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Single-shot memory-effect video
Xiaohan Li, Andrew Stevens, Joel A. Greenberg & Michael E. Gehm   

Imaging through opaque scattering media is critically important in applications ranging from biological 
and astronomical imaging to metrology and security. While the random process of scattering in turbid 
media produces scattered light that appears uninformative to the human eye, a wealth of information 
is contained in the signal and can be recovered using computational post-processing techniques. Recent 
studies have shown that statistical correlations present in the scattered light, known as ‘memory 
effects’, allow for diffraction-limited imaging through opaque media without detailed knowledge of (or 
access to) the source or scatterer. However, previous methods require that the object and/or scatterer 
be static during the measurement. We overcome this limitation by combining traditional memory effect 
imaging with coded-aperture-based computational imaging techniques, which enables us to realize for 
the first time single-shot video of arbitrary dynamic scenes through dynamic, opaque media. This has 
important implications for a wide range of real-world imaging scenarios.

Conventional optical imaging techniques create a one-to-one mapping between object and image planes. This 
approach assumes that one can measure ballistic, or non-scattered, light from an object. When a sufficiently opaque 
material intervenes, most of the light instead undergoes scattering and yields a random speckle pattern at the detec-
tor, rendering isomorphic imaging impossible. Nevertheless, a variety of techniques have been developed to allow 
imaging through opaque materials by filtering out the scattered light1–3, performing wavefront shaping of the light 
incident on the scatterer4–6, conducting detailed statistical modeling of the scatterer7, or exploiting intrinsic corre-
lations in the scattered light8–11. Of these approaches, only the latter method, known as ‘memory effect’ (ME) imag-
ing12,13, allows for imaging through highly scattering media without the need for detailed knowledge of or access 
to the scatterer, object, or illumination. However, all these previously-demonstrated techniques require that the 
scatterer and/or object remain stationary during the measurement, which fundamentally limits their applicability.

Several recent approaches have attempted to relax the requirement that the object and/or scatterer remain 
stationary. For example, imposing a temporal modulation on the source14 or having direct access to the system 
point spread function (PSF)15 enables fast imaging through quasi-static scattering media. Relatedly, Cua et al.16 
show that proper filtering in correlation space enables one to recover the shape of an unchanging object under-
going simple (e.g. linear translational) motion. Finally, Edrei et al.17 use the so-called shower curtain effect to 
image a static object through a dynamic scatterer. However, this method requires knowledge about the location 
of the scatterer as well as significant signal averaging, which does not allow for a direct generalization to moving 
objects. Thus, none of the previously-developed methods can faithfully image arbitrary object motion through a 
dynamic, unknown scatterer.

Here, we demonstrate a method for imaging through opaque media when the object and scatterer involve 
arbitrary dynamics that may even exceed the measurement rate of the detector. By using a modulator to 
temporally-code the speckle image on the time scale of the scene dynamics18 (i.e., faster than the detector frame 
rate), we ‘timestamp’ the dynamics in the time-integrated signal collected by the detector. We then use a dictionary 
learning approach19 to recover multiple high-speed speckle frames from a single acquisition, and independently 
process these de-multiplexed speckle images to estimate the scene at each frame, yielding an effective framerate 
that is faster than the detector. In this way, we realize single-shot video through an opaque scatterer. The technique 
makes no assumptions about the dynamics of the object or scatterer and requires modifications only to the detec-
tor system (i.e., does not require access to the source or scatterer). Furthermore, the method is independent of the 
post-processing performed on the recovered speckle, and therefore provides an effective boost to the frame rate of 
any previously-studied coherent imaging technique and broadens their efficacy in real-world scenarios.

More generally, our results show that low-contrast speckle can alternatively be thought of multiple, 
high-contrast speckle fields that have been multiplexed together. Our work can therefore be viewed as an exten-
sion of coded aperture compressive temporal imaging18 (CACTI) to non-natural images (even for something 
as naively non-compressible as speckle). As a result of this mathematical similarity, variants of the physical and 
algorithmic tools developed in the fields of computational and compressive imaging can be brought to bear to 
code the individual channels and then demultiplex them post detection.
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Results
Measurement technique.  Figure 1 shows a schematic of the experimental configuration as well as the asso-
ciated coding and image recovery strategy. We consider a dynamic object (whose angular extent fits within the ME 
field of view, FOV8,9,15) located a distance u behind an opaque scatterer (see. Fig. 1a and Supplemental Materials 
Fig. 1). Light from the object passes through a dynamic scatterer and generates a time-varying speckle pattern in the 
far field I(x,y,t). In a traditional ME imaging setup, one places the detector a distance v behind the scatterer to record 
the speckle; in our coded aperture configuration, we instead place a second SLM at this plane to spatio-temporally 
modulate the speckle. While a variety of code patterns are possible, we use a sequence of random binary patterns 
T(x,y,t) to minimize temporal correlations between the codes. We then image the coded speckle onto the detector 
plane. This single, low-contrast coded speckle image I(x,y) represents the superposition of the coded speckle patterns 
reaching the detector over the course of the acquisition time, and can be described as the Hadamard product of the 
speckle and the coded aperture pattern (i.e., pixelwise multiplication summed over time frames, Fig. 1b).

While such low-contrast speckle is typically considered to be ‘washed out’ or otherwise devoid of informa-
tion20, we instead view the incoherent sum of many speckle images as a form of multiplexing. To recover separate, 
time-ordered speckle frames Î x y t( , , ) from the single, multiplexed speckle measurement, we use a compressed 
sensing (CS) algorithm with an imposed sparsity prior21. However, speckle is not a natural image and is not nec-
essarily sparse in a wavelet basis22; instead, we use a patch-based dictionary-learning approach19 to determine a 
general sparse representation of speckle (see Methods section below and Supplemental Materials Sec. 3 for 
details). We note that a sparse representation via a learned dictionary is possible, as speckle is not truly random 
and contains spatial correlations on the scale of the grain size when the grain is oversampled by the detector. At 
the same time that the CS algorithm de-multiplexes the separate temporal channels, the algorithm also performs 
denoising and inpaints the parts of each speckle image blocked by the coded aperture. By making this multiplexed 
measurement in the presence of detector noise, we can potentially outperform a system that makes separate, 
higher-frame-rate acquisitions via the multiplex advantage23.

Figure 2 shows representative speckle patterns produced in our system for input objects corresponding to the 
letters “K” and “E” (as shown in Fig. 3). We determine the ground truth speckle pattern for a given object by 
removing the coded aperture and measuring the scattered light in the absence of the object or scatterer motion (see 
Fig. 2 top row). These speckle images can then be compared to the recovered (i.e., de-multiplexed) speckle patterns 
obtained from a single, coded measurement (i.e., for Nt = 2, see Fig. 2 bottom row). We find that our technique 
allows us to accurately recover these highly-complex speckle images (see Supplemental Materials Fig. 5 for more 
details), and does not require any assumptions regarding temporal correlations in the speckle from one frame to 
the next (e.g., stemming from either the object or scatterer motion). While such prior knowledge could further 
improve system performance24, such an assumption fundamentally limits the range of motion to within the ME 
FOV16. In contrast, our coding technique is capable of imaging small objects (i.e. with an angular extent less than 
the ME FOV) with arbitrary temporal evolution as they move through regions exceeding the ME angular FOV.

Figure 1.  Schematic and conceptual description of coded single-shot video through an opaque medium. (a) 
Spatially incoherent light from an object (static or dynamic) propagates a distance u and passes through a 
diffuser (static or dynamic). Propagation an additional distance v produces a speckle pattern at the plane of a 
dynamically reconfigurable SLM, which imposes a spatio-temporally varying intensity modulation. A relay lens 
images the SLM plane onto a CCD camera. Together, the SLM, relay lens and CCD correspond to our 
temporally coded detector setup. (b,c) Measurement structure and data processing chain for speckle 
demultiplexing and correlation-based image recovery, respectively. Each speckle frame I x y t( , , ) is multiplied by 
a distinct coded aperture T x y t( , , ) and the resulting coded speckle patterns are summed into a single 
measurement at the CCD I x y( , ) (the dot in the figure denotes the Hadamard product). We recover independent 
speckle frames Î x y t( , , ) using a dictionary learning algorithm, calculate the autocorrelation of each frame 
separately, and reconstruct the time-dependent object Ô x y t( , , ) by applying an iterative phase retrieval 
algorithm (see Supplemental Materials Sec. 4 for more details).
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Figure 2.  Ground truth and recovered speckle subframes. (Top row) Separate speckle images obtained using 
separate measurements of static objects (here we use the letters ‘K’, ‘E’, respectively, as shown in Fig. 3). (Bottom 
row) Speckle images recovered from a single, coded speckle measurement including dynamic sum of the same. 
The normalized correlation between ground truth and recovered speckle for ‘K’ and ‘E’ are 0.915 and 0.928.

Figure 3.  Experimental demonstration of imaging a dynamic scene through a static scatterer. (a) Ground 
truth object frames (time proceeds from top to bottom, as indicated by the arrow). The extent of each letter 
is 576 × 720 μm (corresponding to an angular field of view of 0.22 × 0.28 degrees), and the blue scale bar 
indicates 500 μm. (b,c) Speckle autocorrelation(s) and reconstructed object frame(s) at each time obtained via 
a single measurement using conventional ME imaging and a single measurement using our coded aperture 
ME imaging. For all measurements, the diffuser is stationary. The color bar shows the image intensity, which is 
normalized to the range [0,1].



www.nature.com/scientificreports/

4Scientific Reports |  (2018) 8:13402  | DOI:10.1038/s41598-018-31697-8

Once we recover the Nt separate speckle frames, we process each frame individually using traditional ME 
correlation-based processing8,9. Namely, we first calculate the autocorrelation of the speckle pattern ∗ˆ ˆI I t[ ] ( ), 
which is directly related to the autocorrelation of the object. We then use a phase retrieval algorithm25 to estimate 
the object Ô x y t( , , ) at each time, and concatenate the resulting images to create a video of the dynamic scene that 
is robust against arbitrary motion of the object and/or scatterer. While the use of phase retrieval ultimately ren-
ders ME imaging most applicable to imaging bright objects on a dark background, the reduction of motion blur 
afforded by our technique reduces the effective object complexity9 and thus improves the resulting image contrast 
in the presence of motion (see Supplemental Materials Sec. 3e).

Experimental demonstration of snapshot ME video.  As a first example of our technique, we consider 
a static diffuser and a dynamic object consisting of a time-ordered sequence of the letters ‘D’, ‘U’, ‘K’, and ‘E’ (see 
Fig. 3a). When we use conventional, single-shot ME imaging (i.e., for T(x, y, t) = 1), the speckle autocorrelation 
lacks distinct structure and the single estimated image is obviously incorrect (see Fig. 3b). Unlike in the case 
of conventional motion blur, the resulting image is not simply the linear sum of the underlying objects. This is 
due to the fact that the PSF is distributed (resulting in nonlocal image distortions) and that the autocorrelation 
operator is not distributive over addition (i.e., the autocorrelation of the sum of two signals is not the sum of their 
respective autocorrelations). As a result, the image quality can degrade significantly due to even slight dynamics.

In contrast, our single-shot coded ME scheme allows us to recover separate, time-resolved autocorrelations 
that faithfully reveal the object dynamics (see Fig. 3c). This result demonstrates that our method works for object 
dynamics lacking a priori temporal correlations, and is valid for arbitrary absolute time scales as long as the object 
and code dynamics are well-matched and faster than the detector acquisition time.

We next consider a stationary object and dynamic scatterer, which represents a well-known hardware 
approach to ‘eliminate’ speckle. We linearly translate the diffuser in small (i.e., within the ME range), discrete 
steps during the acquisition to make clear the impact of the dynamics. For the image shown in Fig. 4a), the tradi-
tional single-shot ME approach produces an autocorrelation and recovered image that is blurred according to the 
diffuser motion (see Fig. 4b). However, our single-shot coded ME technique is robust to this motion and enables 
us to recover multiple, time-resolved speckle images that lead to unblurred images of the object at each time (see 
Fig. 4c). The static object is correctly observed as such, which demonstrates that our technique is robust against 
diffuser dynamics. We note that, while this example is limited to motion within the ME range, the approach and 
general results still hold in the case of random and/or continuous motion as long as the dynamics within any 
sub-frame remain instantaneously within the memory effect range (see Supplemental Materials Figs 7 and 8).

Figure 4.  Experimental demonstration of imaging a static scene through a dynamic scatterer. (a) Ground 
truth object (angular field of view is 0.19 × 0.19 degrees). (b,c) Speckle autocorrelation(s) and reconstructed 
object frame(s) at each time obtained via a single measurement using conventional ME imaging and a single 
measurement using our coded aperture ME imaging, respectively. The average correlation amongst the four 
reconstructed object frames via the coded ME approach 0.88. For all measurements, the object is stationary.
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As a final example, we consider a dynamic object imaged through a dynamic scatterer. We again make no 
assumptions about the dynamics and take simulated frames of a paddle-and-ball video game as our dynamic 
scene (see Fig. 5a). We again use discrete, linear translation motion for our diffuser. As expected, the single-shot 
conventional ME image quality is poor, and the approach fails to provide meaningful information about the 
object dynamics (see Fig. 5b). The single-shot coded ME approach, however, enables a clear understanding of the 
evolution of the scene (see Fig. 5c). Furthermore, the results are largely unaffected by the motion of the scatterer, 
as can be seen by comparing them against the ground truth object.

Discussion
For the results shown above, we typically set the camera integration time to approximately 100 s in order to over-
come the readout detector noise on the CCD camera and achieve an excellent signal to noise ratio (SNR, typically 
100). Therefore, the acquisition speed in our experiment is limited by the light source rather than the SLM (coded 
aperture) refresh rate. With sufficiently bright sources where the SLM refresh rate acts as a bottleneck, one can 
simply switch to an alternative coding approach (e.g., using DMD or a physical coded aperture that is translated 
and/or rotated rapidly). The technique does not require this measurement duration or SNR, though, and we find 
that the performance remains fairly uniform down to camera frame rates of approximately 1 Hz (i.e., recovered 
sub-frame rates of Nt Hz), at which point the image quality begins to decrease gracefully. We note, however, that 
the image quality obtained when using a conventional ME imaging approach with our system (i.e., for a static 
object and scatterer and no coded aperture) also begins to decrease for the same parameters as our coded scheme, 
indicating that our approach does not significantly increase the SNR required for imaging. Through the use of 
alternate sources, configurations, and/or detectors, others have demonstrated conventional ME imaging with 
integration times as short as 10 ms9, which implies that our technique can be extended to much faster absolute 
frame rates (i.e. potentially realizing frame rates of 100*Nt Hz). Thus, the specific times used in this experiment 
do not represent a fundamental limit; rather, they demonstrate the potential to realize improved performance 
relative to conventional ME imaging, and give excellent results for our particular system.

As has been discussed elsewhere, though, fundamental tradeoffs exist between the achievable spatial and 
temporal resolution in these types of temporally coded systems26,27. While a complete analysis of this dependence 
is beyond the scope of our current study, our preliminary analysis shows that the recovered speckle fidelity can 
drop considerably (e.g., the correlation between recovered and ground truth speckle can be as low as 75%) before 
significant degradation of the resulting ME video is observed (see Supplemental Materials Fig. 5). To further 
improve the accuracy of the resulting ME video and potentially make it more robust to imperfect recovery of the 
associated speckle subframes, alternative approaches to the image recovery may be used.28,29

Figure 5.  Experimental demonstration of imaging a dynamic scene through a dynamic scatterer. (a) Dynamic 
ground truth object (angular field of view is 0.44 × 0.22 degrees). (b,c) Speckle autocorrelation(s) and 
reconstructed object frame(s) at each time obtained via a single measurement using conventional ME imaging 
and a single measurement using our coded aperture ME imaging, respectively.
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In summary, we have demonstrated a new computational imaging architecture that combines physical layer 
coding with memory effect imaging to realize single-shot video through a dynamic, opaque scatterer. The tech-
nique does not require access to the object or scatterer and applies to light that either undergoes scattering via 
transmission through an opaque medium or via reflection from a rough surface. This opens avenues for imaging 
in rapidly-changing turbid media, such as due to atmospheric motion in astronomical speckle interferometry30 
or for in vivo imaging of biological samples31,32. In addition, it creates possibilities for recording dynamic scenes 
under conditions in which direct visibility is precluded. More generally, this marriage of correlation-based imag-
ing with state-of-the-art compressed sensing modalities can be expanded to other degrees of freedom (e.g., spec-
tral or polarization33–35) to enable high-dimensional imaging of previously-inaccessible phenomena.

Methods
Experimental setup.  The complete experimental setup is presented in Supplemental Materials Fig. 1. 
A 250 mW Opnext laser diode (Thorlabs HL6388MG) operating at 640 nm illuminates an integrating sphere 
(Thorlabs IS236A-4). The temporally coherent but spatially incoherent light from the output port passes through 
a SLM (HOLOEYE LC2012, 36 μm pixel pitch), which is located between a pair of crossed polarizers and used 
to generate the dynamic object. A 600 grit ground glass diffuser (Thorlabs DG20–600-MD) is mounted on a 
translation stage (Thorlabs MF A-CC) 300 mm from the SLM. A 4.5 mm diameter aperture immediately after the 
diffuser limits the scattered light that passes through a beam splitter (BS, Thorlabs CCM1-PBS251/M), located 
12 mm away. The transmitted light passes through a quarter wave plate (QWP, Thorlabs WPQ20ME-633), reflects 
off the coding SLM (HOLOEYE Pluto Phase Only SLM, 8 μm pixel pitch), passes back through QWP, and reflects 
off the BS. An achromatic triplet (Thorlabs TRS254-040-A-ML, f = 40.6 mm) images the SLM plane onto a camera 
(SBIG STT-3200). The camera consists of 1472 × 2184 pixels (with a pitch of 6.8 μm) and was operated with an 
integration time of 600 to 1200 s. To minimize background light and stray reflections, we implement a series of 
bellows between the optical elements and covered the setup with a black box.

Speckle recovery.  We use beta process factor analysis (BPFA19) to learn an overcomplete dictionary from a 
set of training data. The training data consists of 18 different 1024 × 1024 representative speckle images, split into 
16 × 16 pixel patches (i.e. a total of 73728 training sets). The dictionary only needs to be trained once off-line and 
works excellently for various geometric arrangements of the system and different diffusers. Given this dictionary, 
we used a matrix inverse-update implementation36 of the orthogonal matching pursuit (OMP) algorithm37 which 
projects the multiplexed speckle to the dictionary space and iteratively calculates the optimal dictionary elements 
and corresponding coefficients to recover the subframe speckle patterns. (see Supplemental Material Sec. 3 for 
additional details).

Speckle pre-processing.  We first normalize the speckle image by dividing it by a low pass version of itself 
(obtained by convolving the raw image with a uniform 220 × 220 matrix). We then choose a 752 × 752 pixel patch 
of the normalized image (limited by image aberrations in the relay optics), smooth it using a Gaussian filter with 
a standard deviation of 1 pixel, and apply a Tukey window38 with r = 0.1 (where 0 < r < 1 describes the filter falloff 
near the edges) to avoid any edge effects. Finally, we calculate the autocorrelation of the processed speckle.

Phase retrieval.  The phase retrieval algorithm was implemented using the conjugate gradient descent algo-
rithm (see Supplemental Materials Sec. 4). We use a random initial guess for the object and estimate the mag-
nitude of the Fourier transform of the object by taking square root of the Fourier transform of the product of 
autocorrelation and a 256 × 256 pixel 2D Tukey window. We enforce realness and non-negativity constraints on 
the object and typically run 3600 iterations. Once the image is recovered, we threshold values smaller than ten 
percent of the maximum value to zero in order to reduce apparent background noise, consistent with the practice 
in other memory-effect publications such as ref.9. No filtering or other image processing is applied.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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