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ABSTRACT
Endocrine disrupting contaminants are of continuing concern for potentially
contributing to reproductive dysfunction in largemouth and smallmouth bass in the
Chesapeake Bay watershed (CBW) and elsewhere. Exposures to atrazine (ATR) have
been hypothesized to have estrogenic effects on vertebrate endocrine systems.
The incidence of intersex in male smallmouth bass from some regions of CBW has
been correlated with ATR concentrations in water. Fish early life stages may be
particularly vulnerable to ATR exposure in agricultural areas, as a spring influx of
pesticides coincides with spawning and early development. Our objectives were to
investigate the effects of early life stage exposure to ATR or the model estrogen
17a-ethinylestradiol (EE2) on sexual differentiation and gene expression in gonad
tissue. We exposed newly hatched largemouth bass (LMB, Micropterus salmoides)
from 7 to 80 days post-spawn to nominal concentrations of 1, 10, or 100 µg ATR/L
or 1 or 10 ng EE2/L and monitored histological development and transcriptomic
changes in gonad tissue. We observed a nearly 100% female sex ratio in LMB exposed
to EE2 at 10 ng/L, presumably due to sex reversal of males. Many gonad genes
were differentially expressed between sexes. Multidimensional scaling revealed
clustering by gene expression of the 1 ng EE2/L and 100 µg ATR/L-treated male fish.
Some pathways responsive to EE2 exposure were not sex-specific. We observed
differential expression in male gonad in LMB exposed to EE2 at 1 ng/L of several
genes involved in reproductive development and function, including star, cyp11a2,
ddx4 (previously vasa), wnt5b, cyp1a and samhd1. Expression of star, cyp11a2
and cyp1a in males was also responsive to ATR exposure. Overall, our results confirm
that early development is a sensitive window for estrogenic endocrine disruption in
LMB and are consistent with the hypothesis that ATR exposure induces some
estrogenic responses in the developing gonad. However, ATR-specific and
EE2-specific responses were also observed.
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INTRODUCTION
Early life stages in fish and other vertebrates tend to be sensitive to effects of endocrine
disrupting compounds (EDCs) (Van Aerle et al., 2002), and EDCs are considered a global
concern. Effects during gonad development are likely to be permanent, organizational
events with potential for complete sex reversal, in contrast to the generally reversible,
activational effects that occur during adulthood. Fish early life stages are of particular
concern in agricultural areas, as a spring influx of pesticides coincides with spawning and
early development (Gall et al., 2011).

Evidence of endocrine disruption in wild fish has been observed in many areas.
A high prevalence of testicular oocytes, an intersex condition, has been observed in
smallmouth bass within the Potomac (Blazer et al., 2007, 2010; Iwanowicz et al., 2009) and
Susquehanna (Blazer et al., 2014) river basins of the Chesapeake Bay watershed (CBW)
in the eastern United States. Throughout North America, intersex gonads have been
found in black bass species including smallmouth bass (Micropterus dolomieu) and
largemouth bass (Micropterus salmoides) (Abdel-Moneim et al., 2015; Blazer et al., 2018;
Grieshaber et al., 2018; Hinck et al., 2009; Iwanowicz et al., 2016; Kellock et al., 2014;
Yonkos, Friedel & Fisher, 2014). The individual chemicals, complex mixtures of chemical
compounds and/or other environmental stressors contributing to the development of
intersex in specific areas are not yet fully understood. A significant positive correlation was
observed between the incidence of intersex and the concentration of Atrazine (ATR) in
the water during monitoring of the Potomac river basin at six sites in Maryland, Virginia
and West Virginia during the spring (Kolpin et al., 2013). This observation highlighted
ATR as a contaminant of interest for further investigation into its potential role as an
estrogenic endocrine disrupting contaminant in the CBW.

Atrazine has been implicated in both reproductive dysfunction in adults and alterations
during early development in fish, as well as in other vertebrates (Wirbisky & Freeman,
2015). Adult exposures to atrazine (ATR) impaired reproduction in medaka (Oryzias
latipes) (Papoulias et al., 2014) and fathead minnow (Pimephales promelas) (Tillitt et al.,
2010). However, the molecular mechanism of endocrine disruption by atrazine remains
unclear and appears distinct from the mechanism of estrogenic EDCs (Richter et al., 2016).
Atrazine does not directly activate the estrogen receptor, but has been hypothesized to
induce expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a,
previously aromatase) through inhibition of phosphodiesterase; activation of nuclear
receptor subfamily five, group A, member 1a (Nr5a1a); or alterations in miRNA
expression (Sanderson et al., 2001; Roberge, Hakk & Larsen, 2004; Suzawa & Ingraham,
2008; Wang et al., 2019). Early life stage ATR have been reported to alter sex ratios
(Suzawa & Ingraham, 2008; Wang et al., 2019).
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Exposure to estrogenic compounds, including the pharmaceutical estrogen
17a-ethinylestradiol (EE2), has been shown to induce intersex in certain fish species
(Abdelmoneim et al., 2019). There have been many studies evaluating the effects of EE2
on various fish species at different life stages, especially the model species zebrafish
(Danio rerio), medaka, and fathead minnow. However, the exact mechanism causing
development of intersex gonads has not been identified and there is a particular data gap in
this area for black bass. This early life stage evaluation has not been done in a laboratory
setting in black bass species, which are economically important sport fish. Identifying
estrogen-specific responses in early life stage largemouth bass can provide a baseline to
build on when identifying mechanisms of action, as estrogens have been shown to have
additive effects (Brian et al., 2005).

To evaluate the role of atrazine as an EDC and the role of estrogenic EDCs in intersex,
largemouth bass fry were exposed to a range of concentrations of ATR or EE2 during
sexual differentiation. To our knowledge this study is the first to measure effects of
laboratory ATR and EE2 exposure in early life stage LMB. The objectives of this study were
to: monitor the growth of LMB and development of the gonads through histological
examinations; identify differences in gene regulation associated with ATR and EE2
exposure; and develop testable hypotheses for potential biochemical pathways and cellular
mechanisms leading to altered gonad development, the condition of intersex, and
ultimately impairment of reproductive function in largemouth bass. The focus of this
manuscript is on potential molecular initiating pathways that could lead to altered gonad
development and function.

MATERIALS AND METHODS
Experimental design
Largemouth bass fry were exposed to solvent control (0.0001% ethanol), 17a-
ethinylestradiol (EE2, 1 or 10 ng/L as a model estrogen control), or atrazine (ATR, 1, 10, or
100 µg/L) starting at 7 days post spawn (dps). Exposures continued to 80 dps, during
early gonadal and sexual differentiation. Each treatment was conducted in quadruplicate
(n = 4), for a total of 24 exposure tanks (6 treatments × 4 replicates). Fry/juveniles
were sampled at 17, 33 and 80 dps. Each tank began with approximately 500 viable fry
at 7 dps. At the first two time points, 20 fish per tank were collected for histological
examination of gonadal development. At 80 dps 140 fish per treatment (35 fish per tank)
were sampled to assess growth, sex identification. Of those fish sampled at 80 dps,
gonads of 20 fish per treatment (five fish per tank) were removed for histological sex
identification and gene expression analysis. Four treatments were chosen for gene
expression analysis: solvent control, low EE2 (1 ng/L) and low and high ATR (1 and
100 µg/L). Four fish were randomly selected per treatment per sex (4 fish × 4 treatments ×
2 sexes) for a total of 32 samples analyzed by RNAseq.

All exposure, sample processing, and data analysis was conducted at the U.S. Geological
Survey Columbia Environmental Research Center (CERC, Columbia, MO, USA) unless
otherwise stated. This study was in compliance with all applicable sections of the Final
Rules of the Animal Welfare Act regulations (nine CFR) and with all CERC Institutional
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Animal Care and Use Committee guidelines for the humane treatment of the test
organisms during culture and experimentation.

Spawning, egg collection, feeding and animal care
The original broodstock of virgin largemouth bass were obtained from the U.S. Fish and
Wildlife Service’s Genoa National Fish Hatchery, Genoa, WI. Eggs for the current study
were collected from second generation broodstock reared at CERC. Approximately
12–18 sexually mature largemouth bass (6–9 from each sex) were spawned in a 0.2 acre
pond containing 45 cm × 80 cm spawning mats placed in shallow near-shore water.
Mats with freshly deposited eggs were collected daily, brought into the laboratory and
treated with sodium sulfite (0.015% solution) for 3–5 min to release the eggs from the mats.
The eggs were then placed in modified MacDonald egg incubation tubes and rolled at a
temperature no more than 1 �C from the pond temperature. Eggs were collected until
the total was greater than 24,000 eggs to allow for 1,000 embryos per tank (total of 24
tanks). Eggs were rolled with a stream of fresh well water in the egg incubation rack until
hatch. Hatched fry were collected in mixed cultures and maintained at temperature
(22–24 �C) until placed in the exposure tanks. Upon placement in the exposure tanks, the
fry were acclimated to 22 �C and maintained there for the remainder of the study period
under a 16:8 light:dark photoperiod.

Hatched fry were fed a combination of three different food sources over the course
of the study. Live freshwater rotifers (Brachionus calyciflorus) were fed in conjunction with
live, newly hatched brine shrimp (Artemia sp.) nauplii to satiation three times a day during
the first week after initiation of exogenous feeding. After the first week, fish were
transitioned off rotifers and offered a combination of live, newly hatched Artemia nauplii
three times a day and a dry manufactured diet (Otohime, Reed Mariculture, Campbell,
California, USA) to satiation twice a day. The manufactured diet was administered to the
fish via an automatic feeder to each tank. The manufactured diet was adjusted throughout
the study based on growth rates and gape width. Tanks were siphoned clean once every
other day to remove uneaten food and waste. Additionally, fish were prophylactically
treated in-tank twice a week with 20 parts per million (ppm) Chloramine T for the first
four weeks followed by 10 ppm twice a week for the remainder of the study to prevent
bacterial outbreaks from occurring.

Well water was used in this study and conditions were maintained within criteria
set forth by ASTM International (American Society for Testing & Materials (ASTM), 2004)
for toxicity testing with aquatic organisms. General water quality was expected to be
275 mg/L hardness, 245 mg/L alkalinity, 8.3 pH, 0.0200 mg/L ammonia. Alkalinity,
hardness, pH, gas saturation and ammonia were monitored weekly. Dissolved oxygen and
temperature were measured every other day. Tanks were rectangular glass aquaria with
64 L capacity, filled to 48 L. Each tank had an overflow outlet into the waterbath and an
airstone. The sides of each tank were covered with contact paper to prevent visual
interactions of fish tank to tank. Volume of water flowing into the tanks was checked
weekly.
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Exposure and chemical analysis
Exposures were conducted in proportional, flow-through diluters with approximately four
tank turnovers per day. Exposure chemical concentrations were confirmed twice weekly
for the first two weeks, then weekly for the remainder of the exposures. Atrazine (98%
purity, Fluka, College Park, GA, USA) was prepared in stock solutions of 25 mg/L in
CERC well water and stored in amber bottles at 4 �C prior to use. 17a-Ethinylestradiol
(Sigma–Aldrich, St. Louis, MO, USA) was prepared in a stock solution of 10 µg/mL in
ethanol. Working solutions in CERC well water of ATR were prepared for final exposure
concentrations of 0, 1, or 100 ug/L and of EE2 for final exposure concentrations of 1 or
10 ng/L and solvent concentration of 0.0001% ethanol. Diluters were intermittent-flow
exposure systems with Hamilton syringes delivering the test chemicals to replicate
exposure chambers. System cycling occurred at a rate of six cycles per hour. The system
was equilibrated with the test chemicals for 5 days prior to stocking the fish. At the
commencement of the exposure, newly hatched fry (7 dps) were placed in floating baskets
within randomly assigned aquaria for each treatment/replicate combination. Atrazine in
the tank water was quantified using enzyme-linked immunosorbant assay (ELISA) kits
(Abraxis, Warminister, PA, USA) in accordance with manufacturer’s protocols.
Confirmatory analysis was performed on selected water samples by gas chromatography
(Jiménez et al., 1997). Briefly, water samples were extracted using methylene chloride; the
extract dried with sodium sulfate and filtered through glass fibers; volume reduced to
0.1 mL in methyl tertiary butyl ether; and triphenylphosphate (Chem Service Inc., West
Chester, PA, USA, 500 µg/mL in MtBE) was added as an instrumental internal standard.
The extracts were analyzed by gas chromatographic nitrogen/phosphorus detector
(GC/NPD) and quantified by Perkin-Elmers TotalChromTM workstation chromatography
data software. Quality control samples were analyzed with each sample set and included:
ATR-spiked water, matrix (well) water blank, and a procedural blank. Concentrations
of EE2 in exposure tank water were monitored using an ELISA kit by Ecologiena, (Tokiwa
Chemical Industries Co. Ltd, Japan) according to manufacturer’s instructions. Water
samples were brought to pH 7.0 prior to filtering through a glass fiber filter. Samples were
then extracted and concentrated using C18-solid phase extraction. Extracted samples were
added to a 96-well microtiter plate that was coated with polyclonal rabbit anti-EE2
antibodies. Following incubation, a tracer conjugated with horseradish peroxidase was
applied. After tracer incubation the plate underwent washing and the addition of a color
substrate (3,3′,5,5′-tetramethylbenzidine, TMB). After color development a stop
solution (sulfuric acid) was added before reading the absorbance at 450 nm. The EE2
concentrations were determined by quantifying the absorbance values in relation to the
measured values of EE2 calibration standards that had been assayed in the same manner.

Fish collection
Fish were euthanized with an overdose (300 mg/L) of MS-222 (Ethyl 3-aminobenzoate
methanesulfonate, Sigma–Aldrich, St. Louis, MO, USA), blotted dry, then weight and
total length were measured. Midsections were sampled from 30 fish per treatment; after

Leet et al. (2020), PeerJ, DOI 10.7717/peerj.9614 5/26

http://dx.doi.org/10.7717/peerj.9614
https://peerj.com/


removing the head just posterior to the opercular flap and removing the tail just posterior
to the anal pore, midsections were preserved (see below) for histological analysis.

Fish sampled for gene expression analysis had an incision made from anal pore to
opercular flap, and a panel of muscle tissue removed to obtain access to the juveniles’
gonads. RNAlater (Sigma–Aldrich, St. Louis, MO, USA) was used to immediately preserve
the gonads still in the body cavity, and to increase visualization and integrity of the gonad
tissue. The gonad was then carefully removed and divided. One lobe was preserved
(see below) for histological analysis and sex identification. The second lobe was stored
in RNAlater at 4 �C overnight, then transferred to −20 �C until RNA was extracted.

Histological analysis
Two different histological samples were taken at 80 dps: (1) whole, intact midsections
or (2) individual gonad lobes were extracted. Samples were preserved in Z-fix (Anatech
Ltd, Battle Creek, MI, USA) or PAXgene tissue fix (PreAnalytix, Hombrechtikon,
Switzerland) for 12–16 h then moved to 70% ethanol and processed within 3 weeks.
Midsections were cut in the center and positioned in the paraffin block so both anterior
and posterior directions of the midsection could be visualized. Samples were processed by
dehydration and embedded into paraffin (Luna, 1968). The midsections were sectioned
in 5 µm transverse cuts until the gonads were clearly visible. Kidney and swim bladder
were used to orient the visualization of the gonad, as the gonads are on the ventral side
of the swim bladder in the section of the fish where the hind kidney is clearly visible.
Slides were stained with hematoxylin and eosin (Luna, 1968). In those fish where gonads
were extracted during sampling, RNAlater (ThermoFisher, Waltham, MA, USA) was
added to the open cavity of the fish to give the gonads integrity to be more easily removed.
Then gonads were removed with forceps, one lobe was taken for histology and the
other was preserved in RNAlater for RNAseq (five fish per treatment). Individual lobe
samples collected for histological analysis were stored in Paxgene for 12–16 h and then
transferred to 70% ethanol and processed within 3 weeks. For each individual gonad lobe
approximately 20–40 sagittal 5 µm thick sections were taken.

The characteristics used to identify female fish were: gonadal tissue had the presence of
primary oocytes (POs; round cells with hematoxylin staining around the nucleus that was
lighter or stained with eosin, and larger than 25 µm in diameter), ovarian tissue was
relatively larger than testes (larger than 100 µm in diameter) and round in shape, typically
with an ovarian cavity present. Fry were identified as female if POs were present in any of
the sections. A presumptive male identification was made if only primordial germ
cells (PGCs) and no POs were present in the gonad sections. It is assumed these
undifferentiated gonads were male because this concurs with expected development of
male LMB (Johnston, 1951). Due to the lack of testis differentiation at this developmental
time point, there is a possibility that these undifferentiated gonads could be ovaries
with considerably delayed development. However, due to the likelihood that these were
males, those identified as presumptive males will hereafter be referred to as males.
In females the extreme anterior and posterior ends of ovaries appeared similar to
undifferentiated gonadal tissue, except with no PGCs present. When undifferentiated
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tissue with no PGCs was sectioned further, POs were consistently found, leading to a
female identification. Conversely, when undifferentiated gonadal tissue with any PGCs was
sectioned through the entire gonad, no POs were revealed, leading to a male identification.
If only connective tissue was present and no gonadal tissue could be identified, sex
identification was deemed inconclusive for that fish.

RNA extraction, library preparation and sequencing
Total RNA was extracted from an individual gonad lobe from each of the selected fish,
corresponding to a gonad lobe that was processed for histological sex identification.
The extraction was performed using an RNeasy Mini Kit (74104; Qiagen, Hilden,
Germany). Briefly, tissue was removed from RNAlater and homogenized in 150 µl of
lysis buffer using a micro-tube homogenizer and pestle (Fisher). The pestle was rinsed
with an additional 200 µl of buffer following homogenization (350 µl total) to assure no
sample was lost. Extraction was performed according to manufacturer’s instruction, with
DNase treatment (Qiagen, Hilden, Germany). RNA was eluted off the extraction column
in two 14 µl elutions (28 µl final volume). Capillary electrophoresis on a QIAXEL
instrument (Qiagen, Hilden, Germany) was used to characterize the concentration and
quality of the RNA following manufacturer’s instructions. Four samples per treatment
were chosen for the RNAseq analysis. These samples had RNA integrity scores (RIS) with
an average of 7.73 +/− 0.97. Concentrations of RNA were normalized for all samples.
Library preparation and sequencing was performed by the DNA Core facility at the
University of Missouri (Columbia, MI, USA). Libraries were prepared by Ultra Low RNA
Library Preparation kit (Clontech, Mountain View, CA, USA) following manufacturer’s
instructions. Transcripts were sequenced in four lanes of a 2 × 75 NextSeq (Illumina, San
Diego, CA, USA) paired-end read.

Assembly of gonad transcriptome
Initial read processing and assembly into transcript contigs was performed by the
sequencing core. The reads were first trimmed of low-quality base calls and adapter
sequence, if present, by the Trimmomatic command (Bolger, Lohse & Usadel, 2014) in
Trinity (Trinity-v2.3.2) with default settings except the five bases were not removed from
each end. Strand specific paired end settings were used assuming the first read was on
the sense (forward) strand and the second read was on the antisense (reverse) strand.
All settings were default including the k-mer size of 25. The initial assembly included
743,843 contigs, which was reduced in number to 103,580 by requiring at least 10 counts
summed across all samples and imposing a threshold contig length >200 nt.

Prior to differential expression analysis, contigs were clustered at 95% with cd-hit-est
(Li & Godzik, 2006) to further reduce redundancy in the reference assembly, to 59,261
contigs (N50 of 3,545 nt). Assembled and clustered RNA contigs will be referred to as
transcripts hereafter. Transcripts were annotated using a BlastX search against all
Danio rerio peptides (version GRCz10, NCBI accession number GCF_000002035).
A reciprocal search identified 11,916 one-to-one matches at a minimum bit score of
100, for which functional annotations were used in enrichment analysis (see below).
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Annotated transcripts will be referred to as gene transcripts or expressed genes.
The average number of mapped reads was 47.4 +/− 7.4 million reads/sample.

Analysis of differential transcript expression
For quantification of transcripts, raw reads were reprocessed using a different workflow
than that used for assembly. Reads were trimmed with CLC Genomics Workbench v 9.5
(Qiagen, Hilden, Germany) at an error probability of 0.05, allowing a maximum of
two ambiguous bases and requiring a minimum trimmed length of 50 bp. Sequencing
adapters were removed using default scoring parameters. Abundance was estimated with
kallisto (Bray et al., 2016) using a k-mer size of 31 and with sequence composition bias
correction. Note that counts estimated by kallisto are probabilistically adjusted to account
for sequence shared among multiple transcripts (as in close paralogs or alternative
isoforms), resulting in fractional count values. Counts were rounded to integer values for
analysis with edgeR (Robinson, McCarthy & Smyth, 2009).

The multidimensional scaling function of edgeR was used to check for consistency
of response by treatment. Two samples (2–2 and 5–5) were strong outliers by this
approach and therefore removed from all further analyses. For each contrast tested,
low-abundance transcripts were filtered by requiring at least 2 cpm in at least three
samples, unless the sample size had been reduced due to the exclusions noted above, in
which case at least two samples with ≥2 cpm were required. The p-value for each transcript
was calculated using the “exactTest” function in edgeR, based on the normalized and
expression-filtered data for each pairwise contrast and adjusted using the Benjamini–
Hochberg correction (Benjamini & Hochberg, 1995) to account for false discovery and an
adjusted value of 0.05 was considered the threshold of significant differential expression.
No minimum fold-change threshold was used. Genes with significantly male-biased
and female-biased expression were identified by comparing male and female expression in
the controls using the same thresholds.

Functional enrichment analysis
Three differentially expressed (DE) gene sets of interest were further analyzed in this
study: (1) female-biased DE genes (female expression significantly greater than male)
that were also differentially expressed in response to 100 µg ATR/L and 1 ng 17a-
ethinylestradiol/L treatments in males; (2) DE genes in common among both 1 and
100 µg/L ATR treatments in males; and (3) DE genes in common among both 1 and
100 µg/L ATR treatments in females. For each comparison (gene sets 1, 2 and 3; see section
“Gene Ontology Analysis”), enrichment of ontologies and pathway associations among
DE genes were evaluated with go-seq (Young et al., 2010), using only the annotations
associated with transcripts with one-to-one matches to D. rerio. Go-Slim gene ontology
annotations for the parent Ensembl (Hubbard et al., 2002) gene ID of each matched
D. rerio protein were downloaded from BioMart (Smedley et al., 2009) on 10 January 2017.
NCBI gene IDs corresponding to each Ensembl gene were downloaded from the public ftp
site on 18 January 2017.
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Statistical analysis
Statistical analysis of physiological endpoints was performed using JMP 13.1.0 (SAS, Cary,
NC, USA) with significance set at 5% (p < 0.05) for all comparisons. Survival, weight
and length were analyzed using analysis of variance (ANOVA) followed by Dunnett’s post
hoc test to identify treatments that differed significantly from the solvent control.
Sex ratios were compared across treatments using a chi-square test.

RESULTS
Exposure, mortality, growth and sex identification
Chemical exposure
Concentrations of ATR during the course of the exposure averaged 0.91 (±0.06), 9.87
(±0.68), and 105.09 (±8.57) µg ATR/L corresponding to nominal concentrations of 1, 10
and 100 µg ATR/L, respectively. Concentrations of EE2 averaged 0.84 (±0.04) and 7.34
(±0.46) ng EE2/L for corresponding nominal concentrations of 1 and 10 ng EE2/L,
respectively. The concentrations in all treatments remained stable throughout the study
period (Fig. 1).

Mortality over the 73 d study ranged from 52.9% to 58.4% among tanks in all treatment
groups, and there were no significant differences between treatments (Table 1; Table S1).
High mortality is expected during early development. We also observed cannibalism
among the test organisms that limited survival, consistent with the ecological role of LMB
as voracious piscivores from early in development.

Gonad development and sex identification
Developing gonads in midsections at 17 dps were small and had connective tissue and
primordial germ cells (PGCs) (Figs. 2A and 2B). At 33 dps the gonads were slightly larger
and PGCs were observed (Figs. 2C and 2D). At 80 dps testis tissue remained mainly
undifferentiated with the presence of clear PGCs, but no testis-specific characteristics
(Figs. 2E and 2F). Ovarian tissue began to differentiate by 80 dps, exhibiting ovarian
cavities and primary oocytes in addition to PGCs, and ovaries were much larger than testes
in cross-section at this timepoint (Figs. 2G and 2H).

Equal effort was made for sex identification across tanks; the reported n of each sex
for each treatment reflects confident sex identification (Table 1; Table S1). To verify
consistency in the sex identification protocol, 70% of samples had one or two additional
blind identifications performed, of which 100% concurred with the original sex
identification. The only significant difference in sex ratio from the expected 1:1 female:
male was the 10 ng EE2/L treatment, where all fish in each replicate were identified as
female, except a single individual from one replicate identified as a male.

Juvenile growth
There were no significant differences in length or weight between treatment groups relative
to control when averaged across both sexes. When sex-specific responses were analyzed,
female length was significantly greater in the both the 1 and 10 ng EE2/L treatments
compared to control (Table 1; Table S1). Female weight was significantly increased in the
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Figure 1 Chemical concentration data. Concentrations of atrazine (ATR, (A)) and 17a-ethinylestradiol
(EE2, (B)) at various time points during the 70 day flow-through exposure. All replicates measured at
each time (n = 4) for all treatments, except for the solvent control (n = 1 for ATR, n = 2 for EE2). Error
bars represent standard deviation. Full-size DOI: 10.7717/peerj.9614/fig-1
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1 ng EE2/L treatment group, but not the 10 ng/L treatment group, compared to control
(Table 1; Table S1). There were no significant differences between treatment groups for
length or weight in males.

Gene expression analysis
Differential expression
RNAseq analysis identified 41,565 total transcripts and 28,314 total DE transcripts among
all comparisons (BioProject Accession PRJNA485177). Multidimensional scaling of DE
transcripts revealed clustering of expression patterns in the 1 ng EE2/L and 100 µg ATR/L
treated male fish (Fig. 3). In females, expression patterns in both atrazine treatments
clustered with the controls. Many transcripts were significantly differentially expressed
between sexes in the controls, with slightly more male-biased (expression significantly
greater in males) than female-biased (expression significantly greater in females; Fig. 4).
Overall, males exhibited more DE transcripts in response to treatments than females
(Fig. 4). Few DE transcripts were common between ATR-treated males and females. Most
responsive transcripts in males were down-regulated. In females, most responsive
transcripts were upregulated, particularly male-biased transcripts (M>F; Fig. 4). In the
1 ng/L EE2-exposed fish, of those transcripts differentially expressed in gonad (3,376 in
males, 1,931 in females), 721 were identified in both sexes. There was a strong correlation
of log-fold changes between males and females among these 721 transcripts (R2 = 0.92).

Gene Ontology analysis
We developed three gene sets of interest based on intersections among gene sets responsive
to different conditions. To test the hypothesis that atrazine exposure had estrogenic effects
on gene expression in male gonad, we examined gene set 1: female-biased DE genes
(female expression greater than male in controls) that were also differentially expressed in
response to both the 100 µg ATR/L and 1 ng EE2/L treatments in males. We predicted
that more genes with higher expression in ovary would be upregulated in response to both
1 ng EE2/L and 100 µg ATR/L exposures in males. To investigate atrazine-specific gene

Table 1 Summary of growth and sex ratio data. Summary of Mean (SE) of growth and sex ratio data measured in 80 dps largemouth bass juveniles
that were successfully identified as either female or male.

Treatment Survival (%) n Length (mm) Weight (g) Sex ratio

Female Male Female Male Female Male % Female

Control 58.4 (2.6) 57 52 54.2 (1.0) 54.1 (1.4) 1.70 (0.16) 1.62 (0.15) 52.5 (5.3)

1 ng/L EE2 55.6 (2.2) 42 61 60.3 (0.4)* 58.3 (1.4) 2.37 (0.15)* 1.95 (0.11) 40.3 (6.4)

10 ng/L EE2 52.9 (1.4) 94 1 59.5 (2.3)* 64.0 1.98 (0.22) 1.93 99.0 (1.0)**††

1 µg/L ATR 54.0 (2.9) 44 59 55.8 (0.6) 57.1 (1.5) 1.68 (0.09) 1.48 (0.13) 42.7 (3.5)

10 µg/L ATR 58.2 (2.3) 38 56 58.8 (1.3) 56.8 (2.3) 2.15 (0.18) 1.80 (0.23) 39.7 (5.4)

100 µg/L ATR 54.1 (2.3) 55 58 58.7 (1.1) 60.1 (1.2) 2.08 (0.17) 2.23 (0.16) 48.4 (4.6)

Notes:
* p < 0.05 for treatment means significantly different from control tested by Dunnett’s post hoc.
** p < 0.01 for treatment means significantly different from control tested by Dunnett’s post hoc.
†† p < 0.01 for sex ratios significantly different than expected 1:1 female:male tested by chi-square analysis.
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expression fingerprints in males, we examined gene set 2: DE genes in common among
ATR treatments at both 1 and 100 µg/L in males. Finally, to investigate atrazine-specific
gene expression fingerprints in females we examined gene set 3: DE genes in common
among ATR treatments at both 1 and 100 µg/L in females. Gene ontology (GO) analysis of

Time 1 (17 dps)

Time 2 (33 dps)

Time 3 (80 dps) 
Male

Time 3 (80 dps) 
Female

A B

C D

E F

G H

PGC

PGC

PGC

OC

PGC PO

Figure 2 Gonad development. Example of largemouth bass gonad development from the control
treatment at 17 days post-spawn (dps) at 100� (A) and 400� (B) magnification, 33 dps at 40� (C) and
400� (D) magnification, 80 dps male at 40� (E) and 400� (F) magnification, and 80 dps female at 40�
(G) and 100� (H) magnification. The bar in the upper right of each panel equals 50 µm. PGC, primordial
germ cell; PO, primary oocyte; OC, ovarian cavity. Full-size DOI: 10.7717/peerj.9614/fig-2
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differentially expressed annotated transcripts (based on Danio rerio annotation) identified
several significantly overrepresented terms among the three gene sets of interest tested.
Among DE genes responsive to both ATR and EE2 treatments in males, there was an
overall trend of down-regulation of female-biased genes, contrary to our prediction of a
trend for upregulation of genes in this set (Table 2). Two GO terms that were enriched
among DE gene sets from males of all treatment groups were ribosome biogenesis and
small molecule metabolic process (Table 2). Common GO terms among male and female
groups were transport and transmembrane transport. Whereas the male response was
typically down-regulation of female-biased genes, the female response was typically
upregulation of genes in overrepresented GO terms (Table 2).

Comparative meta-analysis
The comparative meta-analysis identified specific genes of interest that have been shown to
respond to both ATR and EE2 exposure (File S1). This analysis also provided a summary
of literature in which those contaminant gene interactions could be found. Of our
identified genes of interest, cytochrome P450, family 11, subfamily A, polypeptide 2

Figure 3 Multidimensional scaling (MDS) with normalized counts. MDS of transcript expression
patterns in juvenile largemouth bass gonads in which the distance between individuals is based on
biological coefficient of variation (BCV). Individual samples are represented by triangles (males) or
circles (females). 1-ATR, 1 µg/L Atrazine; 100-ATR, 100 µg/L Atrazine; 1-EE2, 1 ng/L 17a-ethinyles-
tradiol. Full-size DOI: 10.7717/peerj.9614/fig-3
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Figure 4 Comparison of differentially expressed transcripts in each test group by sex. Diagram of overlapping sets of differentially expressed
(DE) transcripts that were common between sample groups and treatments. M, male; F, female; F > M, female-biased transcripts that had sig-
nificantly greater expression in females than males in the controls; M > F, male-biased transcripts that had significantly greater expression in males
than females in the controls; 1-ATR, 1 µg/L Atrazine treatment; 100-ATR, 100 µg/L Atrazine treatment; 1-EE2, 1 ng/L 17a-ethinylestradiol
treatment. DE genes that did not have uniform regulation responses between treatments were not represented in the number of up- and down-
regulated genes in bar graphs (A)–(H), but were included in the total number of DE genes in the Venn diagrams. There are 28,314 total DE
transcripts. Conditions used to frame the three gene ontology (GO) queries are boxed. Full-size DOI: 10.7717/peerj.9614/fig-4
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(cyp11a2), steroidogenic acute regulatory protein (star), cytochrome P450, family 1,
subfamily A (cyp1a), DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (ddx4 (previously vasa)),
SAM domain and HD domain 1 (samhd1) and wingless-type MMTV integration site
family, member 5b (wnt5b) showed differential expression from the control group in at
least one treatment group in males (Fig. 5).

DISCUSSION
In this study we examined the potential endocrine disrupting effects of a common use
herbicide (ATR) and a model estrogen (EE2) in developing largemouth bass. We evaluated
both somatic growth and gonad development, as well as global gene expression in isolated
developing gonad tissue. Our observation of near-complete sex reversal in the 10 ng
EE2/L treatment confirmed that early development was a sensitive window for estrogenic
endocrine disruption in LMB and our gene expression results were consistent with
the hypothesis that ATR exposure induces some estrogenic responses in the developing
gonad.

Table 2 Overrepresented GO terms for gene sets of interest.

Gene sets Category p-value #DE
genes

#Genes in
category

GO term #Genes down-
regulated

#Genes up-
regulated

1: female specific transcripts
altered in both the 1 ng/L EE2
and 100 µg/L Atrazine
treatments

GO:0006605 0.0033 6 96 Protein targeting 6

GO:0042254 0.00757 6 127 Ribosome biogenesisa 6

GO:0007005 0.00975 5 89 Mitochondrion organization 5

GO:0006913 0.0149 4 63 Nucleocytoplasmic transport 4

GO:0006810 0.038 29 1,352 Transportb 16 13

GO:0044281 0.0473 14 564 Small molecule metabolic
processc

12 2

2: transcripts altered in males in
both the 1 and 100 µg/L
Atrazine treatments

GO:0006412 0.00131 14 282 Translation 14

GO:0044281 0.00329 23 564 Small molecule metabolic
processc

21 2

GO:0006520 0.00336 9 133 Cellular amino acid metabolic
process

8 1

GO:0055085 0.00382 22 495 Transmembrane transportd 15 7

GO:0009058 0.0262 54 1,916 Biosynthetic process

GO:0042254 0.0396 6 127 Ribosome biogenesisa 6

GO:0008150 0.0464 203 8,605 Biological process

3: transcripts altered in females
in both the 1 and 100 µg/L
Atrazine treatments

GO:0006810 0.00196 18 1,352 Transportb 1 17

GO:0007267 0.00211 6 249 Cell–Cell signaling 6

GO:0055085 0.00708 9 495 Transmembrane transportd 9

GO:0007010 0.0189 7 370 Cytoskeleton organization 7

GO:0007165 0.026 19 1,709 Signal transduction 1 18

GO:0002376 0.0271 7 428 Immune system process 7

GO:0051604 0.0345 2 42 Protein maturation 2

Note:
Gene ontology analysis of differentially expressed (DE) annotated transcripts identified by gene set 1, 2, or 3. Only GO terms that were significantly overrepresented (p-
value < 0.05) are presented. Corresponding letters identify common GO terms between gene sets.
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Figure 5 Differential expression data for genes of interest. Genes of interest were based on literature
search and comparative meta-analysis. Genes presented here are those that were significantly altered in
one or more treatment groups. SC, solvent control; 1-ATR, 1 µg/L Atrazine treatment; 100-ATR,
100 µg/L Atrazine treatment; 1-EE2, 1 ng/L 17a-ethinylestradiol treatment. Error bars are one standard
error from the mean. The y-axis is in reads per million (RPM) on a log base 2 scale. Asterisk denotes
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Sex reversal, gonad growth and somatic growth
Overall, there was an absence of response to ATR exposure in growth, sex ratio and gonad
morphology, while EE2 exposure elicited effects on all three. An increase in growth was
observed in the EE2-treated female LMB. In the literature there have been both increased
and decreased growth observed in fish exposed to EE2. However, low concentration
exposures during development have been shown to act like a growth promoter (Chen et al.,
2017; Luzio et al., 2015; Örn et al., 2003), as was observed in the current study. All but one
fish (94/95) in the 10 ng EE2/L treatment were histologically identified as female.
Sex reversal resulting from exposure to high concentrations of EE2 has been observed
in other species at exposure concentrations of 3 ng EE2/L and above (Caldwell et al., 2008).
The LMB under the current exposure conditions appear to be as sensitive to sex reversal
resulting from developmental EE2 exposure as the small fish model species zebrafish
(Hill & Janz, 2003;Weber, Hill & Janz, 2003) and fathead minnow (Van Aerle et al., 2002).
LMB appear to be more sensitive to sex reversing effects than what has been observed in
three-spined stickleback (Peters et al., 2010), medaka (Scholz & Gutzeit, 2000) and
sheepshead minnow (Zillioux et al., 2001). Previous studies have shown that exposure to a
concentration of EE2 over a species-specific threshold for sex reversal throughout early
development led to organizational changes, and although the sex-reversed phenotype
reverted to a phenotype that matched genetic sex in some individuals after a recovery
period during adulthood, reproductive dysfunction persisted (Larsen, Bilberg & Baatrup,
2009). In wild populations of LMB sex differentiation occurs in spring and summer, which
coincides with storm events and typically greater exposures of EDCs in surface water,
particularly in areas dominated by agricultural land use (Gall et al., 2011).
The mechanisms of sex differentiation in this species have not been characterized well.
Since the window of sex differentiation is extremely sensitive to endocrine disruptors in all
the vertebrate species tested so far, the EDC effects in LMB germ cells may lead to
reproductive impairment later in life, which we did not examine. Such far-reaching effects
would be detrimental for LMB populations in EDC-contaminated sites.

Gene expression alterations
Differential expression

The male LMB gonads were sensitive to estrogenic exposures, as observed by the apparent
sex reversal in the 10 ng EE2/L treatment and the overall response in gene expression
in the 1 ng EE2/L treatment. We had hypothesized upregulation of female-specific genes in
testes among males exposed to EE2. The most differentially expressed genes were those
more highly expressed in females, however, most DE genes were downregulated.

Figure 5 (continued)
significant differential expression compared to SC. Gene symbols and names: (A) cyp11a2, cytochrome
P450, family 11, subfamily A, polypeptide 2; (B) star, steroidogenic acute regulatory protein; (C) cyp1a,
cytochrome P450, family 1, subfamily A; (D) ddx4 (previously vasa), DEAD (Asp-Glu-Ala-Asp) box
polypeptide 4; (E) samhd1, SAM domain and HD domain 1; (F) wnt5b, wingless-type MMTV integration
site family, member 5b. Full-size DOI: 10.7717/peerj.9614/fig-5
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This counterintuitive result may be caused by negative feedback, leading to
downregulation of the female-biased genes in the 1 ng EE2/L treatment.

During this period of gonad development, sex differentiation is just beginning in the
males, so effects on gene expression patterns during this stage could lead to alterations
in later gonad morphology and possibly function. The earlier stage of gonad differentiation
in males compared to females may possibly account for some of the greater responsiveness
of gene expression in males, as the fish may be more resistant to the influence of
exogenous hormones as gonads become more developed (Blázqueza et al., 1995).
The relationship between the observed sex reversal and gene expression changes in
males to the formation of intersex in adults was not tested in this study. Due to the
undifferentiated testes at the sampling time point intersex was not able to be identified.
No morphological abnormalities were observed in either treated or control fish during the
histological analysis and sex identification.

Liver gene expression of vitellogenin 1 (vtg1), a commonly assayed biomarker of
estrogen exposure in fish (Bowman & Denslow, 1999), was not measured in this study,
and expression was not observed in gonad. We observed sex-specific expression of three
zona pellucida genes, zona pellucida glycoprotein 3a, tandem duplicate 2 (zp3a.2), zona
pellucida glycoprotein 3b (zp3b) and zona pellucida glycoprotein 3d tandem duplicate
2 (zp3d.2), which are generally estrogen-regulated and expressed in ovary and/or liver in
adults (Onichtchouk et al., 2003). Expression of the three zp genes was female-biased, but
there were no significant effects of treatment on expression.

Gene Ontology analysis

Many of the GO terms overrepresented in this analysis were, in general, involved with
protein synthesis and transport. Those terms that were found to be common among the
sexes had responses in opposite directions, with differentially expressed genes in those
categories being largely downregulated in males and upregulated in females exposed to
ATR. Downregulation of these processes in developing males may lead to effects later in
gonad development.

A GO term of particular interest that was overrepresented for transcripts altered in
females in both 1 and 100 µg/L ATR treatments was immune system process. All of the DE
genes were upregulated in this term. ATR has been shown to alter immune function in
juvenile fish (Kreutz et al., 2012). Estrogen is also known to interfere with immune
function in fish (Burgos-Aceves et al., 2016). There are still gaps in our knowledge of the
potential effects of these contaminants on juvenile LMB and potential effects on disease
susceptibility. There is even less known about how contaminants of interest act in real
world mixtures and what role they potentially play in concert to modulate the immune
function and disease-resistance of wild populations.

Comparative meta-analysis
The annotation used for the analysis was Danio rerio, as this is the taxonomically closest
species to LMB that has an annotated genome. There are, and will continue to be,
limitations in this kind of study until the LMB genome can be fully sequenced and
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annotated. A reciprocal best-match criterion between D. rerio and LMB transcripts was
used to strengthen annotation inferences, which reduced the number of gene proxies to
11,916 out of approximately 25,549 coding genes in D. rerio. The number of genes in
LMB is unknown, but the N50 of the assembly was not low by transcriptomic standards
(3,545 bp) and only one tissue was analyzed. Nonetheless, partial capture of coding
sequences, retention of non-coding sequence and alternative splicing remain challenges to
annotation. We did not attempt to assess alternative splicing with these data, as robust
identification of splice variants requires a genomic reference.

In developing fish, genes involved in steroidogenesis and gonad development have been
shown to either be upregulated or downregulated with EDC exposure depending on
the timing, duration, and concentration of the exposure (Leet, Gall & Sepulveda, 2011).
In the current study there was a general trend of downregulation of DE genes in males,
including cyp11a2, star and ddx4 (Fig. 5), possibly indicating a negative feedback from EE2
and low concentrations of ATR (Baron et al., 2005; Filby et al., 2007; Leet et al., 2015).
The genes of interest identified by the comparative meta-analysis are involved in
steroidogenesis, metabolism, and gonad development. The gene products of star and
cyp11a2 are required for production of all steroid hormones; star encodes a cholesterol
transporter which is rate-limiting for steroidogenesis, and cyp11a2 encodes a cholesterol
side-chain cleavage enzyme (Arukwe, 2008). Downregulation of star has been
observed in adult human granulosa cells, mediated by an atrazine-induced increase in
phosphodiesterase activity (Pogrmic-Majkic et al., 2018). The enzyme encoded by cyp1a is
involved in metabolic breakdown of xenobiotics and steroids (Otte et al., 2017). The RNA
helicase encoded by ddx4 (previously vasa) is a regulator of translation and is required
for primordial germ cell migration (Li et al., 2009). Samhd, an immune-related gene, was
also downregulated in the current study. In contrast, a previous study in early life stage
zebrafish showed samhd to be upregulated in response to exposure to ATR (Weber et al.,
2013). Wnt5b is an extracellular signaling molecule and morphogen involved in cell
differentiation and formation and maintenance of tissues and organs (Yang, 2012).

However, a few of the DE genes of interest were upregulated in males. Wnt5b was
upregulated in the EE2 treatment, and Cyp1a was also upregulated in EE2 and high ATR
treatment males. Cyp1a has previously been shown to be upregulated in fish where ATR
exposure lead to DNA strand breaks and damaged blood cells (Chang et al., 2005).

CONCLUSION
The early stage in LMB gonad development assessed in the current study was seen to be
sensitive to molecular responses to EDCs, and organizational alterations in the form of sex
reversal with exposure to a high concentration of a potent estrogen. Exposure to ATR
resulted in changes in gene expression, with both similarities and differences compared
to pathways activated by estrogen. Exposure to the strong estrogenic EDC EE2 set
developing fish on a path to physiological change that was observed across multiple
levels of biological organization: changes in gene expression, changes in histology, and
changes in morphology. Thus, our results delineate pathways from estrogenic exposures to
adverse outcomes in a major sport fish. The role of ATR in population impairments
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observed in the field remains unclear. It is possible that the combined impacts of mixtures
of contaminants including atrazine lead to population-level effects on reproduction and
disease resistance (Berninger et al., 2019). Investigation of effects of mixtures at multiple
levels of biological organization may help reveal diagnostic biomarkers of pathways
leading to adverse population-level effects. In wild populations early sex differentiation
occurs in the spring and summer, which coincides with storm events and typically
higher concentrations of EDCs in surface water, particularly in areas dominated by
agricultural land use. To our knowledge this is the first examination of developmental
and molecular responses to EDCs in juvenile LMB. This study can serve as an initial piece
of the larger picture of the sensitivity of developing bass to contaminants of interest in
the Chesapeake Bay Watershed. Additional studies are being conducted in adult LMB
exposed to mixtures of contaminants of interest. Controlled laboratory exposures with
field-relevant sport fish can provide a basis for identification of specific mechanisms of
action, determination of effect concentrations, and establishment of cause and effect
linkages for contaminants and other stressors that may limit the health and growth of wild
populations.
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