation of interface
engineering. (Xiao et al., 2018b; Xiao et al., 2018c; Luo
et al., 2019b).

CONCLUSION

In summary, we reviewed growth kinetics of ultrathin organic
films (<1 nm) and studied the excited phosphorescence
properties of an exciplex/non-exciplex interface and
phosphorescence UEMLs within the exciplex/non-exciplex
interface. As a result, the elementary structure and
mechanism of the energy transfer process of ultrathin
emitting nanolayers within interface exciplexes have been
discussed. The UEML phosphorescence dye plays a key role
in determining the lifetime of excitons between exciplex and
non-exciplex interfaces. The exciplex between TCTA and
Bphen has longer lifetime decay than that of non-exciplex
between TCTA and TAPC, facilitating exciton harvesting. Our
research may not only help in the understanding and
developing of the novel interface exciplex with UEMLs for
OLEDs but also be beneficial to the development of other
related organic optoelectronic technologies.
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