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ABSTRACT

Motivation: Solenoid proteins are emerging as a protein class
with properties intermediate between structured and intrinsically
unstructured proteins. Containing repeating structural units, solenoid
proteins are expected to share sequence similarities. However, in
many cases, the sequence similarities are weak and non-detectable.
Moreover, solenoids can be degenerated and widely vary in the
number of units. So that it is difficult to detect them. Recently,
several solenoid repeats detection methods have been proposed,
such as self-alignment of the sequence, spectral analysis and
discrete Fourier transform of sequence. Although these methods
have shown good performance on certain data sets, they often fail
to detect repeats with weak similarities. In this article, we propose
a new approach to recognize solenoid repeats and non-solenoid
proteins using stationary wavelet packet transform (SWPT). Our
method associates with three advantages: (i) naturally representing
five main factors of protein structure and properties by wavelet
analysis technique; (ii) extracting novel wavelet features that can
capture hidden components from solenoid sequence similarities and
distinguish them from global proteins; (jii) obtaining statistics features
that capture repeating motifs of solenoid proteins.

Results: Our method analyzes the characteristics of amino acid
sequence in both spectral and temporal domains using SWPT. Both
global and local information of proteins are captured by SWPT
coefficients. We obtain and integrate wavelet-based features and
statistics-based features of amino acid sequence to improve the
classification task. Our proposed method is evaluated by comparing
to state-of-the-art methods such as HHreplD and REPETITA.
The experimental results show that our algorithm consistently
outperforms them in areas under ROC curve. At the same false
positive rate, the sensitivity of our WAVELET method is higher than
other methods.

Availability: http://www.naaan.org/anvo/Software/Software.htm
Contact: anphuocnhu.vo@mavs.uta.edu

1 INTRODUCTION

With several interesting features of repeating sequences, significant
progress has been made in the identification of the DNA and
protein repeats, understanding the duplication mechanism and
special features of the repeat evolution (Kajava, 2001). Repeats are
usually found in non-coding genomic regions. However, repeating
sequences are also found in about 14% of all proteins coded by all
known genes with about 25% of all eukaryotic proteins (Marcotte
et al., 1999). The known protein structures can be classified by
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the length of their repeats, which can provide information about
a possible 3D structure of the repetitive protein (Kajava, 2001).
There are four main structural classes (Kajava, 2001): Class I,
crystalline structures (1- to 2-residue repeats); Class II, fibrous
proteins (3- to 4-residue repeats); Class III, solenoid proteins
(5- to 42-residue repeats); and Class IV, domain-forming repeats
(30 or more residues). Solenoid proteins contain a superhelical
arrangement of repeating structure units (Kobe ez al., 2000). This
arrangement contrasts the structure of most Class-1V proteins that
fold into globular domains in more complex manners.

Repeats in Class I and Class II have only 1—4 residues, hence
they have low sequence complexity and can be easily detected.
Globular repeats in Class IV have their sufficient length to be
detected by database search tools like PSI-BLAST (Altschul ef al.,
1997). Solenoid proteins are built of repeated structural units.
The repeating units of the solenoids consist of one to several
segments of secondary structure, among which are a-helices (Kajava
et al., 2002), B-strands (Hennetin et al., 2006) and 31¢-helices. The
solenoid proteins have purely a-helices or B-strands or a mixture of
the secondary structures (Kobe et al., 2000). They are expected to
share sequence similarities. However, in some cases, the sequence
similarities are weak such as protein farnesyltransferase (FTase;
Boguski et al., 1992) and insulin-like growth factor-1 receptor
(IGF-1R; Bajaja et al., 1987), so that they are non-detectable (Kobe
et al., 2000). Therefore, database search tools like PSI-BLAST
relying on clear conservation pattern are not good tools to detect
solenoid repeats.

In recent years, several methods have been proposed to identify
solenoid repeats. Some of them are based on self-alignment of the
sequence such as REPRO (George et al., 2000), RADAR (Heger
etal.,2000), TRUST (Szklarczyk et al., 2004), HHrep (Soding et al.,
2006) and HHrepID (Biegert et al., 2008). HHrep and HHrepID
utilized hidden Markov model comparison (HMM-HMM), while
the others used sequence—sequence comparison to find suboptimal
self-alignments. Repeating parts of the sequence appear as oft-
diagonal regions of similarity. They allow the detection of basic
repeating units and locations of units along the sequence. HHrepID
has been reported to be the most sensitive self-alignment approach
to detect repeats (Biegert et al., 2008). However, HHrepID often
cannot detect repeats with weak similarities.

Other approaches to recognize solenoid repeats use periodic
patterns in proteins such as (Coward et al., 1998), (Murray et al.,
2002), (Murray et al., 2004), REPPER (Gruber et al., 2005) and
REPETITA (Marsella et al., 2009). Repeating protein motifs, TIM
barrels, propellor blades, coiled coils and leucine-rich repeating
structures have been analyzed (Murray et al., 2002) and used to
detect repeats in known protein structure. The data utilized in
Murray et al. (2002) are relative accessible surface area and simple
hydrophobicity that provide information of the protein structure and
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sequence. REPPER (Gruber et al., 2005) searches for periodicities
of particular, user-defined types (hydrophobic, polar, positively
charged) using the Fourier transform of sequence. However, it
primarily aims at the analysis of fibrous proteins and does not allow
insertions between repeating units. REPETITA (Marsella et al.,
2009) utilizes sequence profile with the discrete Fourier transform
to detect degenerated repeats (Lupas et al., 1997). It includes the
five numeric scales proposed by Atchley (Atchley et al., 2005)
to characterize the amino acid sequence. Compared to TRUST
and RADAR, REPETITA has been reported to be more sensitive.
However, similar to HHrepID, REPETITA also cannot detect some
repeats with weak similarities.

Wavelet analysis has been widely applied to process biomedical
signals (Unser et al., 1996). Some applications of wavelet
transforms in genome sequence analysis and gene expression
data analysis have been proposed (Li, 2003). A key advantage
of wavelet transforms over the Fourier transform is their ability
to simultaneously capture both spectral and temporal information
within the signal (Daubechies, 1992, Mallat et al., 1989). In contrast,
the Fourier transform does not give local information of proteins,
because the Fourier coefficients only contain globally averaged
information. Wavelet analysis has an improved ability to capture
hidden components from biological data and is a good link between
biological systems and the mathematics objects (Li, 2003). The
wavelet transforms can be categorized as: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The CWT
was used to detect and characterize repeating motifs in protein
sequence and structure data (Murray et al., 2002). It maps a signal to
a time-scale joint representation calculated by continuously shifting
a continuously scalable function over a signal and calculating
the correlation between them. The resulting wavelet coefficients
are highly redundant. In molecular biology and genetics, we
are more interested in discretely sampled rather than continuous
functions. The DWT was used to classify protein subcellular location
images (Chebira et al., 2007). Stationary wavelet packet transform
(SWPT) is one of discrete wavelet analysis techniques. A main
advantage of the stationary wavelets over the DWT is its shift
invariant property (Coifman et al., 1995). The SWPT is suitable
for many bioinformatics applications, such as DNA copy numbers
smoothing and detection (Huang et al., 2008; Nguyen et al., 2010).

In this article, the SWPT technique is proposed to characterize
proteins by five representation factors: polarity, secondary structure,
molecular volume, codon diversity and electrostatic charge. We
propose to extract new features from the SWPT of five factors and
from statistics of amino acid sequence, and employ them to classify
solenoid and non-solenoid proteins. Empirical studies on solenoid
protein detection have been performed to compare proposed method
to other related methods. Experimental results demonstrate the
promising performance of our proposed approach.

2 METHODS

A flow diagram with all steps of our algorithm is given in Figure 1. The
individual steps including wavelet analysis technique, feature extraction,
feature selection, and classification will be described in following
subsections.

2.1 The proposed method

The framework of proposed method is shown in Figure 1. At first,
a protein sequence is translated into five numerical signals derived

Input protein
sequence

Statistical Numerical function
feature extraction translation

Wavelet transform
SWPT

Wavelet feature
extraction

Feature selection

Classification

—

Fig. 1. The block diagram of WAVELET method for solenoid and non-
solenoid classifications. Novel statistics-based and wavelet-based features
are the key components of our proposed method.

by Atchley (Atchley et al., 2005). These five signals represent polarity,
secondary structure, molecular volume, codon diversity and electrostatic
charge. All signals are normalized to zero mean, since the averages are
not significant to detect repeats. Next, each signal is decomposed into
16 subbands by SWPT wavelet transform (see Section 2.2). Eighty subbands
obtained from five signals are used to extract eighty wavelet features as
in Equation (5). In addition to wavelet features, probability features of
20 amino acids are also computed for each protein sequence. Seventeen
features are selected from total 100 features using the forward feature
selection method. Finally, the quadratic discriminant classifier described in
Section 2.5 is applied to classify protein sequences.

Inspired by wavelet analysis for the protein structure and sequence
(Murray et al., 2002), we propose to use the SWPT to analyze characteristics
of amino acid sequence. However, there are two main differences between
Murray’s method and ours. The first difference is that the data utilized
in Murray et al. (2002) is relative accessible surface area and simple
hydrophobicity, while the data utilized in our method is five patterns that
summarize a large portion of the physio-chemical and biological properties
of amino acids (Atchley et al., 2005; Marsella et al., 2009). To obtain these
five factors, 495 amino acid indices which include general attributes, such
as molecular volume or size, hydrophobicity and charge, as well as more
specific measures, such as the amount of nonbonded energy per atom or
side chain orientation angle are analyzed. This analysis simplifies high-
dimensional data by generating a smaller number of factors that would
summarize the entire constellation of amino acid physiochemical properties.
The resultant factors are linear functions of the original data, are fewer
in number than the original, and reflect clusters of covarying traits that
describe the underlying or latent structure of the variables. The first resultant
factor is a polarity index which is bipolar, large positive and negative factor
coefficients and also reflects simultaneous covariance in portion of polarity
versus nonpolarity, and hydrophobicity versus hydrophilicity. Therefore, the
hydrophobicity feature used in the previous study is also involved in the first
factor. The second difference is that Murray (Murray et al., 2002) used the
continuous wavelets which are highly redundant, but we are more concerned
with discrete sampling rather than continuous functions for protein sequence
representation. Moreover, since some amino acids play important roles in
structure of solenoids, we propose statistics features to capture repeating
motifs of solenoids.

2.2 Stationary wavelet packet transform

The SWPT is based on filters H; and G and on an up-sampling operator. The
filter H; is a low-pass filter defined by a sequence /;(n) and the high-pass
filter G| defined by a sequence g1 (n). Given a signal s(n) of length Nj, the first
level of the SWPT produces two subbands: approximation subband sy ()

i468



Solenoid and non-solenoid protein recognition

and detail subband s12(n). These subbands are obtained by convolving s(n)
with the low-pass filter 4 (), and with the high-pass filter g1(n) as follows:

sumy=y_ hin—k)sk), siam=>_gi(n—k)s(k). M
k k

Sequences hj(n) and gq(n) are obtained by using MATLAB function
wfilters where n is an integer. An example of hj(n) and gj(n)
is given by hj(n)={—0.1294,0.2241,0.8365,0.4830} and gi(n)=
{—0.4830,0.8365,—0.2241,—0.1294} when db2 wavelets are used. Values
of k in the above summation are from 1 to Ny, where Ny is the length of s(n).
Two new subbands sj; and s12 have the same length as the original signal
s(n). The low-pass filter H; is assumed to satisfy the internal orthogonal
relation as

> himyhi (n+2i) =0, ®)

n

for all integers i #0 and Znh%(n): 1. The high-pass filter G; is defined by
gim=(=1"h(1-n). (€©)

The high-pass filter G; satisfies the same internal orthogonal relation as H
and the mutual orthogonal relation as

D h(mgi(n+2i)=0, “

for all integers i. For further details of these filters, please see Daubechies
(1992) and Mallat et al. (1989).

The filters are modified at each level by an up-sampling operator. The
filter h;(n) at level [ is obtained by inserting a zero between every adjacent
pair of elements of the filter &;_j(n) at level (/—1), and similarly for
filter g;(n) (Nason et al., 1995). Each filter is an upsampled version of
the previous one. The second level of the SWPT produces four subbands:
s21(n),-+-,s24(n). These subbands are obtained by convolving s1;(n) and
s12(n) with the filters s (n) and g2 (n). The process is iterated until an expected
level [ is reached. The number of subbands at level [ is equal to 2. For
example, in order to obtain the SWPT with 16 subbands, we select /=4
because 2* = 16. We calculate h,(n) and go(n) by inserting one zero between
samples of /;(n) and g1(n). Similarly, we compute h3(n), g3(n) and ha(n),
g4(n) by inserting one zero between samples of h(n), g2(n) and h3(n), gz3(n).

The SWPT does not employ a decimator after filtering. The absence of a
decimator leads to a full rate decomposition. Each subband contains the same
number of samples as the input. The absence of a decimator makes the SWPT
shift invariant. This shift invariant property provides the SWPT preferable for
the usage in various signal processing applications such as smoothing (Huang
et al., 2008; Nguyen et al., 2010) and classification because they capture
more spatial information. It has been shown that many of the artifacts could
be suppressed by a redundant representation of the signal (Coifman ez al.,
1995). The SWPT offers a richer range of possibilities for signal analysis.
Thus, we propose to use the SWPT to analyze characteristics of proteins. In
our experiments, a signal was decomposed into 16 subbands corresponding
to with four-level SWPT. The numbers of subbands and filter type were
chosen to give the best results in classification performance. We applied
several [-level SWPTs with [=2,3,4,5 and several types of filters. The four-
level SWPT and Coif5 filter produce the best results. From wavelet subbands
how to generate features for solenoid classifier will be described in the next
subsection.

2.3 Feature extractions

2.3.1 Wavelet feature extraction A solenoid protein comprises repeating
structural units that arrange to let the polypeptide chain form a continuous
superhelix (Kobe e al., 2000). It is expected to share sequence similarities.
However, in some cases, the sequence similarities are weak, so that they
are non-detectable. The knowledge of the structure can help the detections
of weak sequence similarities and patterns among the structure units. The
set of five factors derived by Atchley was used in analysis directed toward
understanding the structural and functional aspects of protein variability.

Factor II presents the secondary structure. There is an inverse relationship of
relative propensity for various amino acids in various secondary structural
configurations, such as a coil, a turn, or a bend versus the frequency in an
a-helix (Atchley et al., 2005).

Instead of using the discrete Fourier transform (DFT; Marsella et al.,
2009) for five factors combined with sequence profiles, we use the SWPT to
analyze these five factors. It should be noted that the Fourier transform result
is a global measure. Therefore, the period obtained from DFT method is a
global period which could be invisible in many solenoids. In contrast, the
SWPT analysis can capture hidden components from sequence similarities.

Each signal (factor) is decomposed into 16 subbands by SWPT. The energy
of each subband is calculated by

Ny

1
Ex($)= - lse(@l, ®)

Ti=1

where k=1,2,---,16,s(i) are the k-th subband coefficients and N; is the
number of coefficients.

Each sequence is presented by five factors. As a result, we obtain 80
wavelet-based features for each protein sequence. The wavelet-based features
of factor IT extract the knowledge of the structure that can help weak sequence
similarities detection. The wavelet-based features of other factors extract
physio-chemical and biological properties of amino-acid sequence. Besides
wavelet features, we also propose to use statistical information of amino
acids in protein sequences for generating protein features.

2.3.2 Statistical feature extraction Solenoid proteins contain a
superhelical arrangement of repeating structural units. The most common
arrangement of the solenoid proteins is a single-stranded superhelix which is
formed by one or several elements of secondary structure (such as a-helices,
B-strands and 31¢-helices) winding along the superhelical axis. Each repeat
contains at least one turn with an irregular conformation introduced between
the secondary structures. The minimal structural unit corresponding to
one repeat has one secondary structure element and one turn. Several
representative structural repeating motifs are summarized below, where the
asterisk denotes a polar residue, o denotes nonpolar residues, and x is any
residue.

¢ A-(N/D)-L-*-x: the pentapeptide repeat protein (Bateman et al.,
1998); S-x-(V/)-x-G: the pentapeptide repeat of anti-freeze
protein (Graether et al., 2000) contains one P-strand and one turn.
Pentapeptide repeat proteins (PRPs) are found primarily in bacteria,
especially cyanobacteria. Although the structure of the cyanobacterial
pentapeptide proteins is not yet available, PRPs have important
biochemical and physiological functions in cyanobacteria. The newly
uncovered structural features may help scientists discover the biological
role of pentapeptide repeat proteins within the cell.

* SxIGxx: the hexapeptide repeat of LpxA (Raetz et al., 1995) contains
one B-strand and one turn. In hexapeptide, the regular superhelical
surface of the p-helices might prefer to satisfy the protein-interacting
demand by forming homo-oligomers (Kobe et al., 2000).

¢ DxLxGGxGx: the nine-residue repeat of serralysin (Baumann et al.,
1993) contains one B-strand and one turn shown in Figure 2c.

e xxxGoxxLxxoLxxxxxLxxLxLxxNxL: the LRR of ribonuclease
inhibitor (RI); LxxLxLxxN/CxL: the 11-residue repeat of the LRRs
contains a B-strand and an a-helix (Kajava, 1998) as shown in Figure 2a.
LRR proteins appear in different proteins with diverse functions. They
bind a number of globular proteins by their concave surface. In the
RI molecule, structural units consisting of a B-strand and an a-helix
are arranged so that all the B-strands and the helices are parallel to a
common axis, resulting in a nonglobular, horseshoe-shaped molecule
with a curved parallel B-sheet lining the inner circumference of the
horseshoe and the helices flanking its outer circumference (Kajava,
2001).
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Fig. 2. Examples of consensus motifs in solenoid proteins. (a) Leucine-
rich repeat (LRR), (b) Leucine-rich repeat variant (LRV), (¢) Serralysin,
(d) Protein FTase, (e) Insulin-like growth factor-1 receptor L domain (IGF-
IR L) and (f) HEAT. Positions of a-helices (red cylinders), 319-helices (blue
cylinders) and B-strands (magenta arrows) are shown in the above underlined
portions of the sequences, and o denotes hydrophobic amino acid (Kobe et al.,
2000).

o xxxxxxxXxLLPxLxxxxxDxxxx VRxxxxxxLxxLxxxx: the HEAT repeat
of PR65/A subunit (Groves et al., 1999). The HEAT repeats (Andrade
et al., 1995) have two anti-parallel a-helices and make one complete
coil shown in Figure 2f. They contain nuclear import factor importin-
B used when conformational adjustment to the binding partners are
needed (Kobe et al., 2000).

¢ Leucine-rich repeat variant (LRV) (Peters et al., 1996) contains an
a-helix and 3;0-helix as shown in Figure 2b.

* Protein FTase a-subunit (Boguski et al., 1992) is shown in Figure 2d.

* Insulin-like growth factor-1 receptor L domain (IGF-1R L) (Bajaja
et al., 1987) contains p-strands as shown in Figure 2e. The sequence
similarities in IFG-1R and FTase are weak.

From above structural repeating motifs, some amino acids play key roles in
structure of solenoids. Therefore, we propose using amino acid compositions
as additional features to capture repeating motifs of solenoid proteins as
follows N

x

pX)= N, 6)
where X =[A, C,D, E, F, ---, V, W, Y] is the one-letter code corresponding
to each of the 20 amino acids, and Ny is the number of amino acids X in
a sequence, and N is the length of that sequence. The 80 wavelet-based
features and 20 statistics-based features are combined, resulting a total of
100 features for each protein sequence. We can use all 100 features as
inputs of a classifier. However, because the number of features is larger than
the number of classes, one of the ways to select features is using forward
selection.

2.4 Feature selection

The forward feature selection procedure (Kohavia et al., 1997) starts by
evaluating all feature subsets, which consist of only one feature. We obtain
100 models at this point and the model that performs the best is chosen. The
feature subset now contains one feature. Next, forward selection finds the
best subset consisting of two features. Ninenty nine feature subsets are made
by pairing this chosen feature with all the remaining 99 features, one by one.
For 99 models, their statistics are compared to select the best performing
model. The feature subset now contains two features. These iterations are
continued until the best classification accuracy is obtained.

As a result, 17 features which include eight wavelet-based features and
nine statistics-based features are selected from a total of 100 features using
the forward feature selection method. Tables 1 and 2 show more details of
selected features. All five factors which describe structure and properties
of protein are present in selected feature subset at different subbands as in
Table 1. The first row shows feature number (1-100). The first 80 features
are from wavelet-based features and the last 20 features are from amino
acid compositions. The second and third rows present factor (I-IV) and

Table 1. Selected wavelet features from a total of 100 features using the
forward feature selection method

Feature 35 49 27 41 10 68 46 51
Factor v v II I v I I I
Subband 7 9 6 9 2 14 10 11

All five factors from I to IV at different subbands corresponding to solenoid properties
and structure are selected.

Table 2. Selected statistics features from a total of 100 features using the
forward feature selection method

Feature 90 92 99 94 82 89 93 97 88
Amino acid L N w Q C K P T I

The occurrence frequency of amino acid L in sequences is the first choice to capture
structural repeating motifs.

subband number (1-16). Statistical features of amino acids in sequence are
also selected in Table 2. The selected feature corresponding to the occurrence
frequency of amino acid L in sequences makes more sense with structural
repeating motifs summarized in the previous subsection. After selecting a
set of good features, we use them as inputs of a classifier described in the
next subsection.

2.5 Classification

In our experiment, we use a quadratic discriminant analysis classifier (QDA;
Krzanowski, 1988), which is a standard supervised classification approach.
QDA models the likelihood of each class as a Gaussian distribution.
The posterior distributions are used to estimate the class for a given
test point. We can use maximum likelihood estimation algorithm to
estimate the Gaussian parameters for each class from training points. A
MATLAB function, classify.m in Statistics toolbox is used to perform QDA
classification. A setting for this function is quadratic type. Feature vectors
are normalized to have a unit variance before classification step. Some other
complex classification methods may also be applied to further improve the
classification results. However, this is beyond the scope of the paper and
might smear the effect of the proposed features.

3 EXPERIMENTS AND DISCUSSIONS
3.1 Data sets

Two groups of data are studied: (i) 105 solenoid repeat
proteins; (i) 247 globular proteins (non-solenoid) without
structural repeat. These data are downloaded from the website
(http://protein.bio.unipd.it/repetita/) of the previous study (Marsella
et al., 2009). Marsella took an initial set of 32 proteins with
solenoid repeats and used the TESE server (Sirocco, 2008) to
find more protein domains belonging to the same solenoid folds
as the initial set. By limiting the maximal residual structural
similarity according to the CATH classification (Pearl et al., 2003),
TESE allows the user to generate ad hoc non-redundant sets
of proteins with known structure. The final set of 105 solenoid
domains was yielded by choosing representatives with at most 35%
pairwise sequence identity (i.e. CATH ‘S’ level). Marsella also
generated the set of 247 non-solenoid protein domains with TESE
by randomly choosing X-ray structures with different topologies and
no detectable sequence similarity (i.e. CATH ‘T’ level). A training
set of 50 solenoid proteins and 119 non-solenoid, and a testing set
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of 55 solenoid proteins and 128 non-solenoid ones are selected as
in Marsella et al. (2009). The solenoid proteins contain the main
repeat classes such as all a, all B, and o/ with available structure
information or they have their structures and evolutions related to
these major folds.

Sequences are composed of long strings of alphabetic letters
rather than arrays of numerical values. A metric for comparing such
alphabetic data is sophisticated. Therefore, a method proposed by
Atchley (Atchley et al., 2005) to quantify alphabetic information
inherent to biological sequences was applied. Five patterns that
summarize a large portion of the physio-chemical and biological
properties of amino acids were obtained. These five factors represent
polarity, secondary structure, molecular volume, codon diversity and
electrostatic charge.

3.2 Comparisons to existing methods

We compare the classification performance of our WAVELET
method against four exiting methods in protein repeats detection:
RADAR (Heger et al., 2000), TRUST (Szklarczyk et al., 2004),
HHrepID (Biegert et al., 2008) and REPETITA (Marsella et al.,
2009). Sensitivity, specificity and accuracy of all methods are
computed for training set, testing set and overall data.

RADAR and TRUST detect internal sequence symmetries by
comparing the protein sequence itself and utilize sequence—sequence
comparison to find suboptimal. RADAR builds a repeat profile to
determine exact borders and extract a multiple alignment of repeats
self-alignments, and TRUST explicitly makes use of consistency
that has led to improvements in multiple sequence alignment. In
TRUST and RADAR methods, predictions are considered when at
least two repeat units are detected.

HHrepID utilizes hidden Markov model comparison. The
maximum expected accuracy algorithm that maximizes the sum of
posterior probabilities in the alignment and a probabilistic approach
to consistency through a merging procedure based on posterior
probabilities are also applied. HHrepID has been reported to be most
sensitive to date (Biegert ef al., 2008). We use default settings for
HHrepID method. The MAC threshold is set to 0.5 and the P-value
threshold for suboptimal alignment is set to 0.1.

REPETITA detects solenoid repeats and discriminates them from
globular proteins using information from sequence profiles together
with the discrete Fourier transform, based on the assumption that
few characteristics of sequence repeats uniquely identify structural
repeats.

3.3 Results and discussions

We summarize experimental results including sensitivity, specificity
and accuracy in Table 3. Data sets used for evaluations are the
training set, testing set and overall data. We evaluate both training
set and testing set to verify that our predictive model does not overfit
the training data. Because our model fits both training set and test
set well with the accuracy of 94.1% and 91.3%, respectively, non-
overfitting has taken place. Table 3 shows the optimal results of each
method. The sensitivity and accuracy of our WAVELET method
are consistently higher than the HHrepID and REPETITA methods
for all three metrics. In overall data, the WAVELET method yields
the best sensitivity of 93.3%, while the sensitivity of HHrepID and
REPETITA methods are 66.7% and 70.0%, respectively.

Table 3. Comparisons of HHrepID, REPETITA and WAVELET methods
for solenoid detection

Method Training (%) Test (%) Overall (%)
Sensitivity HHrepID 70.0 63.6 66.7
REPETITA 70.0 69.0 70.0
WAVELET 96.0 90.9 93.3
Specificity HHrepID 93.3 89.8 91.5
REPETITA 85.0 83.0 84.0
WAVELET 93.3 914 92.3
Accuracy HHrepID 86.4 82.0 84.1
REPETITA 80.5 78.7 79.6
WAVELET 94.1 91.3 92.6

Sensitivity, specificity, and accuracy of each method using training set, testing set and
overall data are computed. Both training and testing data are evaluated to verify that our
predictive model does not overfit the training data. Bold values represent the proposed
method.

100 pmEmmEE - -
90 N

80 N

True Positives

Radar
== Repetita
=== Trust
= HHrepID
= = = Wavelet

0 10 20 30 40 50 60 70 80 920
False Positives

Fig. 3. Comparisons of RADAR, TRUST, HHrepID, REPETITA and
WAVELET methods for solenoid detection: the number of true positive
solenoid proteins against the number of false positive proteins detected above
a threshold significance when overall data are used.

We evaluate all methods using ROC curve as shown in Figure 3.
The number of true positive solenoid proteins against the number
of false positive proteins detected above a threshold significance is
computed. In the case of HHrepID method, we used the total repeat
P-value for the threshold significance. The signed distance from the
optimal line is used for significance measure in REPETITA method.
For RADAR and TRUST methods, the number of repeat units is
used. Predictions are considered where at least two repeat units have
been detected. In our method, we use the posterior probabilities
obtained from the QDA classifier for threshold significance. The
performances of all methods in terms of areas under the ROC curve
are shown in Table 4 when the false positive ranges from 0 to 20.
The performance of WAVELET is better than other methods from
21% to 46% in areas under the ROC curve.

At a false positive rate (FPR) of 8% (20/247), WAVELET method
is able to detect about 60% more solenoid proteins than RADAR
and about 50% more than REPETITA. TRUST and HHrepID can
detect better than RADAR and REPETITA. However, WAVELET
method performs about 37% better than TRUST and 29% better
than HHreplID in sensitivity at FPR of 8%. When the FPR is from
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Table 4. Performance of all methods in terms of areas under ROC curve in
overall data when false positives are from 0 to 20

Table 5. Examples of solenoid detection using RADAR, TRUST,
REPETITA, HHrepID and WAVELET methods

Method RADAR TRUST REPETITA HHrepID WAVELET

Area 798 1009 1057 1168 1475

Bold values represent the proposed method.

Rate (%)

=+ = Sensitivity
65 = = = Specificity
= Accuracy

60

2 4 6 8 10 12 14 16
Number of Features

Fig. 4. Sensitivity, specificity and accuracy of WAVELET method for
solenoid and non-solenoid classification against the number of selected
features. Overall data are used.

3% to 8%, WAVELET also outperforms the others. The solenoid
proteins detected using WAVELET is close to using HHrepID, when
FPR is 1-3%. But they are much more than RADAR, TRUST
and REPETITA. Compared to RADAR and TRUST in detecting
solenoids, HHrepID is an identifier with higher sensitivity. This
agrees with results reported in Biegert et al. (2008) that HHrepID
is most sensitive to date. When FPR is <1%, the sensitivity of
HHrepID method is higher than the others. However, the highest
sensitivity of HHrepID in this simulation is about 67% for overall
data, while that of WAVELET method can reach 93% at the same
FDR of 8%. Because the structure information using wavelet feature
is combined with statistical information in our WAVELET method,
a higher classification accuracy was achieved.

Figure 4 shows the overall performances of WAVELET when
the number of features changes from 1 to 17. The WAVELET’s
performance almost increases when the number of features
increases. The accuracy of the WAVELET ranges from 77% to 93%
corresponding to 1 to 17 features. In REPETITA method, only two
features are used. A small number of features often cannot capture
enough biological information for detection. Therefore, there are
only 70% solenoid data detected by REPETITA method, while
WAVELET method with 17 features can detect 93% solenoid data.

We also show some examples of RADAR, TRUST, REPETITA,
HHrepID and WAVELET methods for solenoid protein detection in
Table 5. These solenoid proteins are plotted in Figure 5. Three of
six sample solenoids are non-detectable by RADAR and TRUST
methods. REPETITA can detect four solenoids, WAVELET can
detects all of six solenoids, while HHrepID cannot find any repeats
in these solenoid sequences. All above simulation results illustrate
that WAVELET method outperforms the others.

CATH RADAR TRUST REPETITA HHrepID  WAVELET
Domain

1p5qA02  True False True False True
1xat000 False True False False True
lee6A00  False True False False True
1ho8AO1  True False True False True
2a4zA03  False True True False True
1tdtA02 True False True False True

All sequences shown in this table are solenoids. “True’ is a correct detection and ‘False’
is a wrong detection.

(a) (b) _
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\
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Fig. 5. Examples of solenoid proteins: (a) 1pSqA02, (b) 1xat000, (c)
1ee6A00, (d) 1ho8AO01, (e) 2a4zA03 and (f) 1tdtA02. Detection results
of these solenoids using RADAR, TRUST, REPETITA, HHrepID and
WAVELET methods are shown in Table 5. Rainbow coloring from blue
to red shows the topology from N to C terminus. Cartoon representations
of these sample solenoid proteins are available in previous study (Marsella
et al., 2009).

4 CONCLUSION

In this article, we proposed a new WAVELET method to recognize
solenoid proteins and global proteins using SWPT and statistical
features of amino acid sequences. In order to detect solenoid repeats
with weak similarities, we took advantages of the integration of
wavelet-statistics features and the SWPT analysis of five factors
representing protein structure and properties. Our new features
can capture structure, properties of solenoid proteins and hidden
components from sequence similarities, to distinguish them from
global proteins. The proposed approach was validated by comparing
to other state-of-the-art methods in solenoid proteins detection
experiments. In all results, our new scheme improved the solenoid
protein recognition in all statistical metrics, including sensitivity,
specificity and accuracy. The WAVELET method is a promising
approach for solenoid protein classification. Based on different types
of training data, the WAVELET method can be applied to classify
different kinds of solenoids or different kinds of protein structures
in future work.
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