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Cerina: systematic circRNA 
functional annotation based 
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interactions
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Circular RNAs, a family of covalently circularized RNAs with tissue-specific expression, were recently 
demonstrated to play important roles in mammalian biology. Regardless of extensive research to 
predict, quantify, and annotate circRNAs, our understanding of their functions is still in its infancy. 
In this study, we developed a novel computational tool: Competing Endogenous RNA for INtegrative 
Annotations (Cerina), to predict biological functions of circRNAs based on the competing endogenous 
RNA model. Pareto Frontier Analysis was employed to integrate ENCODE mRNA/miRNA data with 
predicted microRNA response elements to prioritize tissue-specific ceRNA interactions. Using data 
from several circRNA-disease databases, we demonstrated that Cerina significantly improved the 
functional relevance of the prioritized ceRNA interactions by several folds, in terms of precision and 
recall. Proof-of-concept studies on human cancers and cardiovascular diseases further showcased the 
efficacy of Cerina on predicting potential circRNA functions in human diseases.

Circular RNAs (circRNAs) are a family of RNAs that form circular structures by joining the 3′ and 5′ ends cova-
lently. Although originally considered as by-products of “splicing noise”1,2, researchers have recently discovered 
that circRNAs play important roles in human diseases, including cancers, neurological diseases, heart and vas-
cular diseases, among many others. CircRNAs are highly stable and display tissue-specific expression patterns, 
making them promising candidates as disease biomarkers3–7.

Despite the rapid growth in cataloging new circRNAs, their biological functions in human diseases are yet 
largely unknown. Among many putative mechanisms, such as interaction with RNA binding proteins (RBP), 
alternative splicing competition, posttranscriptional gene regulation, and protein coding, one of the most well-
studied circRNA functions is to act as the competing endogenous RNA (ceRNA) or miRNA “sponge”3,7–13. 
In the ceRNA model14,15, linear RNAs and circRNAs competitively interact with miRNAs through miRNA 
response elements (MREs) to leverage the amount of active miRNAs in a cell, which has been extensively dem-
onstrated in a variety of diseases6,16,17. One notable ceRNA examples is CDR1as, a brain-enriched circRNA 
that is found to function as miRNA sponge for miR-718,19 in various human diseases, including colon cancer20, 
gastric cancer21, esophageal cancer22, and myocardial infarction23. A number of other ceRNA interactions have 
also been uncovered in cancer, such as circPVT1-miR125 in gastric cancer24, circITCH-miR7/miR214 in lung 
cancer25, circHIPK3-miR124 in liver cancer26, and circTTBK2-miR217 in glioma27. Other than cancer, the role 
of circRNA as microRNA sponge is also under heavy investigation in cardiovascular diseases28,29. In addition to 
beforementioned CDR1as-miR7 interaction in myocardial infarction, new theories have emerged hypothesiz-
ing the involvement of various circRNAs in multiple cardiovascular diseases through sequestration of miRNAs, 
exampled by CircRNA_081881-miR54830 and MFCAR-miR65231 interactions in ischemia/reperfusion injury 
and myocardial infarction, sponging effect and therapeutic potential of circRNA_000203 and cirRNA_010567 
in cardiac fibrosis32,33, and protective effect of circRNA HRCR against hypotrophy and heart failure by sequester-
ing miR22334. It was also reported that regulation of disordered vascular smooth muscle cell proliferation and 
migration through the circWDR77-miR124-FGF2 axis was vital in atherosclerosis pathogenesis35. In neurological 
disease research, in addition to the prominent role of CDR1as-miR7 sponging events in Alzheimer’s disease36,37, 
hundreds of circRNA were recently identified from multiple high-throughput studies to investigate circRNA-
miRNA-mRNA interactions related to AD pathogenesis38,39.
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Recently, there has been a surge of interest in annotating circRNA functions. Databases such as 
CircInteractome40, CircAtlas41, Circ2Traits42, CircNet43, TSCD44, CSCD45, and Circbank46, among others, have 
collected predicted MRE sites to bridge individual circRNAs to their potential functions through miRNAs. 
Some of these resources also report circRNA-interacting RBPs, due to their roles in circRNA formation, trans-
lation, targeted gene regulation, and transport47. Additionally, Circ2Traits annotated circRNAs that harbored 
disease-related single nucleotide polymorphisms (SNPs) as putative evidence for circRNA-disease associations42. 
CircRNADb compiled detailed information regarding internal ribosomal entry site (IRES) and open reading 
frame (ORF) to implicate possible protein-coding potential of circRNAs48. Recently, CircFunBase has reported 
a collection of more than 7,000 manually curated circRNAs on 15 different species, which is among the first to 
systematically summarize circRNA functions based on circRNA differential expression data49.

Amid the existing efforts to annotate individual circRNAs and their potential functions, tools for system-
atic circRNA functional annotation and pathway analysis are still lacking. In this work, we developed a novel 
computational tool for circRNA functional analysis: Competing Endogenous RNA for INtegrative Annotations 
(Cerina). As the first statistical method for systematic circRNA functional analysis, Cerina has several major 
technical advances. Firstly, Cerina paired up circRNA, linear RNA, and miRNA expression data for 11 human 
organs from ENCODE50 and jointly analyzed them for the first time, allowing comprehensive pan-tissue profiling 
of ceRNA expressions. Secondly, expression and binding data for ceRNAs are integrated and prioritized based on 
the principles of Pareto optimality, which further increased the biological relevance of predicted ceRNA interac-
tions. Finally, a user-friendly, web-based interface is made available for users to query a circRNA and retrieve its 
interacting miRNAs, their significant target genes, and the enriched biological functions and pathways.

Methods
Processing of sequencing data.  29 total RNA-Seq samples and 39 miRNA-Seq samples from 11 
ENCODE tissues were analyzed in this study (Supplementary Table S1). Fastq files from replicate samples were 
merged before downstream analysis.

ENCODE total RNA‑Seq data (linear RNA).  Sequencing quality control of ENCODE total RNA-Seq data were 
performed by FastQC (https​://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/). Adapter sequences were 
trimmed and low-quality reads (< 20) were filtered using cutadapt51. Reads from total RNA sequencing were 
aligned to human genome (hg19/GRCh37) using hisat252 and converted to BAM format using samtools53. The 
featureCounts54 tool was used to assign reads to each gene in the GENCODE55 GTF file (https​://www.genco​
degen​es.org/human​/relea​se_19.html). Counts from the total RNA-Seq pipeline were used to approximate linear 
RNA gene expression. After filtering out low-expressing genes (total read counts < 10), DESeq256 was used for 
count data normalization. A final layer of filtering was applied by removing genes with mean normalized counts 
less than 10. Counts per million (CPM) is used to report and visualize mRNA expression levels.

ENCODE total RNA‑Seq data (circular RNA).  We used back-splicing (BS) junction reads to approximate cir-
cRNA gene expression from ENCODE total RNA-Seq data. It was previously reported that individual circRNA 
detection method suffered from high false positives in BS junction prediction, yet combining results from two 
different algorithms (i.e., intersection) is a simple and effective remedy to significantly reduce false positives57. 
In a recent review paper58 comparing a dozen circRNA detection algorithms, CIRI259,60 and CIRCexplorer61 
demonstrated their best overall performance in terms of accuracy and efficiency based on the simulated and real 
RNaseR + data sets. Hence, we developed a framework that combines predictions from both CIRI2 and CIRC-
explorer to improve the specificity of circRNA detection (Supplementary Methods). Spliced reads per billion 
mapped reads (SRPBM) is used to report and visualize circRNA expression levels.

ENCODE miRNA‑Seq.  The extra-cellular RNA processing toolkit (exceRpt)62 was used to process ENCODE 
miRNA sequencing data. Firstly, exceRpt filtered reads were mapped to UniVec vectors and ribosomal RNA 
sequences, followed by alignment of the remaining reads to the human genome (hg19) and then quantified for 
different types of RNAs, including miRNAs. The same normalization and filtering criteria were applied to pro-
cess ENCODE miRNA data. CPM is used to report and visualize miRNA expression levels.

Prediction of miRNA binding sites on linear/circular RNA.  Among a total of 33,461 confidently 
detected circRNA from ENCODE total RNA-Seq data, 30,282 had mature sequences (hg19) from circAtlas41 
available for download at http://159.226.67.237/zhao/Data/circA​tlas_suppl​y/human​_seque​nce_v1909​.txt.zip. 
Mature sequences of novel circRNAs were estimated using a hierarchical framework described in the Supple-
mentary Methods.

Perl script from TargetScan 7.163 was used to identify MREs based on circRNA mature sequences. For each 
circRNA, the number of MREs was normalized by the length of its mature splice sequence and defined as the 
circRNA-miRNA binding scores Scirc|mir

MRE .
miRNA-gene (i.e., linear RNA) binding data were download from TargetScan 7.2 (http://www.targe​tscan​.org/

vert_72/vert_72_data_downl​oad/Conse​rved_Famil​y_Info.txt.zip, http://www.targe​tscan​.org/vert_72/vert_72_
data_downl​oad/Nonco​nserv​ed_Famil​y_Info.txt.zip) and used to form miRNA-gene scores, Smir|gene

MRE  . In addition 
to TargetScan, miRTarBase 7.064, a curated database of experimentally validated miRNA-target gene interactions 
( Smir|gene

MTB  ) was used as another component of evidence. For each miRNA-gene pair, the number of MREs from 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.gencodegenes.org/human/release_19.html
https://www.gencodegenes.org/human/release_19.html
http://159.226.67.237/zhao/Data/circAtlas_supply/human_sequence_v1909.txt.zip
http://www.targetscan.org/vert_72/vert_72_data_download/Conserved_Family_Info.txt.zip
http://www.targetscan.org/vert_72/vert_72_data_download/Conserved_Family_Info.txt.zip
http://www.targetscan.org/vert_72/vert_72_data_download/Nonconserved_Family_Info.txt.zip
http://www.targetscan.org/vert_72/vert_72_data_download/Nonconserved_Family_Info.txt.zip
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TargetScan and the number of publications from miRTarBase were integrated to obtain the final miRNA-gene 
binding score ( Smir|gene

P  ) based on the Pareto Frontier Analysis described below.

Pan‑tissue co‑expression analysis.  Most existing databases predict circRNA-miRNA interactions solely 
relying on sequence-based algorithms, which completely ignore tissue-specific expression information of 
circRNAs41,44,65. In order to form effective ceRNA networks, circRNA and miRNA both need to be expressed in 
the same tissue. Memczak et al. reported that CDR1as and miR-7 were both highly expressed in brain tissues, but 
not necessarily in other non-neuronal tissues18, which renders CDR1as a hallmark miR-7 sponge in neuronal 
tissues. Moreover, Guo et al. further argued that functional miRNA sponges require circRNAs to be expressed at 
consequential levels in the cell66. Therefore, incorporating circRNA and miRNA expression into ceRNA network 
analysis can help filter out false positive interactions with low or no expression. To this end, we assigned cir-
cRNA-miRNA expression scores Scirc|mir

exp  to all interactions by the following methodology. First, for each tissue, 
circRNAs/miRNAs with no expression are excluded and the ones passed filtering were utilized to calculate the 
empirical cumulative distribution function (ECDF) on the mean normalized expression, giving rise to tissue-
specific circRNA and miRNA ECDF scores, Scirc|tissueexp  and Smir|tissue

exp  , that take values on (0, 1]. We then defined 

circRNA-miRNA score as Scirc|mir|t
exp = mint∈T

{

S
circ|t
exp , S

mir|t
exp

}

 , and the final circRNA-miRNA score across all tis-

sues is given by Scirc|mir
exp = maxt∈TS

circ|mir|t
exp  , where T is the set of all tissues from ENCODE. Assigning scores in 

this manner ensures that a high Scirc|mir
exp  coincides with relatively high expression of the circRNA and miRNA in 

at least one tissue.

Integrative analysis of ceRNA interaction data using Pareto Frontier analysis.  In order to 
improve the quality and functional relevance of the predicted ceRNA interactions, we integrated miRNA bind-
ing data and gene expression data using Pareto Frontier analysis (PFA). PFA is a technology to resolve the 
challenge of balancing among multiple competing objectives simultaneously to achieve an overall ranking opti-
mality. In our case, it means to derive a combined interaction score between miRNAs and linear/circular RNAs 
based on various data types, such as expression data and predicted miRNA binding data. A key concept in PFA 
is the Pareto dominance. In the context of ranking 2-dimensional miRNA-circRNA interaction scores (expres-
sion score f1 and binding score f2 ), Pareto dominance is defined as: given two pairs of interactions x1 and x2 , x2 
is said to Pareto dominant x1 if

The principle of Pareto dominance can be easily generalized for combing more than two scores. It is par-
ticularly suitable for combining asymmetric information without directly making comparisons across different 
data types, nor subjectively choosing a trade-off between different competing objectives. For circRNA-miRNA 
interactions, the length-normalized circRNA-miRNA binding score Scirc|mir

MRE  and circRNA-miRNA co-expression 
score Scirc|mir

exp  were combined using the PFA method to re-rank all pairs of circRNA-miRNA interactions. The new 
rank of each interaction pair was re-scaled by the total number of interaction pairs to obtain a final combined 
interaction score Scirc|mir

P  between 0 and 1, where 1 denotes the strongest interaction and 0 denotes no evidence 
for a given interaction. The new combined score Scirc|mir

P  is also referred to as the Pareto score of the circRNA-
miRNA interaction. For circRNA-miRNA interactions that fall on the same Pareto front, their Pareto scores will 
be the same. Similarly, for a miRNA-gene interaction, previously described scores Smir|gene

MRE  and Smir|gene
MTB  were also 

combined using the Pareto Frontier method to calculate a new Pareto score Smir|gene
P  . More details regarding PFA 

are provided in the Supplementary Methods.

CircRNA functional enrichment analysis.  Assigning functional annotations to an individual circRNA 
is based on the circRNA-miRNA-gene interaction framework we have built thus far, which consists of two steps: 
obtaining a list of significant genes and then testing functional enrichment of these genes. In the first step, given 
an individual circRNA c and a set of k miRNAs Mk = [m1, . . . ,mk] ⊆ M , where Sc|mi

P > 0 for all i ≤ k and M is 

the full set of miRNAs. We define the circRNA-miRNA Pareto score vector as Sc|Mk
P =

[

S
c|m1
P , S

c|m2
P , . . . , S

c|mk
P

]

 
and the miRNA-gene Pareto score matrix ( n× k).

where G is the set of genes 
[

g1, . . . , gn
]

 . We define the circRNA-gene Pareto score vector 

S
c|G
P = S

c|Mk
P ×

(

S
Mk |G
P

)T
=

[

S
c|g1
P , . . . , S

c|gn
P

]

 as the final statistic to measure the predicted association between 

a given circRNA and the set of all genes. Following a similar procedure as Bleazard et al. to adjust for observed 

fn(x1) ≤ fn(x2), for all n,

and f n(x1) < fn(x2), for at least one n, where n ∈ {1,2}.
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bias in miRNA functional enrichment analysis, we approximate the null distribution of Sc|GP  ( Sc|GP,null,n ) by randomly 
drawing N  (e.g., N = 10,000 ) SMk |G

P  matrices from SM|G
P  and re-computing Sc|GP  under each iteration67, where 

1 ≤ n ≤ N . Then, the statistical significance of a gene g is given by p-value =
∑N

n=1I
(

S
c|g
P,null,n≥S

c|g
P

)

+1

N+1
68, where I(x) 

is the indicator function that equals 1 when x is true, and 0 otherwise. Given a pre-specified statistical threshold 
(e.g., p-value ≤ 0.05), a list of genes surviving the threshold is identified. The second step, functional enrichment 
of significant genes, proceeds in standard fashion: apply Fisher’s exact test to test for overrepresentation on sets 
of functional terms. All gene sets, including KEGG69–72 pathways and gene ontology (GO)72–74 terms were 
obtained from the R package pathfindR72.

Tools and software used.  The Cerina tool is developed based on R75 and R shiny76, which also depends on 
several R packages (shinydashboard77, shinyjs78, shinycssloaders79, shinyBS80, DT81, tidyverse82, dendextend83, 
visNetwork84, heatmaply85, Matrix86, fastcluster87, htmltools88, reshape289, and igraph90).

Additional R packages (ggolot291, plotrix92, circlize93) were used to produce the figures in this paper. 
Cytoscape94 was used to create circRNA-miRNA-gene-function network for the prostate cancer case study. 
Commercial software Lucidchart (www.lucid​chart​.com) was used to assemble all final version of figures. All 
organ icons used in this paper were under Creative Commons liscence (CC BY 3.0, https​://creat​iveco​mmons​
.org/licen​ses/by/3.0/), which were obtained from iconfiner (https​://www.iconf​inder​.com/) through Lucidchart 
without any changes. Images “Anatomy, blood, coronary, heart, organ icon” (https​://www.iconf​inder​.com/icons​
/43129​67/anato​my_blood​_coron​ary_heart​_organ​_icon), “Anatomy, bowel, digestion, intestine, small icon” (https​
://www.iconf​inder​.com/icons​/43129​81/anato​my_bowel​_diges​tion_intes​tine_small​_icon), “Abdomen, anatomy, 
cavity, diaphragm, organ icon” (https​://www.iconf​inder​.com/icons​/43129​64/abdom​en_anato​my_cavit​y_diaph​
ragm_organ​_icon), “Abdomen, digestion, gaster, organ, stomach icon” (https​://www.iconf​inder​.com/icons​/43129​
80/abdom​en_diges​tion_gaste​r_organ​_stoma​ch_icon), and “Abdomen, anatomy, liver, metabolism, organ icon” 
(https​://www.iconf​inder​.com/icons​/43129​73/abdom​en_anato​my_liver​_metab​olism​_organ​_icon) by Eucalyp Stu-
dio; “Organs, uterus icon” (https​://www.iconf​inder​.com/icons​/16096​56/organ​s_uteru​s_icon) by Design Sciences. 

Results
Cerina overview: an integrative framework.  Figure 1 gives the flow chart of Cerina, which consists of 
several streamlined modules: starting from linear/circRNA expression quantification, MRE prediction, ceRNA 
interaction integration, to circRNA functional annotation. Briefly, paired total RNA and miRNA sequencing data 
of 11 human organs from the ENCODE project were downloaded and processed to generate linear RNA (coding 
and non-coding), miRNA, and circular RNA expression profiles (Fig. 1a). To reduce false-positive circRNA pre-
dictions, we combined results from CIRI2 and CircExplorer, two methods that were previously validated to have 
the best overall performance on the simulated and real datasets. Based on the estimated mature sequences of 
circRNAs, TargetScan 7.2 was employed to predict putative MREs, which were further normalized by the length 
of each circRNA’s mature splice sequence (Fig. 1b). Meanwhile, pan-tissue circRNA expression data were incor-
porated and tissue-specific ceRNA networks were also constructed (Fig. 1c). Following the Pareto dominance 
principle, all ceRNA interactions were ranked and grouped into a sequence of non-intersect sets called Pareto 
frontiers. These frontiers re-stratified all ceRNA interactions, integrating evidence from both gene expression 
and miRNA bindings. CeRNA interactions that fall onto the first Pareto frontier represent the circRNA-miRNA 
interactions with the highest confidence, either based on expression data or binding data, or both (Fig. 1d). Such 
procedure integratively re-prioritized a total of 1,540,275 ceRNA interactions between 33,455 circRNAs and 
606 miRNAs detected in 11 ENCODE tissues. Finally, systems analysis was performed based on Pareto-ranked 
ceRNA interactions to identify top miRNAs, significant miRNA target genes, and enriched biological functions 
and pathways (Fig. 1e).

Pareto Frontier analysis improves accuracy and functional relevance of ceRNA interac-
tions.  We employed Pareto Frontier Analysis to integrate circRNA-miRNA binding data with their expres-
sion data, aiming to improve functional relevance of the predicted ceRNA interactions. Figure  2 gives 2531 
circRNA-miRNA interaction pairs on the first 30 Pareto fronts with the top combination scores due to either 
strongest circRNA-miRNA binding potentials and/or highest co-expression from ENCODE. Nine circRNA-
miRNA interactions, including eight unique circRNAs and five unique miRNAs, are located on the first Pareto 
front. Among those is the well-studied CDR1as-miR7 interaction, where 74 miR7 binding sites were predicted 
over the entire body of CDR1as. This circRNA-miRNA pair was also found to be co-expressed in several tis-
sues, such as adrenal gland (circRNA SRPBM = 1680.4; miRNA CPM = 1032.4) and thyroid gland (circRNA 
SRPBM = 1843.5; miRNA CPM = 3503.0).

Besides the abovementioned interactions with both strong co-expression and binding scores, the Pareto 
method also highlights circRNA-miRNA pairs with unequal interaction strengths from two data sources. Circ-
SPHKAP and miR-1-3p is one such example that ranks among the top Pareto fronts (front 19; Scirc|mir

P  = 0.9993254) 
due to strong evidence from circRNA-miRNA co-expression ( Scirc|mir

exp  = 0.9938584) and relatively weaker binding 
potential (0.27 MREs/Kb). Further scrutinization revealed that circSPHKAP (chr2: 228,881,121–228,884,872) 
was exclusively expressed in heart tissues (circRNA SRPBM = 1055.9, rank: 62/9281 in hearts tissues) with no 
detectable back-splicing junction counts in the rest of ten tissues from ENCODE, which is consistent with find-
ings from a recent study supporting the use of circSPHKAP as a biomarker for cardiomyocytes95. On the other 
hand, miR-1-3p was among the highly expressed miRNA in heart tissues (CPM = 212,747), which was also known 

http://www.lucidchart.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.iconfinder.com/
https://www.iconfinder.com/icons/4312967/anatomy_blood_coronary_heart_organ_icon
https://www.iconfinder.com/icons/4312967/anatomy_blood_coronary_heart_organ_icon
https://www.iconfinder.com/icons/4312981/anatomy_bowel_digestion_intestine_small_icon
https://www.iconfinder.com/icons/4312981/anatomy_bowel_digestion_intestine_small_icon
https://www.iconfinder.com/icons/4312964/abdomen_anatomy_cavity_diaphragm_organ_icon
https://www.iconfinder.com/icons/4312964/abdomen_anatomy_cavity_diaphragm_organ_icon
https://doi.org/https://www.iconfinder.com/icons/4312980/abdomen_digestion_gaster_organ_stomach_icon
https://doi.org/https://www.iconfinder.com/icons/4312980/abdomen_digestion_gaster_organ_stomach_icon
https://www.iconfinder.com/icons/4312973/abdomen_anatomy_liver_metabolism_organ_icon
https://www.iconfinder.com/icons/1609656/organs_uterus_icon
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to be directly involved or implicated in various heart and cardiovascular diseases, including hypertrophic cardio-
myopathy, coronary artery disease, myocardial infarction, heart failure and stroke96. Interestingly, circSPHKAP 
was reported to have dynamic expression changes in human induced pluripotent stem cell derived cardiomyo-
cytes during cardiac development97, which further underscores its potential functional role in cardiac tissues.

To systematically evaluate the advantage of integrating circRNA-miRNA co-expression with MRE data over 
conventional MRE-based approaches, we performed functional relevance analysis of the top ranked circRNAs. 
We used circRNAs from CircFunBase49 that were previously reported to be differentially expressed in one or 
more disease studies as one of the references. Figure 3a upper panel gives the percentages of overlap between 
circRNAs from the top-n ( 1 ≤ n ≤ 3000 ) circRNA-miRNA interactions and those from CircFunBase based on 

Figure 1.   Flow chart of Cerina. (a) Analysis workflow for ENCODE tissue RNA-Seq/miRNA-Seq data. (b) 
Prediction of circRNA-miRNA bindings using TargetScan. (c) Pan-tissue analysis of ceRNA interactions. 
Incorporation of ENCODE gene expression data allows construct of tissue-specific circRNA-miRNA interaction 
networks. (d) Integrative analysis of ceRNA interactions. Pareto frontiers were calculated by integrating 
co-expression data with TargetScan-predict MRE data. (e) Based on the circRNA-miRNA-mRNA (gene)-
function axis, circRNA functional prediction was performed by permuting the connections between a given 
circRNA and its interacting miRNAs/mRNAs. See section “Tools and software used” for license and attribution 
regarding the organ images used in the figure.
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Figure 2.   Pareto Frontier Analysis re-prioritize ceRNA interactions by integrating gene expression with MRE 
data. 2531 circRNA-miRNA interactions on the top 30 Pareto fronts. Tissue-specific expression for selected 
ceRNA interactions: CDR1as and miR-7, and CircSPHKAP and miR-1. R package ggplot2 v3.3.2 (https​://cran.r-
proje​ct.org/web/packa​ges/ggplo​t2/index​.html) was used to create the figure.

Figure 3.   Evaluating the performance of different circRNA-miRNA interaction ranking methods using data 
from several circRNA function/disease databases. Upper panel: recall (sensitivity) curve. Lower panel: precision. 
R package plotrix v3.7–8 (https​://cran.r-proje​ct.org/web/packa​ges/plotr​ix/index​.html) was used to create gap 
plot.

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/plotrix/index.html
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three different ranking methods: the Pareto method, total number of MREs (nMRE), length-normalized number 
of MRE (i.e., number of MREs per kilo bases: nMRE/Kb). Apparently, Pareto integration of co-expression data 
with binding data significantly improved the recall of known circRNAs from CircFunBase: ~ 15% from the Pareto 
method compared to 2% from the length-normalized MRE method. It is worth noting that using the total number 
MREs yielded very low recall compared to its length-normalized counterpart. Moreover, the precision of the 
Pareto method was also significantly increased (Fig. 3a lower panel). Additionally, we applied similar analysis 
on three more circRNA databases, including CircR2Disease98, Circ2Disease99, and RefCirc (http://www.ncvar​
.org/RefCi​rc/index​.php), which contained annotated disease-associated circRNAs from independent research 
groups. Figure 3b–d show that circRNAs prioritized by the Pareto method was consistently more enriched 
in known disease associations by several folds, in terms of both precision and recall, which provided strong 
evidence that incorporation of co-expression data significantly increased functional relevance of prioritized 
ceRNA interactions.

Moreover, we further validated our Pareto-ranked miRNA-gene interactions on three additional miRNA 
target databases: miRDB100,101, miRTAR​102, and miRWalk103. We considered the top 3000 miRNA-gene interac-
tions ranked by Pareto, TargetScan, and miRTarBase and found that Pareto improved the performance, in terms 
of precision and recall, on all three databases (Supplementary Fig. S3). This demonstrates Pareto’s utility in 
combining multiple pieces of information, namely TargetScan and miRTarBase, to improve overall performance.

Cerina shiny server interface.  We developed a user-friendly R Shiny web application of Cerina for 
researchers to visualize ceRNA interactions and perform circRNA functional enrichment analysis. The tool 
consists of three main components: data exploration, miRNA-circRNA network visualization, and functional 
enrichment analysis.

Figure 4.   Web interface of Cerina. (a,b) In the data exploration section, users can query an mRNA, miRNA, 
or circRNA to examine its expression across different tissues. Users can also perform correlation analysis 
for ceRNA interactions. (c) MiRNA-circRNA interaction page allows users to visualize and report tissue-
specific miRNA-circRNA interactions as a network. (d) CircRNA-miRNA exploration tab reports all miRNAs 
interacting with a selected circRNA as a downloadable table displaying MRE, Pareto score, and miRNA 
expression. (e) Functional analysis tab reports significantly enriched pathways and gene ontology terms that 
can be visualized as a network displaying the selected circRNA with interacting miRNAs and genes. (f) Users 
can choose a subset of miRNAs/genes/functions to display in the network. R packages ggplot2 v3.3.2 (https​://
cran.r-proje​ct.org/web/packa​ges/ggplo​t2/index​.html), visNetwork v2.0.9 (https​://cran.r-proje​ct.org/web/packa​
ges/visNe​twork​/index​.html), and DT v0.15 (https​://cran.r-proje​ct.org/web/packa​ges/DT/index​.html), were used 
to create the figure.

http://www.ncvar.org/RefCirc/index.php
http://www.ncvar.org/RefCirc/index.php
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/visNetwork/index.html
https://cran.r-project.org/web/packages/visNetwork/index.html
https://cran.r-project.org/web/packages/DT/index.html
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In the data exploration section (Fig. 4a,b), users can query individual circRNAs, miRNAs, and linear RNAs to 
view their expression profiles across the 11 ENCODE tissues. Additionally, correlation analysis of any queried pair 
can be visualized via scatterplots. The miRNA-circRNA network page allows users to query an individual miRNA 
to visualize a network of its interacting circRNAs (Fig. 4c). A downloadable table listing all circRNAs plotted in 
the network is also provided. The table shows detailed information such as parental gene, tissue specific expres-
sion, number of MREs, number of MREs per kilobase, and the Pareto score. Finally, in the functional enrichment 
component, users can enter an individual circRNA to visualize a network and download a table including all 
interacting miRNAs (Fig. 4d). Here, users have the option to run the permutation test using either all interact-
ing miRNAs or a subset of “top” miRNAs to identify target genes. After running the permutation test, users can 
proceed to functional enrichment analysis of significant genes (e.g., p-value ≤ 0.05) on KEGG69–72 pathways or 
gene ontology (GO)72–74 terms. The enrichment results of a circRNA are output as a downloadable table that 
can be categorized by either the functional term (i.e., KEGG or GO term) or the binding miRNA, with graphic 
visualization also made available (Fig. 4e). Cerina allows users to choose a subset of miRNA/genes/functions to 
display in the graph (Fig. 4f). A detailed tutorial is accessible at the Cerina website.

Case studies on differentially expressed circRNAs.  ceRNAs in cancers: integrative analysis with TCGA 
data.  We first performed Cerina analysis on gastric cancer104 and prostate cancer65 datasets to demonstrate 
its utility to identify potential roles of circRNAs in functional sequestration of miRNAs. Enrichment analysis 
validated that Cerina-predicted miRNAs and their target genes were strongly associated with gastric and pros-
tate cancer annotated by Human MicroRNA Disease Database (HMDDv3.2)96 and KEGG (Supplementary Ta-
ble S2). To further explore the potential roles of circRNAs as competing endogenous RNAs in tumorigenesis, we 
further analyzed miRNA and mRNA expression data from The Cancer Genome Atlas105,106, allowing construc-
tion of ceRNA networks with expression changes of circRNA/mRNA that were inversely correlated with those 
of the miRNAs (Supplementary Methods).

In the gastric cancer dataset, circARHGEF12 (hsa_circ_0002089; chr11: 120,347,369–120,348,235), a circRNA 
that was down-regulated in cancer, was significantly enriched in both miRNA and pathway enrichment analysis 
(Supplementary Tables S2, S3). Two precursor miRNAs, hsa-mir-134 and hsa-mir-590, with predicted MREs 
on circARHGEF12 were significantly up-regulated in TCGA gastric cancer dataset. Differential gene expres-
sion analysis of TCGA mRNA-Seq data identified 12 genes from the KEGG gastric cancer pathway that were 
down-regulated in cancer tissue, eight of which had predicted interactions in Cerina with the two up-regulated 
miRNAs. SMAD4, hub of TGFβ signaling and a tumor suppressor for gastrointestinal carcinogenesis107 was 
among the down-regulated target genes of circARHGEF12, suggesting a potential tumorigenesis effect caused 
by un-sequester of oncogenic miR-134 and miR-590108,109. Catenin Alpha (CTNNA1 and CTNNA2) expression 
was also down-regulated in cancerous tissues, which was consistent to well-reported tumor-suppressor func-
tions of CTNNA1 and CTNNA2 in various cancers110–112. Interestingly, CTNNA2 was previously predicted to 
be part of lincRNA-mediated miR-590-3p sponge network (http://cis.hku.hk/Gastr​icCan​cerMA​P/index​.php), 
unveiling a novel role of circARHGEF12 in gastric carcinogenesis and its involvement in complicated wiring of 
ceRNA interactions harboring miR-590.

In the prostate cancer study comparing localized primary prostate adenocarcinoma and matched normal 
tissues, five differentially expressed circRNAs: circHIPK3 (hsa_circ_0000284; chr11: 33,307,958–33,309,057), 
circN4BP2L2 (hsa_circ_0000471; chr13: 33,091,993–33,101,669), circUNC13B (hsa_circ_0008518; chr9: 
35,295,692–35,313,986), circZCCHC6 (hsa_circ_0001869; chr9: 88,920,106–88,924,932), and circSENP6 (hsa_
circ_0001614; chr6: 76,412,360–76,412,788), had significant enrichment in miRNAs related to “carcinoma, pros-
tate” and KEGG “prostate cancer” pathway (Supplementary Tables S2, S4). CircHIPK3, in particular, was one 
of the most abundantly expressed circRNA with an average log expression (SRPBM) of 12.1, compared to the 
median average log expression of 2.4 among all detected circRNAs in prostate tissues. Dysregulation of circH-
IPK3 was frequently reported in multiple cancers113. Interestingly, both up- and down-regulation of circHIPK3 
were identified in tumor tissues, indicating a dual role of circHIPK3 in cancer to regulate tumor progression 
through sponging different miRNAs114. As a side note, the host gene of circHIPK3 was also significantly down-
regulated in the prostate cancer tissues, which was further confirmed by an independent TCGA RNA-Seq data. 
Integrative analysis of TCGA RNA-Seq/miRNA-Seq data revealed that two Cerina-predicted miRNAs mir-10b 
and mir-375 that can be sequestrated by circHIPK3 were up-regulated in TCGA prostate cancer samples. Onco-
genic functions of mir-10b has been well-documented in various cancers, including oral cancer115, head and 
neck cancer116, hepatocellular carcinoma117, breast cancer118, and colon cancer119. Top mir-10b targets (Pareto 
score Smir|gene

P  ≥ 0.95) that were also down-regulated in tumors included HOXD10, KLF4, and PTEN, all of 
which had well-known tumor-suppressor functions and reduced expression in prostate cancer tissues120–122. It 
is worth noting that depletion of mir-10b restored PTEN expression in breast cancer, which led to decreased 
cancer stem cell renewal through inhibition of AKT118. Mir-375, another highly expressed miRNA that can be 
sponged by circHIPK3, was well described as a tumor suppressor in many cancers, yet its expression was found 
to be up-regulated in breast and prostate cancers123. Consistently, our analysis of TCGA prostate miRNA-Seq data 
showed significant up-regulation of mir-375 (log2FC = 1.874, adjusted p-value = 4.85E−43). Top down-regulated 
mir-375 target genes ( Smir|gene

P  ≥ 0.95) included tumor suppressors such as ZFP36L2, CDKN2B, PRKCA, KLF4, 
and EXT1, suggesting possible protumorigenic activity of circHIPK3 implemented through ceRNA interaction 
with mir-375. Figure 5a gives the circHIPK3-centered ceRNA interaction network, connecting mir-10 and mir-
375 to significant dysregulated KEGG pathways, including PI3K-AKT signaling and p53 signaling pathways.

Reduced circTTN expression correlates with down‑regulation of immune response in end‑stage dilated cardio‑
myopathy.  In the dilated cardiomyopathy (DCM) dataset124, circTTN (hsa_circ_0141774; chr2: 179,542,851–

http://cis.hku.hk/GastricCancerMAP/index.php
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Figure 5.   Cerina links circRNAs with potential functions in cancer and cardiovascular disease. (a) Network 
view of predicted circRNA-miRNA-gene-function associations for circHIPK3 in prostate cancer. For circRNA, 
miRNA, and genes, their colors represent their fold changes (red: up-regulated in prostate cancer; green: 
down-regulated in prostate cancer). (b) Circos plot showing predicted miRNAs of circTTN with Pareto score, 
expression in heart tissues (log2 CPM), and enrichment in immunology functions (-log2 p-value). Cytoscape 
v3.5.1 was used to create the circRNA-miRNA-gene-function network figure (https​://cytos​cape.org/). R package 
circlize v0.4.8 (https​://cran.r-proje​ct.org/web/packa​ges/circl​ize/index​.html) was used to make circos plot.

https://cytoscape.org/
https://cran.r-project.org/web/packages/circlize/index.html
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179,585,929) had the highest abundance among all differentially expressed circRNAs. circTTN was also exclu-
sively expressed in heart tissues (Supplementary Fig. S4). Cerina analysis revealed that circTTN had binding 
sites for 82 miRNAs, among them seven mature miRNAs (miR-23b-3p, miR-23a-3p, miR-24-3p, miR-181a-5p, 
miR-28-5p, miR-181b-5p, miR-208a-5p) with Pareto scores greater than 0.95 (Fig. 5b). Functional enrichment 
analysis showed that targets of these seven miRNAs were highly associated with cardiovascular and circulatory 
system development, which were also significantly enriched in several pathways, including TNF, FoxO, and 
ERBB signaling pathways. In an independent gene expression study (GSE3586)125, Barth et al. reported that end-
stage DCM was characterized by excessive down-regulation of “immune response”, “inflammatory response”, 
and “chemokine activity”. Given the apparent under-expression of circTTN in DCM, we hence seek to investi-
gate the possibility of circTTN-mediated suppression of immunity and inflammatory response through ceRNA 
interactions. Consistently, over-expression of mir-23a, mir-24, mir-28, and mir-208 in DCM patients were pre-
viously reported in one or more studies126–129, which suggested a direct link between increased miRNA activ-
ity and reduced circTTN expression levels in DCM. Moreover, enrichment analysis showed that target genes 
of mir-23a/b were significantly associated with the down-regulation of immune-related genes in Barth’s study 
(Supplementary Methods), exampled by binding of mir-23a/b to CCL2, a chemokine with the most significant 
down-regulation in DCM. Taken together, deregulation of circTTN correlates with down-regulation of immune 
response in end-stage DCM patient likely through modulation of mir-23a/b and others.

Conclusion and discussion
Cerina is the first systematic circRNA functional annotation tool based on integrative analysis of competing 
endogenous RNA interactions. It has a collection of more than 1.5 million inferred ceRNA interactions between 
over 33,000 circRNAs and hundreds of miRNAs detected in 11 ENCODE tissues. Although many databases 
were established for searching MREs in circRNAs, none of them incorporated gene expression data for predict-
ing circRNA-miRNA interactions. Guo et al., raised concerns regarding the functional role of thousands of 
low-expressing circRNAs, strongly suggesting that the expression levels of circRNAs to be taken into account 
when interpreting circRNA functions66. On a similar note, TargetScan also argued that, in order to mediate 
consequential repression of its targets, the expression of a miRNA should reach an adequate level, hence recom-
mending removing false-positive interactions based on miRNA expressions levels (http://www.targe​tscan​.org/
vert_72/docs/FP_nonco​ns.html). By integrating paired circRNA and miRNA expression data with the predicted 
MREs using a Pareto Frontier Analysis framework, we have significantly improved the accuracy and functional 
relevance of the identified ceRNA interactions, validated by data from several mainstream circRNA-disease 
databases. Through Cerina’s Shiny web interface, users can perform functional query of a circRNA to retrieve 
information regarding its most likely sponged miRNAs and their tissue-specific expressions, down-stream target 
genes, and potential enriched biological functions and pathways.

Although applicable to various disease studies, one major limitation of Cerina is that its entire functional 
prediction is built upon the circRNA-miRNA-mRNA axis. While this miRNA-sponge paradigm is under the 
spotlight for human circRNA research18–39, increasing evidences have supported a number of alternative biologi-
cal mechanisms, including alternative splicing regulation, RNA-binding protein sponge, posttranscriptional gene 
regulation, and protein-coding, among others3,7–13.

In the context of human cancer, circCcnb1 may directly bind H2ax and wild-type p53, which attenuates 
tumor-suppressor function of p53 and promotes cell proliferation by allowing Bcl2-Bclaf1 binding. On the con-
trary, in p53 mutant cells, the circCcnb1-H2ax compound binds Bclaf1, hence activates Bclaf1 tumor-suppressor 
function and leads to apoptosis130. In another breast cancer study, co-localization of circ-Amotl1 and c-myc was 
detected, suggesting abnormal levels of circAmotl1 to facilitates c-myc nuclear translocation through direct 
circRNA-protein binding131. In human glioma, a new protein encoded by circFBXW7 was discovered to have 
inhibitory effect of cell cycle and proliferation132.

Similarly, in non-cancer diseases, various “non-sponging” mechanistic models have been proposed for cir-
cRNAs in disease pathogenesis and progression. Examples include circ-Foxo3, a circRNA that promotes cardiac 
senescence binds CDK2 and p21 to form a ternary complex, blocking cell cycle progression133. Also, in a systemic 
lupus erythematosus (SLE), degraded circRNAs upon viral induction in monocytes was found to form short 
RNA duplexes that inhibited abnormal protein kinase R activation cascade, highlighting a new role of circRNA 
in autoimmune diseases due to its unique structure134.

On the other hand, due to the complex ceRNA networking in mammalian cells, circRNAs are a potent family, 
yet not the only one, of being capable of regulating protein-coding genes by sequestration of miRNAs. Other 
than circRNAs, small non-coding RNAs, pseudogenes, and lincRNAs, all actively participate in ceRNA interac-
tion network through competing of shared miRNAs14,135–137. Therefore, when Cerina predicts strong ceRNA 
associations that lead to functional outcomes, experimental validations are needed to further confirm the iden-
tified interactions, such as use pull-down assay and dual-luciferase reporter assay to confirm circRNA-miRNA 
binding31,34,138, or over-express/silence circRNA or their interacting miRNAs to further verify predicted ceRNA 
interactions and associated phenotypic changes31,34,139,140.

Data availability
A web service of Cerina can be accessed through: https​://www.bswhe​alth.med/resea​rch/Pages​/biost​at-softw​
are.aspx.

 Code availability
Source code for Cerina is available through GitHub at https​://githu​b.com/jcard​enas1​4/CERIN​A.

http://www.targetscan.org/vert_72/docs/FP_noncons.html
http://www.targetscan.org/vert_72/docs/FP_noncons.html
https://www.bswhealth.med/research/Pages/biostat-software.aspx
https://www.bswhealth.med/research/Pages/biostat-software.aspx
https://github.com/jcardenas14/CERINA
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