
1Scientific Reports | 6:26756 | DOI: 10.1038/srep26756

www.nature.com/scientificreports

Variation of outdoor illumination 
as a function of solar elevation and 
light pollution
Manuel Spitschan1, Geoffrey K. Aguirre2, David H. Brainard1,‡ & Alison M. Sweeney3,‡

The illumination of the environment undergoes both intensity and spectral changes during the 24 h 
cycle of a day. Daylight spectral power distributions are well described by low-dimensional models such 
as the CIE (Commission Internationale de l’Éclairage) daylight model, but the performance of this model 
in non-daylight regimes is not characterised. We measured downwelling spectral irradiance across 
multiple days in two locations in North America: One rural location (Cherry Springs State Park, PA) with 
minimal anthropogenic light sources, and one city location (Philadelphia, PA). We characterise the 
spectral, intensity and colour changes and extend the existing CIE model for daylight to capture twilight 
components and the spectrum of the night sky.

During the 24-hour cycle, ambient illumination changes as a function of the Earth’s rotation in both intensity 
and spectral composition. During the day and before twilight, the ambient illumination is between 1,000,000 
(106) and 100,000,000 (108) times brighter than at night1. Starlight on a clear night has a brightness of ~0.001 lux, 
and moonlight ~0.2 lux1. In comparison, sunlight may be as intense as 100,000 lux1. The ambient light level also 
depends on the presence of clouds and haze, and may vary minute-to-minute due to cloud cover and atmospheric 
turbidity.

In the 1960s, coordinated efforts were made to describe the spectral power distribution of daylight. In their 
seminal work, Judd, et al.2 subjected a set of 622 measured daylight spectral power distributions to a dimen-
sionality reduction technique and derived three basis functions (termed S0, S1 and S2 in the original work and 
below) which account for much of the variance in the dataset. These were later accepted as the Commission 
Internationale de l’Éclairage (CIE) daylight model (henceforth called the ‘CIE daylight model’), and are widely 
used for modelling and synthesizing the spectral power distributions of daylight3.

Ambient illumination intensity changes systematically and most rapidly around twilight, decreasing (at dusk) 
or increasing (at dawn) as a function of decreasing or increasing solar elevation (θs)1,4. When the Sun has set below 
the horizon at twilight (θs <​ 0°) and no longer directly illuminates the Earth, the light in the sky results in part 
from refraction and scattering of the Sun’s rays in the upper atmosphere. Twilight is classified into three distinct 
phases according to solar elevation and the prevailing visibility conditions due to the illumination level: a) Civil 
twilight (−​6° <​ θs <​ 0°), when terrestrial objects can still be distinguished by human observers, b) nautical twilight 
(−​12° <​ θs <​ −​6°), when only object outlines are visible, and c) astronomical twilight (−​18° <​ θs <​ −​12°), when 
the illumination level is low enough such that stars and other astronomical objects are available for observation5.

During twilight not only does the intensity of the illumination change, but so does the spectral composition 
(colour), giving rise to vivid phenomena visible to the human eye at and before twilight6–8, such as the yellowish 
twilight arches during civil twilight and the purple and red sky during nautical twilight. With ever decreasing 
solar elevations, the short-wavelength content of ambient light becomes enriched due to the increasing amount 
of ozone absorption caused by the increased path length of solar light through the atmosphere and so-called 
Chappuis filtering of green/yellow light9. This period is informally termed the “blue hour” in photography. The 
accuracy with which the 3-component CIE daylight model captures variability in spectral composition at twilight, 
or more generally as a function of solar elevation, is not known. There is evidence that twilight exhibits statistical 
regularity1,10,11, but no efforts have been made to extend the CIE daylight model to capture twilight illumination.
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The night sky has changed in recent human history. Since the invention of electric light in the 19th century, 
anthropogenic light sources illuminating developed areas have become more and more prevalent, effectively 
extending the availability of light well beyond twilight. Bright night skies due to urban and suburban outdoor 
illumination have risen in the second half of the 20th century12; this is referred to as light pollution. Much light pol-
lution comes not from consumer-grade incandescent and fluorescent lights but rather from mercury bulbs and 
high- and low-pressure sodium lamps commonly used for outdoor lighting1. Artificial lightning not only changes 
the amount of ambient light but also its spectral composition. How anthropogenic light affects the spectral and 
intensity changes of ambient illumination as a function of the solar day has not been examined. Measurements of 
this may inform studies of potential adverse effects of light pollution on ecology and health13,14.

In this study, we investigate the feasibility of extending the CIE daylight model to capture non-daylight out-
door illumination. We characterised the changes in intensity and spectral composition of downwelling illu-
mination across daylight, twilight, and night. We collected illumination spectra under varying lunar and solar 
configurations in July 2014 at two measurement sites in the Northern hemisphere: one site with minimal light 
pollution (Cherry Springs State Park, Northern Pennsylvania, USA; henceforth called Rural), and one in an urban 
setting (Philadelphia, PA, USA; henceforth called City). We use the data to ask how well the CIE daylight model 
captures illumination during twilight and at night at both locations, and show that deficiencies of the model for 
these regimes may be addressed by use of an extended model.

Results
Spectral composition of downwelling illumination during daylight, twilight and night.  Figs 1 
and 2 summarise the dataset, averaging spectra by solar elevation, independent of whether the Sun was rising or 
setting (dawn vs. dusk). Here as in the other main figures and analyses, Rural data were restricted to cases where 
the fraction of the moon illuminated was <​0.3, and included all measured spectra independent of lunar phase 
from the City data. At 0.3 fraction of the moon illuminated, the brightness of the moon is approximately 3.29% 
of the brightness of a full moon11. We evaluate the potential effect of moonlight in the measurements below and 
conclude that it is small.

As solar elevation decreases, the spectra change shape systematically: there is a relative enrichment of 
short-wavelength light that grows stronger with decreasing solar elevation (Fig. 1a,b) from daylight through to 
nautical twilight. These changes in spectral composition occur at both the Rural and City locations; indeed, the 
average spectral power distributions are quite similar between locations for both daylight and civil twilight. For 
nautical twilight and astronomical twilight, the data from the two locations diverge. At the City location, the 
dependence on elevation ceases and the spectra do not differ appreciably between astronomical twilight and night 
(Fig. 1b). In essence the City measurements are strongly influenced by artificial illumination starting with nautical 
twilight, and are dominated by such illumination for astronomical twilight and night. At the Rural location, in 
contrast, the short-wavelength enrichment seen most prominently in nautical twilight (Fig. 1a, middle panel) 

Figure 1.  Relative and absolute downwelling illumination at night, twilight and day. (a) Measurements 
in the Rural location. Red dot in night time spectrum panel indicates 558 nm. (b) Measurements in the City 
location. Red dot in night time spectrum panel indicates 819 nm; red line indicates 570–615 nm. Spectral 
irradiance measurements were binned by 1° steps of solar elevation and averaged (except for night, where all 
measurements for θ​s <​ 18° were averaged). The colour bars above the individual plots indicate the solar elevation 
bins. All measurements were normalised to a value of 1 at 555 nm to emphasise changes in spectral composition 
(gray dots). Insets show absolute spectral irradiance distribution on a log scale.



www.nature.com/scientificreports/

3Scientific Reports | 6:26756 | DOI: 10.1038/srep26756

exists only for the higher elevation spectra in the astronomical twilight regime. These short-wavelength-dominant 
spectra are then followed by a systematic reduction in short-wavelength power with further decreases in solar 
elevation. We describe the nature of the night illumination further below.

Intensity variation as a function of solar elevation.  The total irradiance in the visible band (VIS; 
400–800 nm) also varies systematically with solar elevation (Fig. 2a,d). Across measurement locations, the rela-
tionship between log total irradiance and solar elevation have a similar sigmoidal shape. Total irradiance changes 
most rapidly with solar elevation during twilight, but is preceded (at dusk) or followed (at dawn) by more grad-
ual changes in overall irradiance. Critically, the lowest total irradiance (θs <​ −​18°) in Cherry Springs State Park 
(Fig. 2a) is about 100 times dimmer than in Philadelphia (Fig. 2d; dashed lines indicate maximum and minimum 
at the Rural location). Next, we considered differences between the dawn and dusk sequences. There are small 
differences at the Rural location (Fig. 2b) but not at the City location (Fig. 2e). These differences might arise 
from different dusk/dawn atmospheric conditions at the Rural location that were not present at the urban loca-
tion, although this is only speculation. We also considered the changes in the UV-A (315-400 nm) and UV-B  
(280-315 nm) spectral bands (Fig. 2c,f). The dependence of UV intensity on solar elevation is similar to that 
observed in the visible (VIS). Note that we have incomplete data (Fig. 2c,f; purple line) in the UV-B band because 
our daylight-level spectrometer did not provide UV-B measurements.

Night spectra in the City and in the Rural location.  As described above, the night spectra and the 
astronomical twilight spectra are essentially the same at the City location (Fig. 1b) but differ considerably at the 
Rural location (Fig. 1a). The spectra we measured in Philadelphia are dominated by light pollution starting at 
a solar elevation of about −​8° during nautical twilight. Indeed, the average night spectrum is very similar to a 
previously published spectral measurement of an urban sky in Northern America1, suggesting that urban night 
spectra are generally dominated, in intensity and spectral composition, by low- and high-pressure sodium lamps. 
Consistent with this, a prominent peak in the twilight and night City spectra is seen near the 819 nm emission line 
associated with sodium lights15. The broader peak in the wavelength range 570–615 nm is also consistent with the 
emission spectra of artificial lights15. For the Rural location, the average spectrum is irregular with wavelength, 

Figure 2.  Intensity changes in downwelling illumination as a function of solar elevation. (a) Dependence of 
total visible irradiance (400–800 nm) on solar elevation at the Rural location. Vertical lines indicate transition 
zones between night, astronomical twilight, nautical twilight, civil twilight, and daylight. (b) Same as in panel 
(a) but split into morning/dawn and evening/dusk sequences. (c) Dependence of total UV-A irradiance  
(315-400 nm) and UV-B irradiance (280-315 nm) on solar elevation at the Rural location. Because of 
wavelength range differences in the two spectrometers used during the different twilight/daylight regimes, there 
are no UV-A data for the daylight regime. (d) Dependence of total visible irradiance (400–800 nm) on solar 
elevation at the City location. Horizontal lines indicate maxima and minimum mean total irradiance values for 
the rural location (panel a). (e) Same as in panel (d) but split into morning/dawn and evening/dusk sequences. 
(f) Dependence of total UV-A irradiance (315-400 nm) and UV-B irradiance (280-315 nm) on solar elevation at 
the Rural location. Data were averaged in 2° bins.
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but displays a prominent peak near the 558 nm peak of the emission spectrum of atomic oxygen, which is a 
known feature of airglow under light-pollution-free conditions16–18.

Influence of the moon on the night sky in the Rural location and in the City.  Although our data 
set does not allow for a full characterisation of the twilight sequence as a function of lunar elevation and lunar 
phase11, we found that the presence of the moon can be detected in the Rural spectra for lunar elevations above 0° 
when we bin by the fraction of the moon illuminated (Fig. S1a). Our ‘full-moon’ spectrum (fraction of the moon 
illuminated 0.90–1.00) is ~100 times brighter than the night spectrum when there was less moonlight (fraction 
of the moon illuminated 0.10–0.20 and 0.20–0.30; the latter corresponding to a moon brightness 3.29% of a 
full-moon11; Fig. S1a). At the same time, the Rural night spectra do not change appreciably when the fraction of 
the moon illuminated is reduced from 0.20–0.30 to 0.10–0.20 and the spectra for these low illumination fractions 
generally have a different spectral shape from the ‘full-moon’ spectrum. These observations suggest that at the 
low-illumination fractions retained in the Rural data (only fraction <​0.30 are retained in the main figures and 
analysis), the moon illumination makes only a small contribution to the measured Rural spectra.

The City data were collected on dates where the fraction of the moon illuminated was higher than for the Rural 
data (Table 1). At the same time, light pollution increases the lowest intensity of the illumination, so that the rel-
ative contribution of moon illumination is smaller. Figure S1b shows the average night spectra from the City data 
for various fractions of moon illuminated. The variation in relative spectra with fraction of moon illuminated is 
small but not systematic with fraction of moon illumination, suggesting that other factors (for example changes 
in the amount and quality of artificial light over the course of the night, as might occur because of reduction in 
household illumination or traffic as the night progresses19,20) contribute significantly to the variation in night 
illumination. There is, however, a systematic increase in the overall intensity of the illumination with fraction of 
moon illuminated (Fig. S1a, inset). Despite this, we decided to retain all of the City measurements in the main 
figures and analysis, because excluding the data for higher fractions illuminated would reduce considerably the 
number of spectra in the dataset.

The online data supplement (see below under Open-access data set) includes information about the moon 
illumination for each measured spectrum, so that the interested reader may reanalyze the data with other choices 
of lunar inclusion/exclusion criteria.

Chromatic variation as a function of solar elevation.  To further examine variation in illumination 
with solar elevation, we computed the CIE 1931 xy chromaticity coordinates of each measured spectrum (Fig. 3b; 
daylight locus plotted as black line, coordinates of CIE D65 (daylight with a correlated colour temperature 
of 6500 K) as dotted grey ‘crosshair’). For both locations, the measurements lie on or near the daylight locus 
(Fig. 3b), albeit with some spread. Differences between the two locations are most notable during twilight and at 
night (Fig. 3a,c; also histograms in 3b), while the daylight chromaticities are quite similar. The average twilight 
chromaticity is shifted towards higher, more reddish values in the City location for both x and y chromaticity. At 
night, the differences across locations are smaller than during twilight and the y chromaticity at the Rural location 
exceeds that in the City location, while the x chromaticity remains higher, more reddish in the City location. We 
provide colour renderings of the illumination in Fig. 4.

Examining the data in more detail, we note that both x and y chromaticity ‘dip’ sharply during twilight, with 
chromaticity shifting towards blue and returning to a more reddish value as solar elevation decreases. The ‘dip’ 
has a minimum at different solar elevations depending on the measurement location. For the Rural location, the 
illumination is bluest during nautical twilight with a minimum at around −​12° and returning towards reddish 
at lower solar elevations. For the City measurements, the ‘dip’ minimum corresponds to higher solar elevations 
(around −​6°).

CIE daylight model fails to characterise downwelling illumination during twilight.  We examined 
whether the 3-component CIE daylight model provides an accurate description of our data set at all solar eleva-
tions. The CIE daylight model consists of a mean vector S0, and two additional ‘characteristic vectors’ S1 and S2 
(Fig. 5a). We fit the three CIE basis functions to each of our spectra and quantified the goodness-of-fit using the 
coefficient of determination R2. As a benchmark, we subjected two large independent data sets to the same anal-
ysis: the Granada daylight spectral database consisting of 2,600 daylight spectra collected in Granada, Spain by 
Hernández-Andrés, et al.21, and a dataset of 10,756 daylight spectra collected by DiCarlo & Wandell3 in Stanford, 
CA. On average, the CIE daylight model explains 89.6% +​ 8.8% (mean ±​ 1 SD) of the variance in the Granada 
data set and 87.2% ±​ 12.1% (mean ±​ 1SD) of the variance in the DiCarlo & Wandell dataset (Fig. 5b,d). We find 
similar performance of the CIE daylight model during the daylight regime across both of our measurement 
locations, with an average variance explained of 86.7 ±​ 7.1% (mean ±​ 1SD). For twilight and night at both of our 
measurement locations, however, the CIE model fits degrade rapidly with decreasing solar elevation (Fig. 5b,d). 
For night spectra, the CIE model explains (on average) less than 10% of the variance for the Rural measurements, 
and less than 20% of the variance for the City measurements. In the daylight regime, the component loadings of 
the basis functions are relatively constant with tight error bounds (Fig. 5c,e). For the twilight and night spectra, 
component loadings vary more across solar elevation and have wider variation for any given solar elevation.

Expanding the CIE daylight model to twilight and night regimes.  As seen above, the CIE daylight 
model fails to characterise key features of the illumination at low and negative solar elevations. This is not too sur-
prising, as the CIE model was constructed to capture variation in daylight spectral power distributions. We asked 
if we could extend the CIE data set to account for twilight and night spectra. We first fit the CIE model to our data 
and then determined additional basis functions from the residuals (see Methods). Note that each of the basis func-
tions corresponds to the average residual in an iterative fitting process that progressively accounts for the daylight, 



www.nature.com/scientificreports/

5Scientific Reports | 6:26756 | DOI: 10.1038/srep26756

civil twilight, and astronomical twilight spectra. Two of the additional basis functions (CIE +​ 1 and CIE +​ 2) were 
common to both the Rural and City data sets (Fig. 6a) in the daylight and civil twilight regimes. We determined 
a third basis function that was derived separately for each location (CIE +​ 3R[ural] and CIE +​ 3C[ity]) from the 
mean residuals after fitting the extended (CIE +​ 2) model to the spectra from solar elevations between −​18° and 
−​12° (Fig. 6b). The CIE +​ 3R basis function from the Rural location is notable for a prominent peak near 558 nm 
(Fig. 6b, upper panel), which we previously observed in the mean Rural night spectrum and attributed to an oxy-
gen emission line (Fig. 1a). This spectral component is also apparent in a comparable, light-pollution-free night 
spectrum recorded by Cronin, et al.1 (Fig. 6b, upper panel inset). The CIE +​ 3C basis function (Fig. 6b, lower 
panel) from the city location is notable for spectral peaks from anthropogenic light sources, as was previously 
noted for the City night spectrum (Fig. 1b). This spectral component shares some of the spectral features of a 
measurement of the city night sky by Cronin, et al.1 (Fig. 6b, lower panel inset).

With the extended linear models, we can reconstruct key features of the data at both measurement locations 
with good accuracy. In the Rural location (Fig. 6c, upper panel), the CIE +​ 3R model performs well up to the 
onset of astronomical twilight. The improved goodness-of-fit of the extended model relative to the 3-component 
CIE model is apparent for solar elevations between −​12 and 0 degrees. The model does not perform well in the 
nighttime regime, which may be due to the noisiness present in the measurements at these dim light levels. To 
estimate the noisiness in terms of R2, we fit the Rural nighttime spectra with the mean nighttime spectrum and 
computed the R2 values to the individual measurements for this simple prediction (Fig. S2). To the extent that the 
night spectrum at the Rural location is in fact unchanging, which we take as a reasonable first-order assumption, 
this R2 value quantifies the measurement variability. It is similar to the R2 value obtained with the CIE +​ 3R model 
(Fig. 6c, upper panel, horizontal gray lines), which would be expected if the measurement noise is largely orthog-
onal to the spectral variability captured by the model. We have not pursued this analysis in detail.

In contrast, the CIE +​ 3C model provides good fits to the City spectra at all solar elevations (Fig. 6c, lower 
panel). Measurement variability was less at the City location than at the Rural location due the fact that the City 
spectra are more intense than the Rural night spectra. Corresponding to this, the R2 value obtained when the City 
night spectra are fit with their own mean is high (Fig. 6c, horizontal gray line; Fig. S2). Component loadings on 

Location Start/end time
Twilight sequence 

[E = evening, M = morning]
Solar elevation 
[°] Min./max.

Lunar elevation 
[°] Min./max.

Fraction of the Moon 
Illuminated Min./max. n

Rural

30-Jun-2014 
18:52:55

01-Jul-2014 
01:04:39 E −​26.94–16.73 −​27.17–38.55 0.12–0.13 371

01-Jul-2014 
01:05:39

01-Jul-2014 
08:08:23 M −​26.94–26.45 −​41.19–−​16.94 0.13–0.16 404

01-Jul-2014 
17:29:18

02-Jul-2014 
04:04:24 E −​27.01–32.46 −​43.87–53.96 0.18–0.21 451

02-Jul-2014 
19:38:19

03-Jul-2014 
01:04:48 E −​27.09–8.52 −​19.06–39.73 0.27–0.28 319

03-Jul-2014 
01:05:48

03-Jul-2014 
06:07:19 M −​27.09–4.28 −​48.64–−​19.24 0.28–0.31 299

12-Jul-2014 
19:09:09

12-Jul-2014 
23:50:01 E −​25.69–13.34 −​15.30–28.01 0.99–0.99 279

14-Jul-2014 
12:35:07

14-Jul-2014 
21:51:36 E −​13.53–70.54 −​59.59–−​1.93 0.90–0.93 249

18-Jul-2014 
14:41:32

19-Jul-2014 
01:05:16 E −​29.19–62.29 −​41.35–7.16 0.48–0.54 489

19-Jul-2014 
01:06:16

19-Jul-2014 
05:58:09 M −​29.19–0.92 7.35–56.83 0.47–0.48 292

19-Jul-2014 
18:08:44

19-Jul-2014 
18:48:58 E 16.49–24.07 −​36.88–−​34.56 0.41–0.42 39

City

05-Jul-2014 
19:30:28

06-Jul-2014 
01:05:35 E −​27.36–9.84 −​2.66–41.20 0.55–0.57 299

06-Jul-2014 
01:06:35

06-Jul-2014 
09:33:28 M −​27.36–42.29 −​60.39–−​2.84 0.57–0.61 487

06-Jul-2014 
19:26:43

07-Jul-2014 
06:52:57 E −​27.46–11.95 −​56.98–37.62 0.65–0.70 566

10-Jul-2014 
19:23:45

10-Jul-2014 
23:44:06 E −​25.04–10.82 6.04–30.31 0.97–0.97 255

11-Jul-2014 
19:49:55

11-Jul-2014 
20:41:57 E −​2.72–6.10 1.08–9.43 1.00–1.00 53

16-Jul-2014 
19:13:22

17-Jul-2014 
01:05:37 E −​28.84–12.26 −​40.82–20.41 0.70–0.73 351

17-Jul-2014 
01:06:37

17-Jul-2014 
10:16:50 M −​28.84–49.33 17.14–52.33 0.67–0.70 536

17-Jul-2014 
19:02:59

18-Jul-2014 
01:05:03 E −​29.02–14.08 −​42.89–13.91 0.59–0.62 333

18-Jul-2014 
01:06:03

18-Jul-2014 
06:33:32 M −​29.01–7.23 14.09–56.88 0.57–0.59 319

Table 1.   Overview of spectral measurements and metadata.
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Figure 3.  Chromaticity changes in the downwelling illumination as a function of solar elevation.  
(a) Illumination CIE 1931 y chromaticity as a function of solar elevation. Vertical lines indicate transition zones 
between night, astronomical twilight, nautical twilight, civil twilight, and day. The y axis is shared with panel b. 
Data were averaged in 2° bins. (b) Scatter plot of individual chromaticity data for each measured spectrum. The 
black line indicates the chromaticity along the daylight locus produced by calculating the chromaticity of CIE 
daylight spectral power distributions with correlated colour temperatures between 4000 K and 25,000 K. Grey 
cross-hair line indicates the chromaticity of CIE standard illuminant D65 (6500 K). Histograms at the top show 
the distributions of CIE x chromaticity for the daylight, twilight and night regimes, with the x axis shared with 
panel b. Histograms to the right show the distributions of CIE y chromaticity for the daylight, twilight and night 
regimes, with the y axis shared with panel b. Squares indicate the mean x and y chromaticities, respectively, 
within the respective regime. (c) Illumination CIE 1931 x chromaticity as a function of solar elevation. 
Horizontal lines indicate transition zones between night, astronomical twilight, nautical twilight, civil twilight, 
and daylight. The x axis shared with panel b. Data were averaged in 2° bins.

Figure 4.  Colour rendering. sRGB pseudo-colour rendering of illuminant spectra. Spectral data were averaged 
in 2° bins, then normalised by their L2-norm. The log (base 10) of the normalizing values were scaled to be 
within 0.3 and 1, and the L2-normalised spectra multiplied by the resulting value. CIE 1931 XYZ tristimulus 
values were computed from the scaled spectra and transformed to sRGB32 values for display.
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the models behave as one would predict. The components corresponding to the astronomical twilight residuals 
(Fig. 6d) increase their loading with decreasing solar elevation.

We compared the performance of the CIE +​ 3R and CIE +​ 3C models in fitting the Granada daylight data set 
and the DiCarlo & Wandell daylight data set (Fig. 6c,f) and find that they explain 97.8 ±​ 1.6% and 97.9 ±​ 1.9% of 
the variance (mean ±​ 1SD), respectively, for the Granada dataset, and 93.1 ±​ 6.3% and 92 ±​ 7.9% of the variance 
(mean ±​ 1SD) for the DiCarlo & Wandell data set (Fig. 6c,f).

Model comparisons for all regimes.  The Granada dataset has lead to the development of a different set 
of 6, linear basis functions, which we term here the ‘Granada’ model21. We fit the Granada model to our data set 
and find that it captures daylight, civil twilight, and nautical twilight well but is unable to fit astronomical twilight 
and night spectra at the Rural (Fig. S3a) and City locations (Fig. S3b). The CIE +​ 3R has a marginal advantage in 
the night regime (Fig. S3a), and the CIE +​ 3C has a substantial advantage (explaining ~25% more of the variance) 
at night for the City location (Fig. S3b). We note that this is not a surprise, given that the Granada data set (from 
which the Granada model is derived) is limited to daylight and civil twilight measurements (lowest solar elevation 
measured in their data set is approximately −​4°).

Daylight-only models.  While the goal of the CIE +​ 3R and CIE +​ 3C models is to capture daylight, twilight, 
and night regimes of illumination, we also considered the question of which model would perform best in the 
daylight regime alone. To this end, we fitted the Granada dataset, the DiCarlo & Wandell data set, and all daylight 
spectra (solar elevation >​0°) with the CIE daylight model, the Granada daylight model, and our CIE +​ 3R and 
CIE +​ 3C models (Fig. S4). On average, the original three-component CIE model performs worst on all data sets 
(Fig. S4). The Granada model has a marginal advantage in fitting the Granada dataset and a larger advantage 
in fitting the DiCarlo & Wandell data set. The CIE +​ 3R and CIE +​ 3C models fit our daylight spectra well, as 
expected given that they were generated from this data set, but the difference between these and the fit of the 

Figure 5.  Fits of CIE daylight model to the spectral irradiance measurements. (a) CIE daylight basis 
functions S0 (mean), S1 and S2 between 360 nm and 830 nm. Basis functions were normalised by their vector 
norm. (b) Goodness-of-fit of CIE daylight model as a function of solar elevation in the Rural location. The 
points labelled “Granada database” and “D&W (2000) data” correspond to the mean fit ±​ 1SD of the daylight 
model to the daylight spectra from the Granada and DiCarlo & Wandell3 datasets. (c) Component loadings on 
S0, S1 and S2 as a function of solar elevation in the Rural location (mean ±​ 1SD). (d) Goodness-of-fit of CIE 
daylight model as a function of solar elevation in the City location. The points labelled “Granada database” 
and “D&W (2000) data” correspond to the mean fit ±​ 1SD of the daylight model to the daylight spectra from 
the Granada and DiCarlo & Wandell3 datasets. (e) Component loadings on S0, S1 and S2 as a function of 
solar elevation in the City location. In panels (b–e) vertical lines indicate transition zones between night, 
astronomical twilight, nautical twilight, civil twilight, and day. Goodness-of-fit values and component loadings 
were averaged in 2° bins of solar elevation. The CIE model was fit in the 360–830 nm range to the spectra in this 
dataset, and in the 380–780 nm range for Granada and DiCarlo & Wandell3 datasets. R2 were calculated in these 
ranges, respectively.
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Granada model is very small. Thus, for 6 basis functions, the Granda model provides the best fits for daylight, 
while our extended models provide the best fits for data across all solar elevations.

Discussion
In this study, we collected spectroradiometric measurements of downwelling illumination as a function of solar 
elevation (time of day) in a rural location (Cherry Springs State Park, PA) and in a city location with light pollu-
tion (Philadelphia, PA). The spectral and intensity changes of downwelling outdoor illumination largely agree in 
these two measurement sites up to nautical twilight (−​12° <​ θs <​ −​6°). At this point, the dominant illumination 
source in the city is artificial anthropogenic light. This light pollution truncates the twilight period during which 
outdoor illumination is enriched in short-wavelength, blue light.

We found that the CIE daylight model did not accurately capture changes in the spectral composition of 
the illumination at twilight, and to a lesser extent, missed daylight components as well. We therefore created 
expanded illumination models that added basis functions to the CIE model. Two of these added components 
were shared between the Rural and City models. A third component, which captures the lowest-light level spectra, 
differed across the two models. In an analysis of spectra collected in Granada, Spain, Hernández-Andrés, et al.22 
found that even though three basis functions (such as those proposed by the CIE) were sufficient for colourimet-
ric reconstruction (i.e. in terms of chromaticity coordinates), they suggested that six basis functions are needed 
for accurate spectral reconstruction of daylight. We also find that we need 6 basis functions here for good spectral 
reconstruction, but that the 6 basis functions appropriate when twilight and nightime spectra are of interest in 
addition to daylight are different from those optimised for daylight (Figs S4 and S5). In addition, different basis 
functions are required for Rural and City locations (Fig. 6).

Our urban measurements were made on a five-story rooftop that was taller than all other buildings in its 
immediate vicinity, a location chosen in order to capture a spectrum of light both transmitted through and 
reflected from the atmosphere over the city and spatially averaged over relatively long (~1 km) distances. This 

Figure 6.  Extending the CIE daylight model to twilight and night illumination. (a) Mean residuals of CIE fit 
for daylight and civil twilight in both Rural and City location. Residuals were normalised by their vector length. 
(b) Mean residuals after fitting the CIE Model along with the daylight and civil twilight residuals (CIE +​ 2 
model) to the astronomical twilight data from the rural location (upper panel) and the City location (lower 
panel). Residuals were normalised by their vector length. Inset in the upper panel shows the normalised night 
spectrum measured in Zabriskie Point, CA by Cronin, et al.1. Inset in the lower panel shows the normalised 
night spectrum measured in Boston, MA by Cronin, et al.1. Note the correspondence of relative spectral peaks 
between the residuals and the night spectra measured by Cronin, et al.1. In the upper panel, black dot indicates 
558 nm. In the lower panel, black dot indicates 819 nm; black line indicates 570–615 nm. (c) Goodness-of-fit of 
the full CIE +​ 3R model in the Rural location (upper panel) and the CIE +​ 3C model the City location (lower 
panel). Vertical lines indicate transition zones between night, astronomical twilight, nautical twilight, civil 
twilight, and day. Goodness-of-fit values were averaged in 5° bins of solar elevation. Insets in upper and lower 
panels show goodness-of-fit for the CIE model (same as Fig. 5b,d), and CIE +​ 1, CIE +​ 2 and final CIE +​ 3R and 
CIE +​ 3C models. (d) Component loadings of the additional three basis functions for the Rural and the City 
location. Vert ical lines indicate transition zones between night, astronomical twilight, nautical twilight, civil 
twilight, and day. Component loadings and goodness-of-fit values were averaged in 2° bins of solar elevation. 
The CIE, CIE +​ 1, CIE +​ 2 and final CIE +​ 3R and CIE +​ 3C models were fit in the 360–830 nm range to the 
spectra in this dataset, and in the 380–780 nm range for Granada and DiCarlo & Wandell3 datasets. R2 were 
calculated in these ranges, respectively.
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rooftop location therefore provided us a measurement of the average background of urban skylight illumination 
at night. Given the nature of artificial lighting, the details of street-level measurements at night are hyper-local, 
varying over length scales of about one-meter, with signals dominated by immediate spatial and temporal prox-
imity to individual street lamps, windows, headlights, etc, making street-level measurements uninformative for 
our purposes. In addition, we studied only two locations, one rural and one urban, and how our measurements 
and models generalise to other rural and urban locations is an open question. Examination of nighttime satellite 
images23 suggests that the amount of artificial light in Philadelphia is similar to that in other major cities around 
the world; determining whether the spectral composition is also similar would require additional data-taking in 
other cities. However, given that our nighttime measurements share broad features with the spectra reported by 
Cronin, et al.1 (Fig. 6) and that our daylight measurements are consistent with extant daylight characterisations 
provide reason for optimism about the generalisability of our measurements.

This study was not designed to provide systematic measurements of the contribution moonlight as a function 
of lunar elevation and fraction illuminated, and here we focussed on conditions where the effect of moonlight was 
small. This is a limitation of our study. In a set of spectral twilight measurements across the lunar cycle, Palmer 
and Johnsen11 found that moonlight can be detected for solar elevations of −​8° or less, corresponding to the 
period of nautical twilight. They note that in the spectra they measured, the effect of moonlight was independent 
of other light sources, suggesting that the effect of moonlight could be modelled as an additional linear compo-
nent parameterised by lunar phase.

Ambient illumination acts as a zeitgeber (‘time giver’) for photoentrainment of the circadian rhythms of virtu-
ally all organisms, affecting many behavioural and physiological processes24. Indeed, both intensity and spectral 
changes appear to be important determinants for the alignment of circadian rhythms to the solar day10,25. Our 
data shows that in the City location, both changes in intensity and colour of the illumination over the course of 
the day are affected by light pollution from anthropogenic light sources. Further research could address the effect 
upon circadian rhythm of alteration of spectral dynamics in the solar day due to light pollution.

Methods
Procedure.  We measured the downwelling vector irradiance, which is defined as the light collected from the 
entire hemisphere of a measurement surface pointed up. Light arriving at the detector in the direction of the sur-
face is weighted most; the light is integrated according to the cosine of the angle of the incident light1,26.

Measurements of terrestrial downwelling irradiance spectra under conditions of minimal light pollution were 
taken in Northern Pennsylvania (Cherry Springs State Park, PA) at different points in the lunar cycle in the 
months of June and July 2014. Measurements under the new moon were taken between the night of June 30 and 
the morning of July 4. Full moon measurements were taken on July 11 and 12. Finally, measurements at 60% 
and 49% fraction of the moon illuminated were taken between July 18 and 20. In the same month, we also col-
lected spectra under conditions of urban light pollution from the roof of a four-story building near the centre of 
Philadelphia, PA. A summary of the dates and ranges of solar elevation, lunar elevation and fraction of the moon 
illuminated is given in Table 1.

Spectroradiometric measurements of the downwelling illumination spectrum were taken every 60 seconds. To 
capture the dynamic range of the illumination, the integration time of the spectroradiometers was adjusted such 
that the maximum power across all wavelengths did not exceed more than ~85% of the instrument’s maximum 
allowable intensity reading so as to avoid saturation of the spectral measurements under rapidly changing illumi-
nation conditions. These were changed manually by the experimenter. The integration times used were different 
in the two spectrometers due to their different sensitivities, with up to 60 s for the high-sensitivity spectrometer 
at night.

Locations.  Measurements of the sky spectral power distribution were performed at Cherry Springs State Park, 
Potter County, Pennsylvania in the United States (41.6646° N, −​77.8125° W; elevation 710 m, NED Point Query 
Service, USGS National Elevation Dataset), a certified ‘IDA International Dark Sky Park’ (Rural). The measure-
ment location was on an elevated site within the largely undeveloped Susquehannock State Forest, and was there-
fore free from direct and indirect anthropogenic light sources. Special care was taken during the measurement 
periods to mask any stray light from the laptop computer that controlled the spectrometers, using black cloth. A 
permit to establish a research camp was obtained from the Department of Conservation and Natural Resources, 
Commonwealth of Pennsylvania.

We also measured spectral power distributions of downwelling irradiance in an urban setting in Philadelphia, 
PA (City), from the five-story roof of David Rittenhouse Laboratories, Department of Physics and Astronomy, 
University of Pennsylvania (39.952237° N, −​75.188734° W; elevation 12 m). Because of the wide availability of 
electric light sources used in urban environments, the measurements taken at this site were measurements of a 
mixture of natural illumination, light from artificial sources such as street lamps, and reflections of these sources 
from the built environment. The roof where we conducted measurements was taller than the other roofs in its 
immediate vicinity, providing our detector a near-full hemispherical view of the sky, and the roof was not directly 
lit by its own artificial light sources. For these reasons, this measurement location was adequate for obtaining 
measurements of downwelling irradiance resulting from both natural and anthropogenic sources that were spa-
tially averaged over large distances in the city.

Solar elevation θs, lunar elevation and lunar phase were extracted for the given topographic coordinates by 
generating ephemeris tables obtained using the Multiyear Interactive Computer Alamanac software5 (MICA 
Version 2.2.2). Ephemeris tables were interpolated linearly to find solar elevation, lunar elevation and lunar phase 
for each measurement time and location. The reported true elevations thus do not represent apparent eleva-
tions that take local atmospheric conditions and refraction into account. Methods for converting elevations from 
ephemeris tables to approximate apparent elevations are available27.
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Measurement devices.  All measurements were taken with two customised USB spectrometers (USB2000+​, 
OceanOptics, Inc.; Dunedin, FL), henceforth referred to as the ‘A’ and ‘B’ spectrometers, coupled to a custom-built 
probe of downwelling irradiance28,29. The ‘A’ spectrometer was manufacturer-optimised for high sensitivity meas-
urements (Sony ILX511B linear silicon CCD array), reporting between 180 and 875 nm. This was used for twilight 
and night measurements. The ‘B’ spectrometer was less sensitive with a wavelength range of 340–1025 nm. This 
was used for daylight measurements. We used a combination of the two spectrometers to span the factor of 108 in 
diurnal irradiance between midday and night.

To deal with the large number of possible scene orientations in human vision while still detecting a measura-
ble amount of light in low-light twilight and nighttime conditions, we estimated the illuminant for human vision 
under a given sky as the downwelling irradiance, or light energy impinging on an upward-facing plane, coming 
from the sky. To construct a probe for downwelling irradiance, we followed the technique described by Sweeney 
and colleagues and Johnsen and colleagues28,29. A single-mode, 3-m fibre optic patch cable (1000 μ​m diameter, 
5.8 mm nominal OD, numerical aperture 0.22 ±​ 0.02, acceptance angle θ​max 12.7°, full angle 25.4°; OceanOptics 
Inc., Dunedin, FL) was connected to the spectrometer and fed through a tube in the downwelling irradiance 
probe. To construct the probe, the measuring end of the fibre optic cable was pointed at a 45° angle towards a 
10.16 cm (4″​) diameter plexiglass disk painted with Avian-B White Reflectance Coating (Avian Technologies; 
New London, NH), a water-based barium sulfate (BaSO4) coating. Ultimately, this 45° angle is arbitrary, and 
all that is required for physically equivalent measurements is that the cable “views” an unoccluded patch of the 
scattering disk in the same orientation for each measurement. Practically speaking, the choice of 45° splits the dif-
ference between the cable potentially viewing its own shadow on the disk when pointed at an angle near 0° from 
normal, and the cable potentially missing light reflected from the disk with tiny shifts in the mounting hardware 
when pointed at a glancing angle closer to 90° from normal to the disk. An O-ring fixed around the cable held the 
distance in which the cable was inserted into the tube and thus its distance to the reflectance disk constant. The 
distance between the tip of the cable and the center of the reflectance disk was 7.74 cm. We verified that the fibre 
optic cable could only detect light reflected by the disk by shining a tungsten halogen light (LS-1; OceanOptics, 
Inc., Dunedin, FL) through the cable in a dark room. When connected to a lamp and not a spectrometer, only 
the reflectance disk and no other parts of the measurement assembly were illuminated. This indicated that the 
alignment and positioning of the fibre optic probe were in good order.

A Lenovo Thinkpad X240 laptop computer running Linux distribution Xubuntu 14.04 was used to control 
the spectrometers and record the measurements. The laptop was equipped with hot-swappable 9-cell batteries, 
allowing uninterrupted power during the measurements periods. The OmniDriver API package (OceanOptics, 
Inc.; Dunedin, FL) and custom software written for MATLAB (Mathworks Inc.; Natick, MA) was used to read and 
save spectral power distributions from the spectrometers onto the laptop hard drive.

Spectrometer calibration.  Thermal noise and dark calibration.  Dark measurements (with a metal cap on 
spectrometer entrance port) were performed while the two spectrometers were placed in a MyTemp Mini Digital 
Incubator (Benchmark Scientific; Edison, NJ). The initial temperature in the incubator was 24 °C. The incubator 
temperature was set to 10 °C, while continuous dark measurements were performed. Then, the incubator tem-
perature was set to 60 °C, continuing to take measurements. The board temperature within the spectrometers, as 
reported by their internal sensors, was measured along with the dark spectra. This allowed us to create a database 
for dark spectra parameterised by integration time and measured board temperature, which we found to be the 
salient parameters in the noise in a given dark spectrum (Fig. S5). The dark spectrum in this library most similar 
to a given measurement condition was used in processing all individual spectra in the dataset.

Wavelength calibration.  The USB spectrometers come factory-wavelength calibrated, with each pixel on the 
sensor corresponding to a wavelength. We validated this calibration with independent wavelength measurement 
using two line sources (AS-361 Mercury [Hg] Spectral Calibration Lamp; AS-364 Argon [Ar] Spectral Calibration 
Lamp; Spectral Products, Putnam, CT). We corrected the factory calibration by comparing the measurements to a 
sample of known spectra lines (404.7, 435.8, 546.1, and 579 nm for mercury source; 696.5, 706.7, 727.3, 738.4, and 
763.5 nm for Argon source). These corrections were well-approximated by a single additive shift and were small 
(<​1 nm for both spectrometers), indicating good factory wavelength calibration. The shifts necessary for the 
two spectrometers were −​0.79 ±​ 0.57 nm (‘A’ spectrometer) and −​0.98 ±​ 0.37 nm (‘B’ spectrometer) on average  
(±​1SD), averaged across spectral lines, respectively (Fig. S6).

Absolute irradiance calibration.  Although the spectrometers come with factory wavelength calibration, they are 
uncalibrated with respect to the power read at each wavelength. To bring the measurements into absolute radiomet-
ric calibration, we needed to relate a measurement of the absolute spectral irradiance arriving on the disk of the 
measurement assembly to the raw readings over wavelength of each spectrometer. Because the wavelength ranges 
of the various calibration sources and measurement instruments available to us were each only partially overlapped 
with the wavelength ranges of the two spectrometers, we used the following (somewhat involved) procedure.

We took measurements with both spectrometers (‘A’ and ‘B’) of three calibration sources (relative spectra 
shown in Fig. S7a,b):

(1)	 The reflectance of our measurement sample illuminated with a slide projector (Kodak Carousel 4400; Kodak 
Inc., Rochester, NY). We also measured this source using a PR-670 spectral radiometer (Photo Research 
Inc., Chatsworth, CA), which provided the spectral radiance of the same sample in absolute units (W·m−2·s-
r−1·nm−1) in the wavelength range 380 nm to 780 nm. With this measurement, we obtained the absolute 
irradiance calibration for both spectrometers across the wavelength range 380–780 nm.
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(2)	 A tungsten halogen light source (SL1-CAL; StellarNet, Inc., Tampa, FL) with a corresponding NIST-traceable 
spectral irradiance measurement at its exit port provided by the manufacturer. This provided relative spectral 
irradiance calibration at long wavelengths.

(3)	 A deuterium light source (SL3-CAL; StellarNet, Inc., Tampa, FL) with a corresponding NIST-traceable spec-
tral irradiance measurement at its exit port provided by the manufacturer. This provided relative spectral 
irradiance calibration at short wavelengths.

We investigated the measurement signal-to-noise ratio for each of these three sources as a function of wave-
length for both spectrometers. We calculated the absolute correlation coefficients between the set of measured 
values at odd wavelengths and the set of measured values at even wavelengths within a window of ±​20 nm around 
each wavelength (Fig. S7c,d). In other words, we took the samples within that ±​20 nm window and found two 
disjoint sets within that window and correlated them with each other. In theory, high correlations in such a win-
dow point to good signal quality and measurement of the smoothly varying light sources. This was indeed the 
case (Fig. S7c,d).

We combined the three sets of calibration measurements as follows (see Fig. S7). After filtering with an 
8th-order one-dimensional median filter using MATLAB’s medfilt1 function (Mathworks Inc.; Natick, MA), cor-
recting for wavelength and subtracting the mean dark signal appropriate for that integration time and tempera-
ture, both ‘ground truth’ and measured spectra were interpolated to 1-nm wavelength spacing. Relative correction 
factors as a function of wavelength are then given as the ratio of the known relative spectrum of the source and 
the measured spectrum. These correction factors were obtained separately for each source. We then spliced the 
three sets of correction functions together by choosing 400 nm as a transition point to go from the correction 
factors derived from the measurements UV-rich SL3-CAL lamp to the correction factors derived from the PR-670 
measurements of the assembly sample, and 760 nm as the transition point between the correction factors derived 
from measurements of the IR-rich SL1-CAL lamp (Fig. S7e,f). The correction factors were brought into absolute 
scale determined by the PR-670 measurements by finding, in a least-squares fashion, the scalar which brought 
the SL1-CAL and SL3-CAL-derived correction factors in the ±​20 nm range around the transition points into 
accord with the PR-670 derived correction factors (Fig. S7g,h). The correction factors were then spliced together 
smoothly using a linear weighting ramp across ±​20 nm around the transition points, with an equal weighting of 
the correction factors at the transition wavelengths (Fig. S7i,j).

Processing procedure.  The USB spectrometers report uncalibrated spectra that are uncorrected for integration 
time. To convert these spectra into spectral downwelling irradiance measurements, we followed the following 
sequence of corrections: 1) For a given uncalibrated raw measurement reported from the USB spectrometers, we 
first found our best estimate of the dark noise, taken from our dark noise database parameterised by integration 
time. At a given wavelength band, we interpolated the value as a function of board temperature, and did this for 
all wavelength bands, yielding a dark noise spectrum that we subtracted from the measurement; 2) we divided 
the result by the integration time, yielding a noise-corrected measurement in units of uncalibrated power per sec-
ond; 3) we interpolated from the non-uniform, factory-calibrated wavelength sampling to wavelength sampling 
at 1 nm between 280 nm and 840 nm (‘A’ spectrometer) and 360 and 840 nm (‘B’ spectrometer) and corrected 
for the factory wavelength calibration as described above; 4) we then multiplied by the wavelength-dependent 
radiometric correction factors found using the procedure described above, yielding the spectral radiance of the 
illumination-measurement assembly sample spectrum in W·m−2·sr−1·nm−1; 5) we converted to spectral irradi-
ance, in W·m−2·nm−1 by multiplying radiance by π​, which is the projected solid angle over a hemisphere30.

Quality control and filtering.  Any spectra with saturated values at any wavelength were discarded from the anal-
ysis. Occasionally, the dark noise subtraction resulted in negative values, which we set to zero for further analysis. 
We discarded any spectra for which this procedure led to spectra that were zero at all wavelengths. We filtered 
each spectrum using an 8th-order one-dimensional median filter using MATLAB’s medfilt1 function (Mathworks 
Inc.; Natick, MA).

Daylight datasets and models.  We considered two additional and independent data sets and two alter-
native models in this paper. We obtained a data set of 10,756 daylight spectra collected by DiCarlo and Wandell3 
in Stanford, CA from the authors (personal communication), and a data set of 2,600 daylight spectra (henceforth 
called ‘Granada spectra’) collected by Hernández-Andrés, et al.21 from the authors’ website (http://colorimagin-
glab.ugr.es/pages/Data; accessed December 14, 2015). We obtained the CIE basis functions from Wyszecki and 
Stiles31 and the six-component model derived from the Granada spectra (henceforth called ‘Granada model’) 
from the authors’ website (http://colorimaginglab.ugr.es/pages/Data; accessed December 14, 2015). We digitised 
the reference rural night sky spectrum from Zabriskie Point, CA and the light pollution spectrum from Boston, 
MA from Cronin, et al.1 using WebPlotDigitzer (http://arohatgi.info/WebPlotDigitizer/, accessed December 15, 
2015).

Model fitting procedure.  We fitted the various models to the spectral data as follows. We first splined the 
basis functions to have 1-nm spacing and then normalised each basis function by its vector norm (L2-norm). We 
then separately normalised each measured spectrum by its vector norm and found the best-fitting weights of the 
basis functions using least-squares regression. We calculated the proportion of variance (R2) explained in the 
measured spectrum by the model fit as the squared linear pairwise correlation coefficient across wavelengths. The 
procedure described above yields the linear model weights required to fit the normalised spectra. It is these nor-
malised weights that are plotted in the graphs of component loadings (e.g., Fig. 6d). In the data supplement, we 

http://colorimaginglab.ugr.es/pages/Data
http://colorimaginglab.ugr.es/pages/Data
http://colorimaginglab.ugr.es/pages/Data
http://arohatgi.info/WebPlotDigitizer/
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provide mean normalised weights grouped by solar elevation (Tables S6 and S7) as well as the mean scale factor 
required to map the normalised spectra for each elevation group back to absolute spectra. Normalisation, fitting 
and calculation of R2 was performed in the wavelength range 360–830 nm for our data set, and in 380–780 nm for 
the Granada and DiCarlo & Wandell datasets (see Figs 5 and 6, S2, S3 and S4 captions for details).

CIE + 3R and CIE + 3C extended CIE models.  To capture components in our data set not characterised 
by the CIE daylight model, we used the following iterative approach. After fitting the CIE daylight basis functions, 
we extracted the mean residuals for all Rural and City spectra for daylight (θs ≥​ 0), and took the average of these 
residuals to produce the first additional basis function, which we refer to as the CIE +​ 1 basis function; we refer 
to the model consisting of the CIE daylight model plus the CIE +​ 1 basis function as the CIE +​ 1 model. We then 
fit all Rural and City spectra for civil twilight (−​6° <​ θs <​ 0°) with the CIE +​ 1 model, and found a second addi-
tional basis function as the average of the residuals from this fit (CIE +​ 2 basis function). By adding the CIE +​ 2 
basis function to the CIE +​ 1 model we obtain the CIE +​ 2 model. Finally, for the two measurement locations, we 
added a different, sixth basis depending on the location, extracting the residuals from a fit with the CIE +​ 2 during 
astronomical twilight (−​18° <​ θs <​ −​12°) separately for each location, and using the average of these residuals as 
additional basis functions (CIE +​ 3R[ural] and CIE +​ 3C[ity] basis functions). This produced two CIE +​ 3 models 
(CIE +​ 3R and CIE +​ 3C), one for each location. The decision to use separate basis functions for astronomical twi-
light at the two locations stems from the observation that this is the point in solar elevation at which the spectral 
composition begins to differ substantially between the two locations (Fig. 1).

We restricted our analyses to data points for which the lunar fraction was <​0.3 in the Rural location, and 
included all spectra independent of lunar phase from the City data. At 0.3 fraction of the moon illuminated, the 
brightness of the moon is approximately 3.29% of the brightness of a full moon11. In this data set, apart from a 
comparison with a full-moon twilight sequence, we did not consider the systematic effect of lunar phase on twi-
light as we do not have sufficient data that spans the entire lunar cycle.

Open-access data set.  The data supplement contains the Rural and City irradiance spectra with associ-
ated wavelength spacing (Supplementary Tables S1–S3), the CIE +​ 3R (Supplementary Table S4) and CIE +​ 3C 
(Supplementary Tables S5) models, as well as the mean ±​ 1SD weights of these model components as a function of 
solar elevation (Supplementary Tables S6 and S7). The raw and uncalibrated data set is available at https://dx.doi.
org/10.6084/m9.figshare.2009070.v1 and a MATLAB code repository to process these data and reproduce all ele-
ments from the figures of this paper is available at https://dx.doi.org/10.6084/m9.figshare.3124759.v1 or https://
github.com/spitschan/IlluminationSpectraDataset (MIT License).
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