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It is well described that A1 adenosine receptors inhibit synaptic transmission at
excitatory synapses in the brain, but the effect of adenosine on reciprocal synapses
has not been studied so far. In the olfactory bulb, the majority of synapses are reciprocal
dendro-dendritic synapses mediating recurrent inhibition. We studied the effect of A1

receptor activation on recurrent dendro-dendritic inhibition in mitral cells using whole-
cell patch-clamp recordings. Adenosine reduced dendro-dendritic inhibition in wild-type,
but not in A1 receptor knock-out mice. Both NMDA receptor-mediated and AMPA
receptor-mediated dendro-dendritic inhibition were attenuated by adenosine, indicating
that reciprocal synapses between mitral cells and granule cells as well as parvalbumin
interneurons were targeted by A1 receptors. Adenosine reduced glutamatergic self-
excitation and inhibited N-type and P/Q-type calcium currents, but not L-type calcium
currents in mitral cells. Attenuated glutamate release, due to A1 receptor-mediated
calcium channel inhibition, resulted in impaired dendro-dendritic inhibition. In behavioral
tests we tested the ability of wild-type and A1 receptor knock-out mice to find a hidden
piece of food. Knock-out mice were significantly faster in locating the food. Our results
indicate that A1 adenosine receptors attenuates dendro-dendritic reciprocal inhibition
and suggest that they affect odor information processing.

Keywords: olfactory bulb, neuromodulation, adenosine receptors, A1 receptor, reciprocal inhibition, reciprocal
synapse, dendro-dendritic synapses

INTRODUCTION

ATP and its metabolites, ADP and adenosine, are neurotransmitters and neuromodulators acting
in virtually all brain areas (Illes et al., 1996; Burnstock et al., 2011; Burnstock, 2013). Whereas
ATP serves as fast neurotransmitter, ADP and adenosine rather modulate neuronal activity,
e.g., by adjusting the excitability of neurons or affecting synaptic transmission. Often, ATP is
released as cotransmitter during calcium-dependent exocytosis (Pankratov et al., 2006; Zhang et al.,
2007; Thyssen et al., 2010), activates postsynaptic receptors and is then degraded by extracellular
enzymes to give rise to ADP, AMP and adenosine (Dunwiddie et al., 1997; Sebastiao et al., 1999;
Zimmermann, 2000; Zimmermann et al., 2012). Those purine-degrading extracellular enzymes are
divided into different groups, amongst others containing ecto-5′-nuclotidase (CD73) and alkaline
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phosphatases which catalyze degradation of purine phosphates
to adenosine. In rodents, the ecto-5′-nuclotidase exhibits its
highest activity in the olfactory bulb as compared to other
brain regions. In addition, the activity of tissue non-specific
alkaline phosphatase is very high in this brain region (Langer
et al., 2008). This suggests a prominent role of purinergic
signaling in the olfactory bulb, especially for ATP metabolites
such as adenosine. Adenosine activates P1 receptors, which are
subdivided into A1, A2A, A2B and A3 (Fredholm et al., 2001;
Abbracchio et al., 2009). Adenosine receptors are G-protein-
coupled receptors with a broad range of action in the
brain. The impact of adenosine on synaptic function has
been apparent for decades and a growing number of studies
reveals the mechanisms by which adenosine modulates neuronal
performance (reviewed by Cunha, 2008; Ribeiro and Sebastiao,
2010; Dias et al., 2013; Köles et al., 2016). Stimulation of A1
receptors, e.g., has been shown to suppress neurotransmitter
release by inhibiting presynaptic calcium entry via voltage-
gated calcium channels (Mogul et al., 1993; Yawo and Chuhma,
1993). Adenosine also elicits postsynaptic effects, where A1
receptor stimulation results in an activation of K+ channels and
thus leads to hyperpolarization of the postsynaptic membrane
(Segal, 1982; Trussell and Jackson, 1985; Gerber et al., 1989).
In contrast, activation of A2A receptors facilitates transmitter
release (Okada et al., 1992; Mogul et al., 1993; Wirkner et al.,
2004).

Most of the research on adenosinergic modulation has
been done on typical axo-dendritic synapses such as synapses
between Schaffer collaterals and CA1 pyramidal neurons in the
hippocampus (Rombo et al., 2015) or between parallel fibers
and Purkinje cells in the cerebellum (Dittman and Regehr, 1996;
Zhang and Linden, 2009). Besides these unidirectional synapses,
reciprocal dendro-dendritic synapses are located in some brain
areas, with both pre- and postsynaptic sites located on the
same dendrites (Dowling, 1968; Cheramy et al., 1981; Ludwig
and Pittman, 2003; Urban and Castro, 2010). Remarkably,
in the olfactory bulb, the first relay station of the olfactory
pathway, dendro-dendritic synapses outnumber conventional
axo-dendritic synapses by far, rendering this brain region ideal
to study reciprocal synaptic transmission (Crespo et al., 2013).
Within the olfactory bulb, all principal neurons, namely mitral
and tufted (M/T) cells, and most interneurons are engaged in
dendro-dendritic contacts (Crespo et al., 2013). The dendritic
branches of the M/T cells, the single apical dendrite and several
lateral dendrites, form two distinct processing units (Linster
and Cleland, 2009). The apical dendrite terminates in a tuft
of branches in so-called glomeruli, where it receives sensory
information via axo-dendritic synapses from olfactory receptor
neurons (Chen and Shepherd, 2005; Mombaerts, 2006). Besides
these axo-dendritic contacts, the apical dendritic tuft forms
dendro-dendritic connections with juxtaglomerular interneurons
that are located in the glomerular layer and also project their
dendrites into glomeruli. The lateral dendrites of M/T cells extend
in the external plexiform layer (EPL) and establish dendro-
dendritic synapses with axonless granule cells (Figure 1A)
(Hinds and Hinds, 1976a,b; Mori et al., 1983; Sassoe-Pognetto,
2011; Ke et al., 2013; Bartel et al., 2015). Only recently,

FIGURE 1 | Protocol to measure DDI. (A) Granule cell-mediated DDI is
triggered by glutamate release from mitral cell lateral dendrites and
subsequent GABA release from granule cell spines. (B) Mitral cells were
depolarized from −70 mV to 0 mV for 50 ms, as indicated by the trace on top
of the current recording. Tetrodotoxin (TTX, 1 µM) was added to suppress
sodium currents, Mg2+ was omitted (0 Mg2+) to increase NMDA
receptor-dependent activation of granule cells, and cyclothiazide (CTZ,
200 µM) was added to increase AMPA receptor-dependent activation of
interneurons. Under these conditions, DDI was strongly enhanced (right
trace). DDI was assessed by calculation of the integral of the current trace
within a time window of 2 s after the depolarizing pulse (gray area). (C) Time
course of increase in DDI upon wash in of TTX, 0 Mg2+ and CTZ. (D) TTX,
0 Mg2+ and CTZ significantly increased DDI. (E) DDI evoked by a 2-ms
depolarization (left trace) and 50-ms depolarization (right trace). Inset:
Response to 2-ms depolarization at higher magnification; scale bars: 300 ms,
100 pA. (F) The current integral evoked by a 50-ms depolarization was
significantly larger compared to a 2-ms depolarization. (G) DDI in a mitral cell
with intact apical dendrite (left trace) and a mitral cell in which the apical tuft
was cut during the slicing procedure (right trace). (H) DDI in intact mitral cells
was not significantly different compared to mitral cells with cut apical tuft.
∗∗∗p < 0.001; n.s., not significant.

another group of neurons in the EPL, the parvalbumin-
expressing interneurons, has been described to connect lateral
dendrites of mitral cells by forming dendro-dendritic synapses
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(Kato et al., 2013; Miyamichi et al., 2013). Both dendro-dendritic
synapses at apical and lateral dendrites are reciprocal synapses
providing the morphological basis of recurrent inhibition in
the bulbar network, although dendro-dendritic synapses at
lateral dendrites are supposed to be much more frequent
compared to their counterparts at apical dendrites (Schoppa and
Urban, 2003). In mitral cell reciprocal synapses, excitation of
interneurons by glutamate released from mitral cells stimulates
release of GABA, which subsequently inhibits mitral cells
(Nowycky et al., 1981; Jahr and Nicoll, 1982; Isaacson and
Strowbridge, 1998; Schoppa et al., 1998; reviewed in Egger and
Urban, 2006). The physiological role of this recurrent inhibition
remains to be investigated, but is likely to play a role in
odor discrimination, contrast enhancement, control of mitral
cell output, synchronizing mitral cell activity, respiratory phase
decorrelation and refining odor code tuning (Yokoi et al., 1995;
Abraham et al., 2010; Kato et al., 2013; Miyamichi et al., 2013;
Fukunaga et al., 2014; Gschwend et al., 2015; Bhalla, 2017). In
the olfactory bulb, recurrent inhibition has most intensely been
studied between mitral cells and granule cells (Rall et al., 1966;
Jackowski et al., 1978; Isaacson and Strowbridge, 1998; Shepherd
et al., 2007). Interestingly, at this reciprocal synapse, GABA
release from granule cells is independent of action potential firing
(Isaacson and Strowbridge, 1998; Schoppa et al., 1998; Isaacson,
1999), but is highly dependent on calcium influx into granule
cell spines through NMDA receptors (Isaacson and Strowbridge,
1998; Chen et al., 2000; Halabisky et al., 2000; Isaacson, 2001;
Egger et al., 2003). In contrast, recurrent inhibition between
mitral cells and parvalbumin-expressing interneurons depends
on calcium-permeable AMPA receptors (Kato et al., 2013;
Miyamichi et al., 2013). Neuromodulators such as acetylcholine,
noradrenaline and serotonin that act on mitral and/or granule
cells as well as other interneurons in the olfactory bulb adjust
contrast enhancement, decorrelation and signal-to-noise ratio
of incoming odor information and affect short-term memory
(Linster and Cleland, 2016).

Little is known so far about the impact of adenosine on
synaptic transmission at reciprocal synapses. To address this issue
we studied the effect of adenosine on recurrent dendro-dendritic
inhibition (DDI) of mitral cells in the mouse olfactory bulb. So
far, purinergic signaling in the olfactory bulb has mainly been
studied in glial cells (Rieger et al., 2007; Doengi et al., 2008;
Thyssen et al., 2010, 2013; reviewed in Lohr et al., 2014), whereas
only few studies on purinergic signaling in olfactory bulb neurons
exist (Fischer et al., 2012; Roux et al., 2015). In the olfactory
bulb, release of ATP from both astrocytes and neurons as well as
degradation of ATP to adenosine has been demonstrated (Doengi
et al., 2008; Thyssen et al., 2010; Roux et al., 2015). The two high-
affinity adenosine receptors, A1 and A2A, are highly expressed
in the olfactory bulb; while A2A expression in olfactory bulb
neurons has been shown to be widely distributed, no study of A1
receptor expression on the cellular level has been published in
the olfactory bulb (Mahan et al., 1991; Kaelin-Lang et al., 1999).
We measured recurrent inhibition using patch-clamp recordings
and studied A1 receptor-deficient mice in odor-related behavioral
tests. Our results show that adenosine inhibits P/Q-and N-type
calcium currents in mitral cells by activation of A1 receptors,

resulting in a decrease in glutamate release. This in turn causes
a reduction of excitation of granule cells as well as parvalbumin
interneurons and, hence, attenuated recurrent inhibition. A1
receptor-deficient mice performed significantly better in a hidden
food test, suggesting that A1 receptors might be involved in
odor-related behavior.

MATERIALS AND METHODS

Animals and Preparation
Naval Medical Research Institute (NMRI) outbred mice (without
genetic modification) and A1 receptor knock-out mice as well
as wild-type littermates (Johansson et al., 2001) were bred
in the institute’s animal facility. This study was carried out
in accordance with the recommendations of the European
Union’s and local animal welfare guidelines. The protocol was
approved by the Behörde für Gesundheit und Verbraucherschutz
(Hamburg, Germany; reference number G21305/591-00.33).
Horizontal brain slices were prepared from juvenile mice of both
sexes (age: postnatal days 7–14) as described before (Fischer et al.,
2012). Slicing artificial cerebrospinal fluid (ACSF) contained
(in mM): NaCl, 83; NaHCO3, 26.2; NaH2PO4, 1; KCl, 2.5;
saccharose, 70; D-glucose, 20; CaCl2, 0.5; MgSO4, 2.5. Mice
were anesthetized with isoflurane and decapitated. Olfactory
bulbs were quickly transferred into a chilled slicing artificial
cerebrospinal fluid (see above). 170–200 µm thick horizontal
slices of the bulbs were cut using a vibratome (Leica VT1200S,
Bensheim, Germany). Brain slices were stored in recording ACSF
for 30 min at 30◦C and at least 15 min at room temperature before
starting experiments. Recording ACSF contained (in mM): NaCl,
120; NaHCO3, 26; NaH2PO4, 1; KCl, 2,5; D-glucose, 2,8; CaCl2,
2; MgCl2, 1 and was adjusted to 300 mOsmol adding mannitol.
ACSF was continuously gassed with carbogen (95% O2/5% CO2;
buffered to pH 7.4 with CO2/bicarbonate).

Drugs
Adenosine was purchased from Sigma–Aldrich (Munich,
Germany); 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]-quin-
oxaline-7-sulfonamide (NBQX), D-(-)-2-amino-5-phosphono-
pentanic acid (D-APV), gabazine hydrobromide (GBZ),
tetrodotoxin citrate (TTX), nifedipine (Nif) and cyclothiazide
(CTZ) from Abcam (Cambridge, United Kingdom); Conotoxin
GVIA (CTX) and Naspm trihydrochloride from Alomone labs
(Jerusalem, Israel).

Electrophysiological Recordings
Mitral cells of the main olfactory bulb were investigated using
the patch-clamp technique (Multi Clamp 700 B amplifier with
PClamp 10 software, Molecular Devices, Biberach, Germany,
and EPC9 with Patchmaster software, HEKA, Lambrecht,
Germany). Experiments were performed at room temperature
(22–24◦C). Throughout the experiments, brain slices were
superfused with artificial cerebrospinal fluid (recording ACSF).
Drugs were applied using the perfusion system. The whole-
cell configuration was employed using patch pipettes with a
resistance of∼3 MOhm. The pipette solution for the recording of
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DDI, self excitation and synaptic events in mitral cells contained
(in mM): 4-AP, 5; CsCl, 120; EGTA, 1; HEPES, 10; TEA-Cl,
20; Na-glutamate, 10; MgCl2, 2; CaCl2, 0.5; Na-ATP, 2; Na-
GTP, 0.5; Alexa Fluor 594, 0.008. The intracellular solution
for the recording of spontaneous synaptic events in granule
cells contained (in mM): K-gluconate, 105; NaCl, 10; K3-citrate,
20; HEPES, 10; EGTA, 0.25; MgCl2, 0.5; Mg-ATP, 3; Na-GTP,
0.5. Recordings were digitized at 10 kHz and bessel filtered at
2 kHz. Mitral cells were voltage-clamped at −70 mV. The serial
resistance ranged from 9 to 18 MOhm, the membrane resistance
of mitral cells in the presence of TTX (1 µM) ranged from 90 to
200 MOhm. Recurrent inhibition was elicited by depolarizing the
cell membrane to 0 mV for 2 and 50 ms, respectively (Isaacson
and Strowbridge, 1998). Due to the pipette solution containing a
high chloride concentration, GABAergic recurrent inhibition was
measured as inward currents. We used the integral of the inward
current over a time window of 2 s after the depolarizing voltage
step to quantify recurrent inhibition. To record self-excitation,
the voltage step to 0 mV was shortened to 15 ms and recurrent
inhibition was suppressed by 10 µM gabazine. Self-excitation
was measured as the integral of the inward current over a time
window of 1 s.

Behavioral Test
A hidden food test was performed to assess the ability of the
animals to find a piece of food hidden in the bedding of the
cage (Yang and Crawley, 2009). Animals were trained to the food
(Froot Loops, Kellog’s, Hamburg, Germany) for 2 weeks. Animals
were food-deprived for 24 h before the test. A clean cage (test
cage) was filled with a 4-cm layer of bedding (chipped wood), a
mouse was allowed to familiarize with the test cage for 5 min and
then placed in an interim cage. It was placed again in the middle
of the test cage after a single Froot Loop was completely burried
in one corner of the test cage. The time was measured from the
moment the mouse touched the bedding until it held the Froot
Loop with both paws or started to eat to assess the ability of the
mouse to find the food by smelling. Animals that did not find the
food within 300 s were excluded from the analysis (three wild-
type mice, two knock-out mice). In this single-blinded study, the
experimenter was unaware of the genotype of the mouse under
investigation.

Data Analysis and Statistics
To analyze the effect of adenosine on DDI and calcium
currents, only recordings with clear recovery after wash out
of adenosine were included in the analysis. Patch-clamp
recordings were analyzed using Mini Analysis (Synaptosoft,
Fort Lee, NJ, United States), ClampFit (Molecular Devices) and
OriginPro (Northampton, MA, United States). All values are
means ± standard error of the mean (SEM) with n representing
the number of analyzed cells. IV curves were offline leak-
subtracted using pClamp. The indicated membrane potential
values are not corrected for the liquid junction potential of
−3.5 mV. Statistical analysis was performed using Student’s
T-test for pairs of means and one-way ANOVA with Fisher’s
post hoc test for groups of means. The non-parametrical Mann–
Whitney U-Test was used to evaluate the behavioral test. Means

were defined as statistically different at an error probability
p < 0.05. For depiction of data in bar graphs, all data were
normalized to the control which was set to 100%, and the bars
reflect the percent changes of DDI as compared to the control.

RESULTS

A1 Adenosine Receptors Reduce
Dendro-Dendritic Inhibition in Mitral
Cells
To induce DDI via reciprocal synapses between mitral cells and
interneurons (Figure 1A) we performed whole-cell patch-clamp
recordings of mitral cells and applied depolarizing voltage steps
(50 ms) from −70 to 0 mV as described before (Isaacson and
Strowbridge, 1998; Schoppa et al., 1998). The depolarization
evoked a barrage of GABAergic inputs into the mitral cell
as a result of DDI (Figure 1B). Due to the high chloride
concentration in the recording pipette solution, these GABAergic
inputs were inwardly directed and added up to a large inward
current which lasted several 100s of milliseconds. TTX was
added in the following experiments to suppress sodium currents
and hence action potentials which could interfere with the
recording of recurrent inhibition. In addition, we aimed to
maximize recurrent inhibition by omitting magnesium ions and
adding CTZ to the external solution. This relieves the voltage-
dependent magnesium block of NMDA receptors and reduces
desensitization of AMPA receptors, respectively, resulting in a
strong increase of DDI currents (Figure 1B). The postsynaptic
current integral, representing the net charge transfer, was used
to quantify recurrent DDI in the mitral cell (Figure 1B, gray
area). Upon addition of TTX and CTZ and withdrawal of Mg2+,
the recorded DDI integral of −105.9 ± 21.9 nA∗ms (n = 13)
increased to −1162.8 ± 145.8 nA∗ms (n = 13, p = 6.5∗10−6),
reflecting substantial GABA release by interneurons connected
to the recorded mitral cell by reciprocal synapses (Figures 1C,D).
We also used a shorter depolarizing pulse of 2 ms (0 mV) to
mimic dendro-dendritic inhibition as evoked by a single action
potential. A 2-ms pulse induced a barrage of synaptic inputs
and an underlying integral of −11.6 ± 3.0 nA∗ms (n = 4)
that substantially increased to −822.1 ± 347.6 nA∗ms (n = 4)
upon a 50-ms pulse (Figures 1E,F). We used a depolarization
of 50 ms in all following experiments as the current integral
evoked by a 2-ms pulse appeared to be too small to be analyzed
in detail. Reciprocal dendro-dendritic synapses were not only
reported between interneurons and lateral dendrites of mitral
cells, but also between periglomerular interneurons and the apical
tuft of mitral cells in glomeruli (Toida, 2008). To estimate the
relative contribution of DDI deriving from the apical dendrite,
we compared recordings from mitral cells with intact apical
dendrite and mitral cells in which the apical tuft had been
cut during the slicing process, as visualized by Alexa Fluor
594 staining of the recorded cell (Supplementary Figure 1).
DDI in mitral cells with intact tuft was slightly larger as
compared to mitral cells with cut tuft, the difference not being
statistically significant (p = 0.57) (Figures 1G,H). On average,

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 January 2018 | Volume 11 | Article 435

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-11-00435 January 11, 2018 Time: 18:34 # 5

Schulz et al. Adenosine Attenuates Dendro-Dendritic Inhibition

FIGURE 2 | Adenosine A1 receptors inhibit DDI. (A) Application of adenosine (100 µM) reduced DDI evoked by depolarization (0 mV, 50 ms) in NMRI wild-type mice.
(B) Time course of adenosine-evoked reduction in DDI. (C) The effect of adenosine on DDI was significant and reversible. (D) DPCPX (1 µM) entirely inhibited the
effect of adenosine on DDI. (E) Time course of DDI in the presence of DPCPX. (F) Adenosine failed to inhibit DDI in the presence of DPCPX. (G) In A1 receptor
knock-out mice (A1

−/−), adenosine failed to reduce DDI. (H) Time course of DDI during application of adenosine (100 µM) in A1 receptor knock-out mice and
wild-type littermates (A1

+/+). (I) DDI in the presence of adenosine was significantly reduced in wild-type mice, but not in knock-out littermates. n.s., not significant;
∗p < 0.05; ∗∗p < 0.01.

DDI was −904.3 ± 179.6 nA∗ms (n = 10) in intact cells and
−713.8 ± 301.9 nA∗ms (n = 7) in cells with cut tuft. The results
suggest no major contribution of synapses with periglomerular
interneurons to DDI. We pooled data from cells with intact tuft
and with cut for all following experiments.

We next tested the effect of adenosine on DDI. In NMRI
outbred mice, which were used for most of the experiments of
the study, application of 100 µM adenosine per bath perfusion
reduced recurrent inhibition by 23.7 ± 4.3% (n = 9; p = 0.03)

(Figures 2A–C). The effect of adenosine was reversible (n = 9;
p = 0.0024). Reduction of synaptic activity by adenosine is
mediated by A1 adenosine receptors in other brain areas
(Mogul et al., 1993; Yawo and Chuhma, 1993). Therefore,
we tested the effect of the A1 receptor antagonist DPCPX
(1 µM). The reduction of DDI mediated by adenosine was
entirely inhibited by DPCPX (Figures 2D–F). In the presence
of adenosine, the current integral reached 105.5 ± 6.4% (n = 7)
as compared to the control. We verified this result by testing
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FIGURE 3 | Adenosine reduces glutamate release from mitral cells. (A) Gabazine suppressed fast synaptic currents evoked by depolarization (0 mV, 15 ms) and
unmasked a slowly inactivating inward current (green trace), which could be blocked by D-APV and NBQX (red trace) and therefore represents glutamatergic
self-excitation. (B) Adenosine (100 µM) reduced self-excitation. (C) Time course of self-excitation during application of adenosine. (D) Adenosine significantly
attenuates self-excitation. (E) Spontaneous excitatory postsynaptic currents (sEPSCs) in a granule cell before, during and after application of adenosine (100 µM).
(F) Adenosine significantly reduced the frequency of sEPSCs. (G) sEPSCs averaged over a time of 60 s before (Ctrl) and during application of adenosine (Ado, blue
trace). (H) Adenosine significantly reduced sEPSC amplitudes in granule cells. (I) Miniature inhibitory postsynaptic currents (mIPSC) recorded in a mitral cell in the
presence of 1 µM TTX. IPSCs were inwardly directed due to the high chloride concentration in the pipette solution. (J) Adenosine had no effect on the frequency and
(K,L) the amplitude of mIPSC. ∗∗p < 0.01; ∗∗∗p < 0.001; n.s., not significant.

A1 receptor knock-out mice for the adenosine-induced inhibition
of DDI and compared the results with those from wild-type
littermates. The DDI integral in A1 receptor knock-out mice
was −1323.1 ± 164.5 nA∗ms (n = 12) and was not significantly
different from wild-type littermates (−2423.8 ± 913.1 nA∗ms,
n = 6; p = 0.286). Adenosine did not decrease the DDI integral in
A1-deficient mice (n = 12; p = 0.543), in contrast to the adenosine-
mediated reduction in DDI of 24.9 ± 2.9% (n = 6; p = 0.045) in
wild-type littermates (Figures 2G–I). The effect of adenosine on
DDI in wild-type mice was significantly larger as compared to
knock-out mice (p = 0.0015).

Adenosine Attenuates Glutamate
Release from Mitral Cells
Since recurrent inhibition of mitral cells by GABAergic
interneurons is driven by reciprocal synapses, adenosine-
mediated attenuation of transmitter release at either side
of the reciprocal synapse results in a reduction of DDI.
To locate the effect of adenosine at reciprocal synapses
between mitral cells and interneurons we took advantage of
the self-excitation of mitral cells (Nicoll and Jahr, 1982).
Glutamate released by mitral cell dendrites activates local

NMDA autoreceptors resulting in a slow excitatory current,
which can be unmasked by application of GABAA receptor
blockers (Isaacson, 1999; Friedman and Strowbridge, 2000; Salin
et al., 2001). We added 10 µM gabazine and 0.5 µM TTX to
Mg2+-free ACSF to record NMDA receptor-mediated currents
underlying self-excitation and evoked glutamate release from
mitral cell dendrites by depolarizing the cell membrane from
−70 to 0 mV for 15 ms (Figure 3A). Addition of gabazine
suppressed fast synaptic currents reflecting reciprocal input
from interneurons and unmasked an inward current with
biphasic decay kinetics, consisting of a fast decaying current
of large amplitude (reflecting calcium tail currents) followed
by a slowly decaying inward current (Figure 3A, green trace).
On average, the total inward current evoked by a 15-ms
depolarization amounted to −746.9 ± 220.7 nA∗ms and was
reduced by gabazine by 95.2 ± 2.5% (−23.8 ± 4.2 nA∗ms;
n = 4; p = 0.046). Only the slowly decaying inward
current was blocked by addition of the glutamate receptor
blockers (Figure 3A, red trace) and hence represents self-
excitation. The integral of the slowly decaying inward current
(Figure 3A, area highlighted in gray) was used as a measure
for the amount of released glutamate, and the effect of
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adenosine on this integral was tested (timeframe for analysis:
1 s). The current integral of self-excitation amounted to
19.5± 3.2 nA∗ms and application of adenosine markedly reduced
the current integral by 36.0 ± 5.4% (n = 11; p = 3.7∗10−4)
(Figures 3B–D), which suggests a prominent presynaptic
inhibitory effect of adenosine on glutamate release from the
mitral cell.

Granule cells receive numerous glutamatergic synaptic inputs
from mitral cells. Hence, a reduction of glutamate release
from mitral cells is expected to result in a decrease of the
amplitude of synaptic currents in granule cells. Therefore,
we recorded granule cells in whole-cell voltage clamp and
measured spontaneous excitatory postsynaptic currents (sEPSC;
Figures 3E–H). The frequency of sEPSCs was 2.8 ± 1.1 Hz
(n = 6) and was reduced by 43.1 ± 11.7% (n = 6; p = 0.0004)
upon application of adenosine, reflecting a reduction of mitral
cell firing activity by adenosine (unpublished observation). To
assess the effect of adenosine on the amplitude of sEPSCs, sEPSCs
were averaged over a time frame of 60 s and the amplitude
of the averaged current was analyzed (Figure 3F). 100 µM
adenosine reduced the amplitude of sEPSCs by 25.9 ± 5.4%
(n = 6; p = 0.0063) (Figure 3G), in line with the notion
that adenosine reduces glutamate release from mitral cells. We
also studied the impact of adenosine on GABA release from
interneurons synaptically connected to mitral cells by recording
miniature postsynaptic currents in the presence of TTX. Since
the majority of spontaneous synaptic events in mitral cells derive
from GABAergic reciprocal synapses (Supplementary Figure 2)
(Egger and Urban, 2006), miniature postsynaptic currents reflect
mainly miniature inhibitory postsynaptic currents (mIPSC). In
mitral cells, mIPSCs occurred at a frequency of 4.16 ± 0.66 Hz
(n = 16) (Figures 3I,J) and had an amplitude of −38.1 ± 3.5 pA
(n = 16) (Figures 3K,L). Neither frequency (4.07 ± 0.69 Hz,
n = 16) nor amplitude (−41.3 ± 4.8 pA, n = 16) of mIPSCs
were altered by adenosine (Figures 3I–L). The results indicate
that quantal GABA release from interneurons is not affected by
adenosine.

Adenosine Affects Synaptic
Transmission to Granule Cells and
Parvalbumin Interneurons
Reciprocal dendro-dendritic inhibition in the olfactory bulb has
first been described between mitral cells and granule cells, in
which predominantly NMDA receptors mediate glutamatergic
excitation of granule cells (Isaacson and Strowbridge, 1998;
Schoppa et al., 1998). To isolate NMDAR-mediated DDI, we used
Mg2+ free external solution containing 10 µM NBQX for the
recording. Under these conditions, adenosine reduced DDI by
30.6 ± 6.4% (n = 6, p = 0.019) (Figures 4A–C), indicating that
adenosine affects reciprocal synaptic transmission between mitral
cells and granule cells.

Recently, it has been shown that reciprocal synapses between
mitral cells and parvalbumin interneurons in the external
plexiform layer largely contribute to DDI in mitral cells (Kato
et al., 2013; Miyamichi et al., 2013). Calcium influx into
parvalbumin interneurons triggering GABA release, however,
is not mediated by NMDA receptors, but calcium-permeable

AMPA receptors (Kato et al., 2013). In order to isolate AMPAR-
mediated DDI, we blocked NMDA receptors by using external
solution containing 50 µM D-APV and 1 mM Mg2+ and
suppressed AMPAR desensitization by addition of 200 µM CTZ.
Depolarization of mitral cells resulted in DDI that was inhibited
by 78.8 ± 6.2% (n = 6; p = 0.019) in presence of Naspm, an
antagonist of calcium-permeable AMPA receptors (Droste et al.,
2017). This suggests that under these conditions, DDI was mainly
mediated by calcium-permeable AMPA receptors and, hence,
parvalbumin interneurons (Figures 4D–F). The AMPA receptor-
dependent DDI was reduced by 18.9 ± 3.8% (n = 9; p = 0.0042)
by adenosine (Figures 4G–I). Hence, our results suggest that
adenosine modulates DDI between mitral cells and both granule
cells and parvalbumin interneurons.

Adenosine Inhibits Calcium Currents in
Mitral Cells
To test the inhibition of voltage-gated calcium channels by
adenosine, we recorded voltage-sensitive calcium currents in
mitral cells by applying voltage steps from −70 to 0 mV. Since
K+ in the recording pipette solution was replaced by Cs+, the
pipette solution contained TEA/4-AP, and the recordings were
performed in the presence of TTX, isolated calcium currents
could be measured. The late phase of some of the calcium
current traces appeared to be distorted, presumably due to
the high series resistance (9–18 MOhm) and resulting space-
clamp problems, whereas the peak current appeared to be less
affected by impaired space clamp; hence, the peak current was
chosen for analysis. Calcium currents activated around −50 mV,
peaked between −30 and −20 mV and were entirely abolished
in the presence of Ni2+ and Cd2+ (n = 6) (Figures 5A,B).
We also tested the effect of adenosine on calcium currents.
Application of adenosine reduced calcium currents (Figure 5C).
The adenosine-sensitive component of the calcium current
activated at −40 mV and peaked at −30 mV (Figure 5D),
suggesting that adenosine receptor activation leads to inhibition
of high voltage-activated calcium channels (L-, N- and P/Q-type
calcium channels).

To further analyze the contribution of different members
of the calcium channel family to calcium currents and to the
adenosine-mediated inhibition of calcium currents in mitral
cells, we used subtype-specific calcium channel blockers. L-type
calcium channels were inhibited by 10 µM nifedipine, which
caused a reduction in calcium current amplitude (n = 7)
(Figure 6A). Nifedipine-sensitive calcium currents activated at
−50 mV and peaked at −40 mV (Figure 6B). The N-type
calcium channel blocker conotoxine GVIA (CTX; 100 nM) also
reduced the calcium current amplitude (n = 4) (Figure 6C).
The CTX-sensitive calcium currents activated at −40 mV and
peaked at −40 to −30 mV (Figure 6D). To isolate P/Q-type
calcium currents, we blocked L- and N-type calcium currents
by co-application of nifedipine and CTX (n = 5) (Figure 6E).
The residual (P/Q-type) calcium current activated at −40 mV
and peaked at −30 to −20 mV (Figure 6F). We calculated the
relative contribution of the different subtypes of voltage-activated
calcium currents to the total amount of calcium current of the
mitral cell by quantification of the blocker-sensitive currents at a
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FIGURE 4 | Adenosine attenuates DDI mediated by granule cells and parvalbumin interneurons. (A) Mg2+ was omitted and NBQX was added to the ACSF to isolate
NMDA receptor-dependent DDI (evoked by depolarization to 0 mV for 50 ms), specific for mitral cell-to-granule cell reciprocal synapses. Under these conditions,
adenosine reduced DDI. (B) Time course of adenosine-mediated attenuation of NMDA receptor-dependent DDI. (C) Adenosine significantly reduced NMDA
receptor-dependent DDI. (D) Mg2+ and D-APV was added to the ACFS to suppress NMDA receptor-dependent responses, CTZ (200 µM) was added to increase
AMPA receptor-dependent DDI. The specific antagonist for calcium-permeable AMPA receptors Naspm (50 µM) inhibited DDI, indicating DDI was mediated by
calcium-permeable AMPA receptors as shown for parvalbumin interneurons. (E) Time course of Naspm-induced inhibition of DDI. (F) Naspm significantly inhibited
DDI. (G) Adenosine reduced AMPA receptor-dependent DDI. (H) Time course of adenosine-evoked attenuation of DDI. (I) The effect of adenosine on DDI was
significant. ∗p < 0.05; ∗∗p < 0.01.

membrane potential of−20 mV, at which the calcium current was
largest. We found a contribution of L-type calcium currents to the
total calcium current of approximately 21% (n = 7), whereas N-
and P/Q-type calcium currents contributed 9% (n = 4) and 70%
(n = 5), respectively. It should be noted that due to the space-
clamp problems discussed above these values reflect estimations
rather than definite values.

In order to determine the calcium channel subtype which
is the predominant target of the adenosine-induced inhibition,
we measured the effect of adenosine in the absence and in
the presence of the calcium channel blockers specified above
(Figures 6G–J). We analyzed calcium currents elicited by
the depolarizing step to −30 mV, at which the adenosine-
mediated effect was maximal. In the absence of calcium
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FIGURE 5 | Adenosine inhibits calcium currents in mitral cells. (A) Calcium currents were isolated by suppressing sodium currents with TTX (0.5 µM) and potassium
currents by replacing K+ with Cs+ and including TEA (20 mM) and 4-AP (5 mM) in the pipette solution. Calcium currents were entirely blocked by Ni2+ (200 µM) and
Cd2+ (200 µM). Subtraction of currents in presence of Ni2+/Cd2+ from control currents revealed the Ni2+/Cd2+-sensitive currents (Ctrl-Ni2+/Cd2+, right traces).
(B) Current-voltage (IV) relationship of calcium currents in the absence (Ctrl) and presence of Ni2+ and Cd2+ (green graph). Ctrl - Ni2+/Cd2+ represents the current
that was blocked by Ni2+/Cd2+. (C) Calcium currents were reduced by adenosine (100 µM). Ctrl - Ado represents the current that was blocked by adenosine.
(D) IV relationship of the adenosine-sensitive calcium current (blue graph).

channel blockers, adenosine reduced the calcium current by
46.1 ± 6.4% (n = 6; p = 0.049) (Figures 5D, 6J). In
presence of L-type calcium channel blocker nifedipine, adenosine
reduced the calcium current by 47.1 ± 9.6% (n = 7), which
was not significantly different from the adenosine-mediated
effect in the absence of nifedipine (p = 0.89) (Figures 6G,J).
Hence, L-type calcium channels appear not to be inhibited by
adenosine. Blocking N-type calcium channels with CTX, in
contrast, significantly reduced the inhibiting effect of adenosine
on calcium currents to 19.3 ± 2.5% (n = 4; p = 0.031)
(Figures 6H,J), indicating inhibition of N-type calcium channels
by adenosine. In addition, P/Q-type calcium currents isolated
by a combination of nifedipine and CTX were reduced by
20.3 ± 7.8% (n = 5; p = 0.025) by adenosine, demonstrating
that they were targeted by adenosine receptors. In summary,
the adenosine-mediated inhibition of calcium currents was
significantly reduced by CTX and by the combination of CTX and
nifedipine, while nifedipine alone had no effect (Figure 6J). Thus,
N- and P/Q-type calcium currents were inhibited by adenosine
A1 receptors, whereas L-type currents were not affected by
adenosine.

Improved Odor Detection in A1 Receptor
Knock-out Mice
We performed a simple odor detection test to assess whether A1
receptors affect smelling-related behavior. Animals were placed
in a cage with a piece of food hidden in the bedding and the time
needed to find the food was measured. Wild-type mice found
the food on average after 98.8 ± 17.6 s (n = 16) (Figure 7).
A1 receptor knock-out littermates were significantly faster and

found the food after 58.0 ± 12.4 s (n = 16; p = 0.0225). The
results suggest that A1 receptors might be involved in modulation
of odor perception. However, more experiments have to be
performed in the future to test whether lack of A1 receptor-
mediated attenuation of DDI leads to the enhancement of odor
detection.

DISCUSSION

In the present study, we analyzed the effects of adenosine on
synaptic transmission at reciprocal synapses between mitral
cells and interneurons in the olfactory bulb. Activation of
adenosine A1 receptors attenuated recurrent dendro-dendritic
inhibition at synapses between mitral cells and both granule
cells and parvalbumin interneurons. This attenuation was
accompanied by an inhibition of calcium currents in mitral
cells leading to reduced glutamate release from mitral cell
dendrites and, hence, less GABA release from interneurons
(Figure 8). Taken together, this study demonstrates the
mechanism of adenosinergic attenuation of neurotransmitter
release at reciprocal synapses, which has not been shown
before.

A1 Receptors Inhibit Calcium Currents in
Mitral Cells
Our results demonstrate a strong inhibition of high voltage-
activated calcium currents in mitral cells. The largest fraction
of the calcium current was carried by P/Q-type calcium
channels (CaV2.1), with moderate contribution of L-type calcium
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FIGURE 6 | Adenosine inhibits N-type and P/Q-type calcium currents. (A) Effect of the L-type calcium channel blocker nifedipine (Nif, 10 µM) on calcium currents.
(B) IV relationship of nifedipine-sensitive calcium currents (green graph). (C) Effect of the N-type calcium channel blocker conotoxin GVIA (CTX, 100 nM) on calcium
currents. (D) IV relationship of CTX-sensitive calcium currents (yellow graph). (E) P/Q-type calcium currents were isolated by blocking N-type and L-type calcium
currents with CTX + Nif. (F) IV relationship of isolated P/Q-type calcium currents (red graph). (G) Adenosine strongly reduces calcium currents in the presence of Nif.
(H) In the presence of CTX and (I) CTX plus Nif, adenosine only weakly reduces calcium currents. (J) Effect of adenosine on calcium currents in the absence of
calcium channel blockers (Ctrl) and in the presence of Nif, CTX and CTX plus Nif. Incubation with CTX as well as CTX plus Nif significantly reduced the
adenosine-mediated attenuation on calcium currents, while Nif alone had no effect on the adenosine-mediated attenuation. n.s., not significant. ∗∗∗p < 0.001.
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FIGURE 7 | Hidden food test. A1 receptor knock-out mice detected a hidden
piece of food significantly faster compared to wild-type littermates. ∗p < 0.05.

channels (CaV1) and only small contribution of N-type
calcium channels (CaV2.2). Despite the low abundance of
N-type channels, inhibition of these channels significantly
accounted for the adenosine-mediated reduction of calcium
currents, suggesting that N-type channels were almost completely
inhibited by adenosine. Inhibition of presynaptic N-type currents
by A1 receptors has also been reported in hippocampal neurons
of the CA1 and CA3 regions as well as in retinal ganglion
cells, sympathetic neurons and brainstem neurons (Mogul et al.,
1993; Zhu and Ikeda, 1993; Umemiya and Berger, 1994; Wu
and Saggau, 1994; Sun et al., 2002; Gundlfinger et al., 2007).
In hippocampal neurons, inhibition of presynaptic P/Q-type
calcium channels also contributed to the A1 receptor-mediated
attenuation of neurotransmitter release (Gundlfinger et al., 2007).

This is in line with our data, since adenosine reduced P/Q-
type calcium currents that were isolated by blocking N-type
and L-type currents. However, isolated P/Q-type currents were
only weakly reduced by adenosine in our experiments. Thus,
P/Q-type calcium channels in mitral cells appear to be less
sensitive toward adenosinergic inhibition compared to N-type
channels, in contrast to hippocampal mossy fiber synapses, in
which P/Q-type and N-type calcium channels were inhibited
by A1 receptors by roughly the same amount (Gundlfinger
et al., 2007). Inhibition of L-type calcium channels by A1
receptors has been extensively studied in cardiac myocytes
and is also present in chemosensory cells of the carotid body
(Qu et al., 1993; Belardinelli et al., 1995; Thomas et al.,
1998; Rocher et al., 1999). In neurons of the central nervous
system, L-type calcium channels appear to be less modulated
by A1 receptors (Sun et al., 2002; our study). In the brain,
L-type channels are predominantly located at somata, dendrites
and axons, but not presynaptically (Catterall, 1998; Furukawa,
2013; Zamponi et al., 2015), and, e.g., L-type channels do
not mediate synaptic transmission between olfactory receptor
neurons and mitral cells (Yuan et al., 2004). Hence, L-type
channels appear not suitable for modulation of transmitter
release, which may account for the lack of A1 receptor-
mediated inhibition of L-type channels. Indeed, blocking N-type
and P/Q-type calcium channels is sufficient to entirely inhibit
dendrodendritic recurrent inhibition in mitral cells, confirming
lack of presynaptic L-type channels (Isaacson, 2001). The
adenosinergic modulation of synaptic transmission at reciprocal
synapses of mitral cells due to N- and P/Q-type calcium channel
inhibition appears to be moderate compared with other synapses,
at which adenosine inhibits synaptic transmission by far more
than 50% (Umemiya and Berger, 1994; Wu and Saggau, 1994;
Gundlfinger et al., 2007). Besides high voltage-activated calcium
channels, low voltage-activated T-type calcium channels (CaV3)

FIGURE 8 | Hypothetical scheme of adenosine-mediated attenuation of reciprocal synapses in mitral cells. (A) Recurrent inhibition. (B) Adenosine activates A1

receptors in mitral cell dendrites, which leads to inhibition of voltage-activated calcium channels (VACC) of the N-type and P/Q-type. The reduction of calcium influx
decreases the amount of glutamate released by mitral cells, resulting in reduced excitation of interneurons (granule cells and parvalbumin interneurons) as well as
reduced self-excitation. The reduction of interneuron excitation attenuates GABA release and, hence, recurrent inhibition.
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have been demonstrated to contribute to glutamate release
from mitral cells (Fekete et al., 2014). However, T-type calcium
channels are located in the apical dendrite (Johnston and
Delaney, 2010), whereas synapses between mitral cells and
granule cells/parvalbumin interneurons that mainly account for
the effects studied in the present publication (see Schoppa
and Urban, 2003; Uchida et al., 2013) are located at lateral
dendrites with low abundance of T-type channels. Hence,
the contribution of T-type calcium channels to A1 receptor-
sensitive calcium currents in mitral cells is considered to be
minor.

A1 Receptor Activation Attenuates
Recurrent Inhibition
Inhibition of presynaptic calcium influx into mitral cell lateral
dendrites by A1 receptor activation results in a decrease of
glutamate release, which could be measured as a decrease
in self-excitation (Aroniadou-Anderjaska et al., 1999; Maher
and Westbrook, 2005) and in spontaneous EPSC amplitude
in postsynaptic granule cells. Since glutamate release from
mitral (and tufted) cells is the main impetus to drive granule
cells (Schoppa and Urban, 2003; Egger and Urban, 2006), A1
receptor-mediated inhibition of glutamate release from mitral
cells leads to a reduction of granule cell activity and hence
GABA release, entailing an attenuation of recurrent inhibition
of mitral cells (but possibly also lateral inhibition; Geramita
et al., 2016). Recurrent inhibition relies on neurotransmitter
release on either side of the reciprocal synapse. Our results
indicate an inhibitory action of adenosine at the lateral dendrite
of mitral cells, however, we cannot exclude that part of the
effect takes place at the synaptic counterpart, the granule
cell dendritic spine. However, our results render A1 receptor-
mediated attenuation of GABA release from granule cells and
other interneurons unlikely, since GABA release as measured by
miniature synaptic currents in mitral cells were not affected by
adenosine. Besides mitral cell-to-granule cell synapses, reciprocal
synapses between mitral cells and parvalbumin interneurons
appear to be subject of adenosinergic attenuation. In contrast
to granule cells, which belong to a mono-glomerular column
of synaptic connectivity and therefore are supposed to process
information in an odor-specific manner (Willhite et al., 2006),
parvalbumin interneurons are synaptically connected to mitral
cells in a wide, odor non-specific manner and rather act
as general modulator of odor information processing (Kato
et al., 2013; Miyamichi et al., 2013). Adenosine A1 receptors
do not discriminate between these two neuronal circuits and
thus appear to reduce recurrent inhibition independent of
odor-specific synaptic networks. Inhibitory networks in the
olfactory bulb are crucial for the establishment of spatio-
temporal dynamics and contrast enhancement (Shepherd et al.,
2007). Interfering with inhibition in the olfactory bulb has
an immediate impact on the performance of the animals
in behavioral experiments. Disruption of granule cell-specific
GABAergic inhibition in the olfactory bulb network by
deletion of the GABAA receptor subunit β3, e.g., leads to a
decrease in the ability to discriminate complex odor mixtures

(Nusser et al., 2001). By granule cell-specific deletion of the
GluA2 subunit, thereby increasing calcium influx in granule
cells and, in turn, increasing dendro-dendritic inhibition of
mitral cells, the discrimination between related odor mixtures
was accelerated in mice (Abraham et al., 2010). A light-induced
increase in activity of channelrhodopsin-expressing granule cells
improved odor discrimination, while pharmacogenetic inhibition
of granule cells impaired odor discrimination (Gschwend et al.,
2015). Inhibitory networks not only sharpen odor discrimination,
but also have impact on odor detection levels, as shown
in experiments in which deletion of a specific subgroup
of granule cells (expressing the glycoprotein 5T4) in mice
leads to an increased odor detection threshold (Takahashi
et al., 2016). Taking the importance of recurrent inhibition
in mitral cells into consideration, attenuation of recurrent
inhibition by A1 receptors potentially has a strong impact
on odor information processing. Indeed, in our behavioral
experiments, animals that lack A1 receptor-mediated attenuation
of recurrent inhibition performed better in odor detection,
in line with the above mentioned publications that reported
improved odor discrimination and lowered detection levels by
strong recurrent inhibition of mitral cells as oposed to weak
recurrent inhibition (Abraham et al., 2010; Gschwend et al.,
2015; Takahashi et al., 2016). It must be noted, however, that
the A1 receptor knock-out mice we used were conventional
knock-out mice and we cannot exclude that the detected
effect on smelling behavior is due to lack of A1 receptors in
another part of the olfactory pathway such as the piriform
cortex.

CONCLUSION

The relevance of purinergic signaling in the olfactory bulb has
gained attention only recently, mainly addressing glial cells. The
present study focusses on synaptic transmission and suggests
that purinergic neuromodulation might play an important role
in adjusting the ratio of excitation and inhibition in the
olfactory bulb, thereby affecting odor information processing.
The olfactory bulb contains a high number of reciprocal dendro-
dendritic synapses and thus serves as a model system to study
the physiology of recurrent inhibition such as its purinergic
modulation.
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