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Abstract: In the last decade, the use of photolithography for the fabrication of structured substrates
with controlled morphological patterns that are able to interact with cells at micrometric and
nanometric size scales is strongly growing. A promising simple and versatile microfabrication
method is based on the physical mass transport induced by visible light in photosensitive
azobenzene-containing polymers (or azopolymers). Such light-driven material transport produces a
modulation of the surface of the azopolymer film, whose geometry is controlled by the intensity and
the polarization distributions of the irradiated light. Herein, two anisotropic structured azopolymer
films have been used as substrates to evaluate the effects of topological signals on the in vitro response
of human mesenchymal stem cells (hMSCs). The light-induced substrate patterns consist of parallel
microgrooves, which are produced in a spatially confined or over large-scale areas of the samples,
respectively. The analysis of confocal optical images of the in vitro hMSC cells grown on the patterned
films offered relevant information about cell morphology—i.e., nuclei deformation and actin filaments
elongation—in relation to the geometry and the spatial extent of the structured area of substrates. The
results, together with the possibility of simple, versatile, and cost-effective light-induced structuration
of azopolymers, promise the successful use of these materials as anisotropic platforms to study the
cell guidance mechanisms governing in vitro tissue formation.

Keywords: azopolymers; reconfigurable materials; cell-instructive materials; cell orientation

1. Introduction

The extracellular matrix (ECM) enormously contributes to the ultimate properties of tissues and
organs [1]. By a complex assembly of pores, ridges, and fibers at the nanometric scale, it can regulate
several biological functions. Hence, a controlled patterning of the surfaces at sub-micrometer or
nanometer scale is currently considered for the design of a new biomaterials generation—namely, cell
instructive materials (CIMs) [2] with improved functionalities and bioactive properties to mimic the
natural ECM of tissues. In the last years, several groups have reported about the relevance of substrate
topography to address cell response, in terms of adhesion, spreading, and differentiation [3]. Hence, an
increasing number of fabrication strategies is emerging to design functional materials that respond to a
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set of different stimuli (electrical, magnetic, topographic) in order to instruct cells for specific biological
functions [4,5].

In this context, soft lithographic techniques such as micro-contact printing (µCP), replica molding
(REM), micro-transfer molding (µTM), micro-molding in capillaries (MIMIC), and solvent-assisted
micro-molding (SAMIM) have been commonly used for fabricating high-quality microstructures and
nanostructures [6–8], offering the chance to achieve a wide variety of topographical features (i.e., grooves,
pillars, gratings, tubes, pits, and spheres). With advances in chemistry and material science, the use of
light-based fabrication technologies (i.e., photolithography [9]) in this field is drastically increasing [10].
However, despite the ability to precisely design even complex surface patterns and to reproduce them
with high quality, standard photolithographic techniques are often expensive and time-consuming,
usually requiring several and demanding steps of fabrication. A promising microfabrication method,
which overcomes several limitations of the standard photolithographic approaches, is based on the
light-induced mass transport promoted in azobenzene-containing polymers (or simply azopolymers)
by irradiation of structured visible light [11]. Under light irradiation, the azobenzene molecules sustain
cyclical trans-cis-trans isomerization reactions that force a macroscopic displacement of the polymer
matrix in which they are embedded. The consequence of this molecular light-fueled material motion
is the macroscopic structuration of azopolymer films and microvolumes, whose geometry depends
on the intensity and polarization distributions of the irradiated light field [11–15]. Consequently,
azopolymers can be directly structured over large scales with high quality, in spatially selective, simple,
and cost-effective way, creating spatially ordered and even complex [16] topological patterns exploitable
as microstructured platforms to control cellular orientation and migration in in vitro cultures [17,18].
Additionally, due to the non-destructive nature of the light-induced mass migration phenomenon, the
structuration of the azopolymers is reversible [19]. This feature permits the peculiar possibility of
repeatedly changing the topography of the surface through light irradiation, ideally allowing even the
remotely real-time variation of topographic stimuli, which can be crucial for applications in biomedical
fields [20]. Moreover, the use of the azobenzene-containing polymers as substrates for cell guidance and
ECM mimicking can take advantage also of the reversible switch of their electric properties produced,
simultaneously to the macroscopic mass displacement, by the photo-orientation of the azobenzene
molecules under illumination [16,21]. This effect can indeed enhance the conjugation of polymeric
chains [22–24], increasing the charge carrier mobility and the ionic conductivity in aqueous solutions.

Recent studies demonstrate that cell guidance—i.e., capability to adjust cell orientation and
alignments along patterns [25]—can be explained by the orientation of focal contacts influencing the
cell spreading [26,27] and the structural changes of cell nuclei [28]. This correlation is still partially
unexplored, but it seems to be determined by stress–strain states in the cytoskeleton that are able
to influence chemical (i.e., transcription of specific genes), or physical (i.e., permeability of nuclear
membrane [29]) signals. Starting from this background, we provide here a qualitative/quantitative
morphological study via image analysis aimed at exploring the contribution of anisotropic structured
topography of an azopolymer film on the in vitro response of human mesenchymal stem cells (hMSCs).

2. Materials and Methods

2.1. Azopolymer and Film Preparation

The photo-patternable polymeric substrate used in this work is an acrylic polymer with
photoresponsive azobenzene moieties as side chains of the polymeric backbone. The sketch of
the polymer chemical structure is shown in Figure 1a. Thermal analysis of the polymer performed by
differential scanning calorimetry showed a glass transition temperature of 67◦ [12], while molecular
weight measurements showed a molecular weight Mw = 27,000 and a dispersity index DM = 1.28.
Additional details about polymer synthesis and characterization can be found in references [12,14].
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Figure 1. Chemical structure (a) and UV/visible absorption spectrum (b) of the azopolymer.

For the present experiments, transparent thin films (typical thickness 500 nm) were prepared by spin
coating the solution of the polymer in 1,1,2,2-tetrachloroethane onto 170 µm thick microscope coverslips.

The UV/Vis absorption spectrum (acquired with PerkinElmer Lambda 900 spectrometer,
PerkinElmer, Waltam, MA, USA) of the azopolymer films (Figure 1b) presents the typical azobenzene
UV/Vis absorption features, which is characterized by two overlapped broad bands centered around
350 nm and 450 nm, originated respectively by the π-π* and n-π* transition of the azomolecules [11].

The photo-patterning abilities of the azopolymer used in the present work and the dependence of
the light-induced surface reliefs on the intensity and polarization distribution of irradiated light field
have been extensively investigated in several previous papers [12,14,16,30].

2.2. Photo-Induced Azopolymer Patterning and Topographical Characterization

The surface modulation of the azopolymer films was achieved by illuminating the samples
with linearly polarized light of an Ar+ cw laser (λ = 488 nm). Two different type of samples were
prepared: the first one (named “single beam” sample) is characterized by the spontaneous surface reliefs
gratings (SSRGs) resulting from the light-induced self-structuration of the azopolymer film during the
illumination with a single slightly focused laser beam [30–33]. To achieve this surface modulation, a
collimated laser beam was first expanded to a diameter of 3 mm before being focused onto the sample
surface through a cylindrical lens (focal length f = 75 cm). The resulting laser spot in the sample plane
had an elliptic profile, with minimum width of 30 µm and length of about 2 mm. The light polarization
direction was controlled by a half-wave plate and chosen to be parallel to the short axis of the ellipsis.
The laser power was maintained constant at 0.870 mW for 1 h of illumination.

The second patterned substrates is constituted by the sinusoidal Surface Relief Gratings (SRGs),
which are inscribed onto the surface of the sample “grating” by illuminating the azopolymer film with
the periodic intensity pattern produced by the interference of two p-polarized laser beams [11]. This
interference pattern was realized by recombining together in the film plane the two mutually coherent
laser beams in which the primary laser beam was previously divided through a beam splitter. The
angle between the k-vectors of the two interfering beams was properly adjusted in order to obtain
a pitch of about 3.5 µm in the light interferogram and, consequently, in the SRGs induced onto the
azopolymer film surface. The patterned sample area was about 4 × 4 mm2, while the power of the
beams during the 1 h exposure time was P1 = 0.790 mW and P2=0.830 mW, respectively.

For both single beam and grating substrates, the morphology of the obtained light-induced
superficial structures was characterized by Atomic Force Microscopy (AFM) (XE-100, Park Systems,
Park Systems, Santa Clara, CA, USA). A simple pristine spin-coated azopolymer film (“path-free”) has
been used as control substrate for comparison of cell behavior onto the unpatterned surface.

2.3. Cell Culture

Before cell seeding, scaffolds were sterilized in a 2% solution of penicillin/streptomycin for 5 h.
Experiments were conducted with hMSCs (human mesenchymal stem cells) from LONZA (Merk,
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Switzerland), extracted from the adult patient’s bone marrow. These cells were grown in Minimum
Essential Medium Eagle—alpha modification (α-MEM), supplemented with 10% fetal bovine serum
(FBS), 2 mM L-glutamine, and 1% Penicillin/Streptomycin solution for 6 days on films with different
patterns and with flat surfaces as control; then, they were seeded into 96-well plates with 1 × 104 cells
per scaffold.

2.4. Cell Viability Assay

Cell viability and proliferation were evaluated by using Alamar Blue®assay, which was based on
a redox reaction that occurs in cells’ mitochondria. The main advantage of the Alamar Blue test was
the ability to evaluate the response of live cells at different times, so monitoring cell proliferation over
time on the same cell sample. Briefly, cell-scaffold constructs were removed from the culture plates
at days 1, 2, and 6, washed with phosphate-buffered saline (PBS) (Sigma-Aldrich, Milan, Italy), and
placed into 24-well culture plates. About 2 mL of Dulbecco’s modified Eagle’s medium without Phenol
red (Hyclone) containing 10% (v/v) Alamar Blue (AbD Serotec Ltd., Milan, Italy) was added to each
construct, and the samples were incubated for 4 h at 37 ◦C and 5% CO2. An aliquot of 200 µL of the
solution was subsequently removed from the wells and transferred to a 96-well plate and analyzed by
a spectrophotometer at wavelengths of 570 and 595 nm. The number of viable cells per scaffold was
assessed by comparing the absorbance values at different cultures times with those of the calibration
curve. The calibration curve was obtained by the correlation between a known cell number into the
24-well culture plates with the correspondent absorbance values.

2.5. Quantitative Bio-Imaging

The quantitative determination of key adherent cell culture characteristics, such as confluence,
morphology, and cell density, is necessary for the evaluation of experimental outcomes and to provide
a suitable basis for the establishment of cell culture protocols [26]. After 5 days in culture, cell
morphology was investigated by Confocal Microscopy (Leica SP8,Wetzlar, Germany) supported
by Cage incubator (Okolab, Naples, Italy) onto different patterns (single beam, grating and path-free
as control). In this case, cells were formalin-fixed and stained with phalloidin (Alexa-Fluor 594,
Invitrogen) and 4′,6-diamidino-2-phenylindole (DAPI) according to the manufacturer’s instructions.
The elongation and orientation of cells were estimated from nuclei and actin filament cells by image
elaboration via NIH ImageJ (freeware, ver.1.41). In this case, images were preliminary converted to
grayscale, and the threshold was adjusted to highlight all of the cell nuclei to count. Then, background
subtraction and watershed were applied to obtain a binary mask [27]. Lastly, the ‘Analyze Particle’
plugin was used to best fit the cell nuclei to elliptical shapes. Major and minor axes lengths of the
closest-fitting ellipse were associated to cell nuclei lengths and widths, respectively. Elongation,
defined as the extent of cell nuclei stretch, was calculated as the relative major to minor axis ratio or
Aspect Ratio (AR), while orientation referred to the nuclei alignment and was calculated as slope of the
tangent line to the ellipse respect to x-axis. Hence, the angle distribution of cell nuclei was elaborated.

Statistical analysis between each group was performed using the GraphPad Prism 5 program
(GraphPad software, San Diego, CA, USA) and was determined using a Student’s t-test with significance
levels set at 95% confidence interval. Lastly, cell sheet and actin filaments orientation were evaluated
by using fast Fourier Transform (FFT) analysis (FIJI Directionality tool), and the orientation angle
distribution was elaborated as reported elsewhere [28].

3. Results and Discussion

Micro and nanofabrication techniques based on photo-induced lithography currently represent
an interesting technological approach to design micro and nanostructured surfaces with tailored
topographic patterns. Despite their high spatial resolution, these techniques present some constrains
related to high equipment costs, confinement of the structured area, and inability to further modify the
fabricated topography under external stimuli (i.e., biological cues) [34]. In order to overcome some of
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these limitations, a great interest has recently arisen in the use of stimuli-responsive materials that are
able to generate versatile and reconfigurable patterned surfaces, which are suitable as innovative models
to investigate in vitro cell response to the environment of the extracellular matrix (ECM) [35]. Recently,
azopolymers have been used to fabricate topographic patterns that are able to mimic the complex ECM
architecture [36,37]. Herein, we aim at verifying the suitability of azopolymer-based patterns, which
were fabricated via a very simple and cost-effective optical setup, to investigate the basic structural
features—i.e., cell cytoskeleton, nuclei shape, and orientation—of hMSCs (human mesenchymal stem
cells) in the interaction with a structured substrate due to the innate ability of cells to be highly sensitive
to the underlying topographic signals. Biocompatibility and topographic effects on cell nuclei and
morphology of actin filaments have been here investigated onto two structured azopolymer films
having nanometric vertical features and diverse micrometric lateral patterns differing for the spatial
extent of the structured area: parallel ripples, produced by the self-structuring phenomenon of the
azopolymer films under irradiation with a slightly focused laser beam, and extended over a spatially
confined line of the sample (the single beam sample) and periodic large-scale sinusoidal surface relief
gratings (the grating sample). For negative control, also the interaction of hMSCs with the pristine
unpatterned flat azopolymer film has been investigated.

The self-structured surface reliefs of the single-beam substrate—as shown in Figure 2a—have been
induced in an elliptic region (∼30 µm × 2 mm) of the sample illuminated by means of a cylindrical
lens (see Materials and Methods). The reliefs are characterized by a grating-like microstructuration
showing a mean wavevector oriented in the direction of the laser polarization (indicated by the red
arrow in Figure 2b. The height and the average periodicity of the grooves measured from the AFM
profile—panel (c)—are h1 ≈ 100 nm and Λ1 = 1.14 µm, respectively.
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Optical and AFM images—panels (d–e), respectively—of the grating substrate (see Materials
and Methods) showed a periodic surface modulation, which was homogeneously extended in the
whole illuminated area of about 4 mm in diameter. The SRGs had a wavevector oriented along the
polarization direction (red arrow in Figure 2e) of the two laser beams used to produce the illuminating
interferogram. The grating periodicity measured from AFM profile—as shown in panel (f)—was
ΛSRG = 3.5 µm, while the amplitude modulation was h2 ≈ 70 nm.

The spatial organization and the spatial extent of the grooves in the azopolymer substrates
influences the cell interaction due to the capability of the cells to bind adhesive molecules to the
substrate [38]. Before investigating the substrate-induced structural features of the cells, Alamar
Blue®(AB) assay was used to evaluate the hMSCs’ viability and proliferation until 6 days as an index
of the biocompatibility of the azopolymer films and eventual differences in the patterned areas of the
samples. Results in terms of AB percentage reduction are shown in Figure 3. Despite a signal decay
with respect to the polystyrene culture plate, no significant reduction of hMSCs between micropatterned
substrates was observed over the time.

J. Funct. Biomater. 2020, 11, x FOR PEER REVIEW 6 of 11 

 

Optical and AFM images—panels (d–e), respectively—of the grating substrate (see Materials and 
Methods) showed a periodic surface modulation, which was homogeneously extended in the whole 
illuminated area of about 4 mm in diameter. The SRGs had a wavevector oriented along the 
polarization direction (red arrow in Figure 2e) of the two laser beams used to produce the 
illuminating interferogram. The grating periodicity measured from AFM profile—as shown in panel 
(f)—was Λௌோீ = 3.5 μm, while the amplitude modulation was ℎଶ ≈ 70 nm. 

The spatial organization and the spatial extent of the grooves in the azopolymer substrates 
influences the cell interaction due to the capability of the cells to bind adhesive molecules to the 
substrate [38]. Before investigating the substrate-induced structural features of the cells, Alamar 
Blue® (AB) assay was used to evaluate the hMSCs’ viability and proliferation until 6 days as an index 
of the biocompatibility of the azopolymer films and eventual differences in the patterned areas of the 
samples. Results in terms of AB percentage reduction are shown in Figure 3. Despite a signal decay 
with respect to the polystyrene culture plate, no significant reduction of hMSCs between 
micropatterned substrates was observed over the time. 

 

Figure 3. In vitro culture of human mesenchymal stem cells (hMSCs): viability at 1, 2, and 6 days 
(Alamar Blue test). 

According to the analysis reported in previous studies [39], the physiological state of cells was 
further investigated by confocal microscopy. Figure 4 showed the evidence of fluorescent stained 
cellular actin filaments and nuclei that confirm a good contact guidance mechanism with some 
differences due to the structural features of the underlying topographic patterns. In particular, 
hMSCs were mainly aligned parallel to the groove direction when seeded on patterned substrates 
(Figure 4b,c,e,f), with a larger effect produced by the periodic structuration of the grating sample 
compared to the single beam. On the contrary, the cells tended to show a random orientation onto the 
unpatterned surfaces (Figure 4a,d). Additionally, hMSCs cultured on the grating surface with 
periodic grooves (Figure 4c,f) showed an elongated cell nuclei morphology, which was not recorded 
in the case of the single-stripe samples (Figure 4b,e), thus suggesting a contribution of periodic and 
large-scale morphological signals at a micrometric scale on cell interaction. Accordingly, hMSCs 
nuclei on unpatterned surface (Figure 4a,d)—not including morphological signals—showed neither 
elongation nor orientation and were randomly spread. Microscale features initiate signals from the 
cell–matrix adhesions, which are basically transduced to the nucleus through the cytoskeletal 
network, from actin stress fibers to the intermediate filament network of the nucleus [28]. Hence, the 
structural changes of patterns at different size scales mainly induce a modification of hMSC nuclei 
morphologies. This was confirmed by different quantitative calculations on selected images. The AR 
value—which is used to measure nuclei elongation—was calculated in the case of the grating and 
single-beam azopolymer samples, showing AR values of 2.67 ± 0.90 and 1.58 ± 0.28, respectively, while 
an AR value equal to 1.59 ± 0.28 was obtained for the unpatterned surfaces (Figure 5). These results 
were totally in agreement with the theory of the contact guidance [38]. Indeed, cell alignment and 

Figure 3. In vitro culture of human mesenchymal stem cells (hMSCs): viability at 1, 2, and 6 days
(Alamar Blue test).

According to the analysis reported in previous studies [39], the physiological state of cells was
further investigated by confocal microscopy. Figure 4 showed the evidence of fluorescent stained
cellular actin filaments and nuclei that confirm a good contact guidance mechanism with some
differences due to the structural features of the underlying topographic patterns. In particular,
hMSCs were mainly aligned parallel to the groove direction when seeded on patterned substrates
(Figure 4b,c,e,f), with a larger effect produced by the periodic structuration of the grating sample
compared to the single beam. On the contrary, the cells tended to show a random orientation onto
the unpatterned surfaces (Figure 4a,d). Additionally, hMSCs cultured on the grating surface with
periodic grooves (Figure 4c,f) showed an elongated cell nuclei morphology, which was not recorded
in the case of the single-stripe samples (Figure 4b,e), thus suggesting a contribution of periodic and
large-scale morphological signals at a micrometric scale on cell interaction. Accordingly, hMSCs
nuclei on unpatterned surface (Figure 4a,d)—not including morphological signals—showed neither
elongation nor orientation and were randomly spread. Microscale features initiate signals from the
cell–matrix adhesions, which are basically transduced to the nucleus through the cytoskeletal network,
from actin stress fibers to the intermediate filament network of the nucleus [28]. Hence, the structural
changes of patterns at different size scales mainly induce a modification of hMSC nuclei morphologies.
This was confirmed by different quantitative calculations on selected images. The AR value—which is
used to measure nuclei elongation—was calculated in the case of the grating and single-beam azopolymer
samples, showing AR values of 2.67 ± 0.90 and 1.58 ± 0.28, respectively, while an AR value equal to 1.59
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± 0.28 was obtained for the unpatterned surfaces (Figure 5). These results were totally in agreement
with the theory of the contact guidance [38]. Indeed, cell alignment and elongation are mainly related
to the probability that a cell might present a certain protrusion along a given direction [36]. Herein,
cellular nuclei alignment angles were measured. Figure 6 compared the values of angles formed
by the major axis of the fittest ellipse with the x-axis. The single-beam sample showed a narrower
distribution compared to the unpatterned substrate. The distribution is further squeezed in the case
of the grating sample, thus confirming an increase of cell alignment due to the periodic topographic
stimulus of the sinusoidal SRGs. Meanwhile, the distribution of actin filaments orientation angles,
being an important determinant of cellular shape and motility [38], was also calculated. FFT analysis
of F-actin filaments performed onto selected confocal images, confirmed that newly formed filaments
of the extracellular matrix were more elongated on the grating surface with respect to those on the
single-beam and unpatterned films (Figure 7), corroborating the idea that periodic morphological signals
strongly address cell morphology in vitro.
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4. Conclusions

In this work, we have verified that photopatterned azopolymers films may be successfully used
to address cell guidance mechanisms in vitro (i.e., cell aggregation, preferential elongation). Viability
test confirmed that azopolymeric films with peculiar bioelectric/optical properties are biocompatible
and support cell interaction. Moreover, qualitative and quantitative analyses indicated that cell nuclei
and cytoskeletal actin filaments can be drastically influenced by the presence of grating-like superficial
patterns. These results suggest the promising use of azopolymer films with controlled grating to
design in vitro anisotropic models for the analysis of cell guidance mechanisms induced by topological
signals in tissue engineering. For instance, studies have recently demonstrated that a biocompatible
azopolymer can efficiently control the phenotype of neurons by influencing how cells respond to the
nanometric grooves: i.e., by promoting a synaptic formation of multiple neurites or the elongation
of single predominant neurites along preferential directions over time [40]. In the current scenario,
complex topographies could be instructed on demand, under a controlled light stimulation, with
arbitrary spatial distributions over a wide range of spatial and temporal scales [41]. In this perspective
view, the route toward the design of bioinspired materials that are able to dynamically interact and/or
instruct cells for innovative approaches in tumor diagnosis and in vivo cancer modeling can be traced.
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