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Moyamoya disease (MMD) is a unique cerebrovascular disease characterized by the progres-
sive stenosis of large intracranial arteries and a hazy network of basal collaterals called 
moyamoya vessels. Because the etiology of MMD is unknown, its diagnosis is based on 
characteristic angiographic findings. Re-vascularization techniques (e.g., bypass surgery) are 
used to restore perfusion, and are the primary treatment for MMD. There is no specific 
treatment to prevent MMD progression. This review summarizes the recent advances in 
MMD pathophysiology, including the genetic and circulating factors related to disease de-
velopment. Genetic and environmental factors may play important roles in the development 
of the vascular stenosis and aberrant angiogenesis in complex ways. These factors include 
the related changes in circulating endothelial/smooth muscle progenitor cells, cytokines re-
lated to vascular remodeling and angiogenesis, and endothelium, such as caveolin which is 
a plasma membrane protein. With a better understanding of MMD pathophysiology, non-
surgical approaches targeting MMD pathogenesis may be available to stop or slow the pro-
gression of this disease. The possible strategies include targeting growth factors, retinoic 
acid, caveolin-1, and stem cells.
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Introduction 

Moyamoya disease (MMD) is a unique cerebrovascular 
disease characterized by the progressive stenosis of the distal 
internal carotid artery (ICA) and the resulting hazy network 
of basal collaterals called moyamoya vessels. The etiology of 
MMD is unknown. As a result, the criteria for the diagnosis of 
MMD is based on characteristic angiographic findings. How-
ever, the angiographic findings may not be sensitive or specific 
to MMD. The current diagnostic criteria require the presence 
of prominent basal collaterals for the diagnosis of MMD. 
However, a decision on the presence of basal collaterals can be 

subjective. In patients with MMD, the angiographic findings 
can differ according to the progressive stage and age of presen-
tation, and the characteristic angiographic findings are not 
consistently observed in all courses of MMD.1-3 In patients 
with an early stage of Suzuki’s angiographic grading, the ab-
normal vascular network is not yet evident.4 Unlike in child-
hood-onset MMD, the basal collaterals are often not promi-
nent in adult-onset MMD.3 In addition, the patients may pres-
ent with unilateral MMD findings. In fact, the diagnostic cri-
teria for definitive MMD was revised to include patients with 
both a bilateral and unilateral presentation of the terminal 
ICA stenosis with an abnormal vascular network at the base of 
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the brain by the Research Committee of MMD of the Japa-
nese Ministry of Health, Labour, and Welfare in 2015. 

Owing to the currently limited understanding of MMD, re-
vascularization techniques (e.g., bypass surgery) to restore 
perfusion are the primary treatment for MMD. There is no 
specific treatment to prevent MMD progression. The purpose 
of this review is to summarize the recent advances in MMD 
pathophysiology, including the genetic and circulating factors 
related to disease development.

Pathological features of MMD 

The main pathological changes of the stenotic segment in 
MMD are the fibrocelluar thickening of the intima (e.g., the 
hyper-proliferation of the vessel wall components, active an-
giogenesis, and matrix accumulation), irregular undulation of 
the internal elastic laminae, medial thinness (e.g., an attenua-
tion of media), and a decrease in the outer diameter.5-10

Recent neuroimaging techniques, such as the three-dimen-
sional (3D) constructive interference in steady-state (CIISS) 
magnetic resonance imaging (MRI) and high-resolution MRI 
studies of patients with MMD, have demonstrated a constric-
tive remodeling (e.g., the narrowing of the arterial outer diam-
eter) in affected segments and a concentric enhancement of 
the symptomatic segments.11-14 In our data set from a large co-
hort of adult-onset MMD, most patients (90.6%) showed a 
long-segment concentric enhancement of the distal ICA and/
or middle cerebral artery on a high-resolution MRI, regardless 
of symptom presence or acuteness. The high-resolution MRI 
findings are consistent with the results of previous pathological 
reports that showed intimal hyperplasia and medial thinness.6,7 

There is growing evidence that MMD is primarily a prolif-
erative disease of the intima. The smooth muscle proliferation 
that is associated with an ACTA2 mutation has been postulat-
ed to be the key mechanism of the vascular occlusion in famil-
ial MMD.15 The histopathological findings in the distal ICA 
have shown a proliferation of the smooth muscle cells or en-
dothelium8,10,16 and a stenosis or occlusion associated with the 
fibrocellular thickening of the intima.5 An enhancement of the 
stenotic segments may represent either a neo-vascularization 
or an intimal hyperplasia.

The moyamoya vessels are the dilated perforating arteries 
that have various histopathological changes, including fibrin 
deposits in the wall, fragmented elastic laminae, attenuated 
media, and the formation of microaneurysms.5 In addition to 
the moyamoya vessels, cortical microvascularization, which is 
characterized by a substantially increased microvascular den-
sity and diameter, is suggested as a specific finding in MMD.17 

These basal and cortical vessels may represent compensatory 
mechanisms for the reduced cerebral blood flow or the aber-
rant active neo-vascularization before the vascular occlusion. 
An angiographic study of a large cohort of pediatric patients 
with MMD showed that the cortical neo-vascularization may 
occur before any significant hemodynamic impairment, sug-
gesting that neo-vascularization is an active process, not a pas-
sive compensation for the vascular occlusion.18 

The complicated pathologic features of the stenotic seg-
ments of MMD (e.g., a coexistence of proliferation and shrink-
age) and the unknown nature of the neo-vascularization (e.g., 
an aberrant vs. compensatory process) suggest that MMD 
pathophysiology is a complex process.  

Genetics underlying MMD

Approximately 10% of individuals with MMD exhibit a fa-
milial occurrence. Several genetic loci have been identified in 
familial MMD, including 3p24-26,19 6q25,20 8q23,21 10q23.31,15 
12p12,21 and 17q25.22 In addition, MMD is also associated 
with many genetically transmitted disorders, including neurofi-
bromatosis, Down syndrome, sickle cell anemia, and collagen 
vascular disease. These findings suggest the importance of ge-
netic factors.

RNF213 as a susceptible gene for MMD
More recently, the Ring finger 213 (RNF213) gene in the 

17q25-ter region was identified as the strongest susceptibility 
gene for MMD in East Asian people using a genome-wide 
linkage and exome analysis.23,24 The p.R4810K (c.14576G > A) 
variant of the RNF213 genetic variant was identified in 95% of 
patients with familial MMD, 80% with sporadic MMD, and 
1.8% of control subjects in a Japanese population.23 The ho-
mozygous p.R4810K variant of RNF213 predicted an early 
onset and severe form of MMD in both Japanese25 and Kore-
an26 patients with MMD. The population that is susceptible to 
MMD, such as carriers of the RNF213 p.R4810K variant, is 
estimated to be 16.16 million people in East Asian countries.27 
The number of patients with MMD, which was conservatively 
estimated at 1 per 300 carriers of the RNF213 p.R4810K vari-
ant, is considered to be 53,800 in East Asian populations.27,28 

Further genetic studies for MMD are warranted, particular-
ly in populations outside East Asia, because the single nucleo-
tide polymorphism (SNP) of p.R4828K in RNF213 is not the 
susceptibility gene for MMD in Westerners or South Asian 
individuals. Novel variants in RNF213 in non-p.R4828K were 
recently found in Caucasian and Chinese cases with MMD24 
and in the United States.29 For example, several variants of 
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RNF213 in non-p.R4810K (i.e., rs148731719, rs397514563) 
were recently found in Caucasian and East and South Asian 
patients with MMD.24,29-31 In addition, the clinical manifesta-
tions and possibly angiographic findings may differ between 
Westerners and East Asians.32 The p.R4810K RNF213 variant 
was reportedly related to the ischemic type of MMD, while 
the non-p.R4810K RNF213 variants, particularly A4399T, 
were associated with the hemorrhagic-type of MMD.30 

Function of RNF213 on MMD pathophysiology 
The exact function of RNF213 is unknown. Recent in vivo 

experiments using genetically engineered RNF213 mice ad-
dressed the mechanism underlying the RNF213 SNPs in the 
development of MMD pathology. The target disruption of 
RNF213 did not induce MMD in the RNF213-defcient mice 
under normal conditions.33 Kanoke and colleagues alterna-
tively generated RNF213-knock-in mice that expressed a mis-
sense mutation in the mouse RNF213, p.R4828K, on Exon 
61, which corresponds to the human RNF213, p.R4859K, on 
Exon 60 in MMD patients; however, these mice did not de-
velop MMD under normal conditions.34 These negative re-
sults could be consistent with the low penetrance rate of the 
RNF213 polymorphisms in patients with MMD, and may in-
dicate the importance of environmental factors in addition to 
the genetic factors.35 They subjected the RNF213-deficient 
mice to an ischemic insult, and found that the post-ischemic 
angiogenesis was significantly enhanced in the mice lacking 
RNF213 after a chronic hindlimb ischemia.36 This suggests 
the potential role of a RNF213 abnormality in the develop-
ment of abnormal vascular networks in chronic ischemia. 

Hitomi et al. established a model of induced pluripotent 
stem cells derived from vascular endothelial cells (iPSECs), 
and showed that the angiogenic activity from patients with 
MMD and RNF213 carriers was lower than that of the control 
subjects. The overexpression of the RNF213 variant down-
regulated Securin and inhibited angiogenic activity.37 They 
also showed that RNF213 may be a mediator downstream of 
the IFN-β signaling pathway in endothelial cells. Carriers of 
the RNF213 variant may be susceptible to cerebral hypoxia 
because of insufficient angiogenesis if inflammation and hy-
poxia occur simultaneously.38 Ohkubo and colleagues also 
showed that pro-inflammatory cytokines activated RNF213 
transcription, and RNF213 functions as a common down-
stream effector of the PI3 kinase-AKT pathway in endothelial 
angiogenesis.39 These data suggest that although MMD is not 
an inflammatory disease, inflammation may play an important 
role in MMD development. RNF213 plays a unique role in 
endothelial cells regarding the proper gene expression in re-

sponse to inflammatory signals from the environment. How-
ever, further studies are needed to elucidate the differential 
pathological processes between the endothelium (e.g., low-
ered angiogenesis) and smooth muscle cells (e.g., abnormal 
proliferation that causes moyamoya vessel formation and ste-
nosis of the major intracranial arteries). 

In addition to the preclinical data, clinical data has also 
shown that exposure to environmental factors, such as an au-
toimmune response and infection/inflammation, in MMD-
susceptible subjects may be associated with the angiographic 
features of MMD.35 For example, autoimmune thyroid disease 
has been reported in different MMD populations (i.e., pediat-
ric and adult-onset MMD, East Asians, and Westerners) and 
may be involved in MMD development.40-42 In addition, the 
RNF213 genetic variant may be associated with vascular risk 
factors, such as hypertension,43 and also could lead to vascular 
fragility, which may make vessels more vulnerable to hemody-
namic stress and secondary insults.35

Polymorphisms of microRNAs 
MicroRNAs (miRs), which are small non-coding RNAs 

(~23 nucleopeptides), negatively regulate the expression of 
many proteins by altering their gene expression through post-
transcriptional repression or mRNA degradation.44 miRs may 
play an essential role in the regulation of proliferation, differ-
entiation, survival, and aging of various tissues and cells, in-
cluding stem cells. There is increasing evidence that miRs that 
are altered after focal ischemia have a functional significance 
in the recovery after stroke as well as ischemic pathophysiolo-
gy. Preclinical studies of ischemic stroke have demonstrated 
that miRs  protect against focal ischemia and reperfusion inju-
ry by inhibiting oxidative stress.45 They are also involved in in-
flammation, neurogenesis, and angiogenesis.46-48 

A genome-wide miR array analysis of the serum from pa-
tients with MMD showed elevated serum levels of miRs asso-
ciated with RNF213 and BRCC3 (i.e., BRCA1/BRCA2-con-
taining complex, an important angiogenesis-related protein), 
both of which are involved in MMD pathogenesis.49 In addi-
tion, a SNP of miR-196a was associated with MMD.50 ANXA1, 
which is expressed in endothelial and smooth muscle cells,51 is 
a gene target of miR196a and mediates the apoptosis and inhi-
bition of cell proliferation.52 

Biomarkers underlying vascular stenosis 
and aberrant angiogenesis

In addition to genetic biomarkers, there are circulating fac-
tors that may be involved in MMD pathogenesis, including cir-



Vol. 18 / No. 1 / January 2016

http://dx.doi.org/10.5853/jos.2015.01760 http://j-stroke.org  15

culating endothelial progenitor cells (EPCs), cytokines, and 
caveolin.

Circulating vascular progenitor cells
In patients with acute myocardial infarcts or ischemic stroke, 

increasing evidence points to a role for circulating EPCs that 
originate from the bone marrow and help maintain the vascu-
lature and blood flow in an infarcted area.53 EPCs potentially 
contribute to the neo-vascularization at the ischemic brain in-
jury site in patients with MMD.54 Rafat et al. reported the pres-
ence of increased levels of circulating EPCs in patients with 
MMD.55 In contrast, Kim et al. demonstrated decreased EPC 
levels and defective angiogenic function in EPCs in pediatric 
patients with MMD, indicating there is abnormal angiogenesis 
during MMD pathogenesis.56 Similarly, impaired EPC func-
tion was observed in adult patients with MMD.57 Recently, Lee 
et al. reported a downregulation of retinaldehyde dehydroge-
nase 2 (RALDH2) using the gene expression profiles of EPC 
in pediatric patients with MMD. The epigenetic suppression 
of RALDH2 expression contributed to the defective function 
of MMD endothelial colony-forming cells; this could be res-
cued by supplying retinoic acid in vitro and in vivo.58 Aberrant 
angiogenesis was an active angiogenetic process that may cause 
both stenosis through the proliferation of endothelial and/or 
smooth muscle cells and abnormal collateral formation.8 

In addition to endothelial cells, the smooth muscle cells are 
also involved in this disease process. The MMD pathology is 
characterized by smooth muscle cell hyperplasia in the intima. 
Mutations in the smooth muscle cells, such as smooth muscle 
alpha-actin, which is encoded by ACTA2, may be involved in 
the increased proliferation of the smooth muscle cells, contrib-
uting to occlusive diseases.15 Recently, Kang and colleagues 
cultured and isolated smooth muscle progenitor cells (SPCs) 
from the peripheral blood of patients with MMD, and showed 
that the SPCs in the MMD group tended to make more irregu-
larly arranged and thickened tubules, as well as express differ-
ential genes compared to that of the healthy controls.59 These 
findings suggest a defect in the cell maturation process that 
might have occurred in the SPCs from the patients with MMD.

Cytokine and their polymorphisms
Various cytokines and their polymorphisms are associated 

with MMD, including (a) growth factors, such as vascular en-
dothelial growth factor (VEGF), fibroblast growth factor, 
platelet-derived growth factor (PDGF), and hepatocyte growth 
factor, (b) cytokines related to vascular remodeling and angio-
genesis, such as matrix metalloproteinases (MMPs) and their 
inhibitors, hypoxia-inducible factor-1α, and cellular retinoic 

binding protein-1 (CRABP-1), and (c) cytokines related to in-
flammation.55,60-64 The investigations regarding the role of these 
factors have been inconclusive. 

A genetic study of familial MMD investigated the balance 
between MMPs and their inhibitors, and found that the pres-
ence of a certain MMP inhibitor genotype may be a predis-
posing genetic factor for familial MMD.65 The levels of several 
trophic factors, such as VEGF, basic fibroblast growth factor, 
and PDGF-BB, were increased, but the VEGF receptor levels 
were decreased in MMD compared to that of controls.60,66,67 In 
addition, certain VEGF polymorphisms were associated with 
pediatric MMD and poor collateral vessel formation.68 How-
ever, these findings were not observed in other studies.69 Us-
ing a multifactor dimensionality reduction method, a recent 
study evaluated the interactions of different loci for MMD, 
but failed to show any influence of β-type PDGF receptor and 
MMPs on MMD.69 Young et al. suggested that the induction 
of pro-inflammation cascades and VEGF expression is sec-
ondary to the infarct rather than part of the primary MMD 
pathology.70 

Changes in the levels of these factors may be simply associ-
ated with the disease rather than causative, as many of these 
factors are also increased in patients with stroke. However, 
Kim and colleagues identified a polypeptide spot, CRABP-1, 
in cerebrospinal fluid from pediatric patients with MMD us-
ing a proteomics analysis.63 A higher CRABP-1 level in the 
CSF was associated with a typical bilateral involvement and a 
decrease in the basal collaterals post-operatively in adult 
MMD.71 It has been proposed that the retinoids attenuate 
growth factor-stimulated smooth muscle cell migration and 
proliferation, and CRABP-1 can negatively regulate retinoic 
acid activity.63 These findings suggest an important role for 
retinoid signaling in MMD pathogenesis by controlling the 
growth factor expression.63 Further studies are needed to de-
termine whether retinoids are efficacious for MMD treatment. 

Although pathological analyses have revealed that the af-
fected vessels do not show any inflammatory changes that lead 
to occlusion,16 the role of inflammation in the fibrocellular 
thickening of the intima and the disease pathogenesis are also 
being investigated. The plasma levels of MMPs, monocyte 
chemoattractant protein-1, and inflammatory cytokines (in-
terleukin-1b) were higher in patients with MMD compared to 
those in controls.60 A previous study,72 as well as our unpub-
lished data, showed that the levels of E-selectin, which is in-
volved in endothelial progenitor cell recruitment and angio-
genesis) were increased in both patients with MMD and those 
with atherosclerotic stroke.
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Endothelial function and nitric oxide metabolites
Endothelial dysfunction is responsible for the dysregulation 

of vascular tone, cellular adhesion, thrombus formation, smooth 
muscle cell proliferation, and vessel wall inflammation. MMD 
may be a condition that is more vulnerable to environmental in-
fluences that cause endothelial dysfunction. A previous study of 
a small cohort showed that the nitric oxide (NO) metabolites 
(i.e., nitrate and nitrite) were increased in cerebrospinal flow 
samples of 18 patients with MMD compared to that of controls, 
which probably reflects the development of abnormal collateral 
circulation.73 However, further studies are needed to confirm 
this result. In our unpublished data, the serum levels of NO me-
tabolites and asymmetric dimethylarginine (ADMA; an endog-
enous competitive antagonist of NO synthase, a marker of en-
dothelial dysfunction) in patients with MMD did not differ 
from those of control subjects. In addition, no differences were 
observed between control and MMD in endothelial NO syn-
thase polymorphisms.74

Caveolin and dysfunction in endothelial vesicular 
trafficking and signal transduction

Caveolae are 50-100 nm cell surface plasma membrane in-
vaginations that are abundant in endothelial cells, and play a 
major role in the regulation of endothelial vesicular trafficking 

and signal transduction.75 Caveolin-1, a scaffolding protein of 
the caveolae plasma membrane, is involved in the pathogenesis 
of cancers and vascular diseases.75 Caveolin-1 overexpression 
enhanced caveolae generation and accelerated the capillary 
tube formation by nearly three-fold, while caveolin-1 down-
regulation reduced the in vitro and in vivo capillary formation, 
and was associated with pathological angiogenesis.75-77 Both 
endothelial NO synthase and VEGFR2 co-localized in the ca-
veolae, while caveolin-1 expression was critical for VEGF-in-
duced angiogenesis in an ischemic hind limb model78 and en-
dothelial NO-related tumor angiogenesis.79 One study that 
used an ischemic hind limb model demonstrated that caveo-
lin-1 was also involved in endothelial progenitor cell recruit-
ment from the bone marrow.80 

Our recent study showed that caveolin-1 is a key mediator 
for MMD (unpublished data). In this study, the caveolin-1 se-
rum levels decreased in adult patients with MMD and were 
markedly decreased in those with the RNF213 variant. Liu 
and colleagues showed the differential roles of caveolin-1 dur-
ing the differential phases of angiogenesis, such as caveolin-1 
negatively regulating an earlier phase of angiogenesis (i.e., en-
dothelial cell proliferation), but positively regulating a later 
phase of angiogenesis (i.e., tube formation).76 Collectively, the 
decreased caveolin-1 levels and resulting increased prolifera-

Figure 1. Potential mechanisms of moyamoya disease. The association between genetic, circulating, and environmental factors. RNF213, Ring finger 213; 
EPCs, endothelial progenitor cells; SPCs, smooth muscle progenitor cells; miRNAs, microRNAs; CRABP-1, cellular retinoic acid-binding protein-I.
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tion and decreased stabilization/tube formation in patients 
with MMD suggests that the nature of neo-vascularization is 
an aberrant rather than a compensatory process. The elucida-
tion of mechanisms of the caveolin-1-related pathological an-
giogenesis may pave the way for various therapeutic strate-
gies.80,81 Caveolin expression could be modulated by genetic 
regulation targeting caveolin-1, such as antisense/siRNA or 
microRNA, anti-caveolin-1 antibodies, viral vectors or poly-
mers that target the caveolae. Further studies are needed be-
cause most previous studies were performed in ischemic hind 
limb or cancer models. One study investigated the effects of 
cerebral ischemia in caveolin-1 knockout mice and demon-
strated impaired angiogenesis and increased apoptotic cell 
death.82 In addition to angiogenesis, a series of signaling path-
ways couple caveolae with ischemia (e.g., neuroinflammation, 
blood-brain barrier permeability, and pre-conditioning), and 
caveolin was recently suggested as a novel therapeutic target 
for ischemic stroke.83

Conclusion and perspectives 

Although the pathogenic mechanisms of MMD are still un-
known, there is growing evidence that it is primarily a prolif-
erative disease, such that endothelial and smooth muscle pro-
liferation results in the development of an occlusion, and en-
hanced, but aberrant, angiogenesis (i.e., moyamoya vessels). 
Genetic factors and related changes in circulating factors, as 
well as environmental factors, may play important roles in 
complex ways (Figure 1). 

Further studies are needed because there is no relevant 
MMD animal model using these factors. In addition, these ge-
netic and related changes in circulating factors would confer 
pathophysiological effects on the systemic vessels as well as 
distal ICA/proximal middle cerebral artery. They cannot ex-
plain the site specificity with sparing systemic vessels. More-
over, none of the previous reports have studied the levels of 
circulating biomarkers in relation to the disease stage. The 
profile of circulating biomarkers may differ according to the 
disease stage.

At present, surgical re-vascularization is the mainstay MMD 
treatment. However, surgical treatments pose a possible risk 
for peri-operative ischemic complications and/or cerebral hy-
perperfusion syndrome.84 With a better understanding of 
MMD pathophysiology, non-surgical approaches targeting 
MMD pathogenesis may be available to stop or slow the pro-
gression of this disease. Non-surgical approaches may include 
the application of (a) certain trophic factors or chemicals that 
increase angiogenesis,85 (b) anti-cancer drugs to decrease the 

smooth muscle cell proliferation,15 (c) retinoid to attenuate 
growth factor-stimulated smooth muscle cell migration and 
proliferation,58,63 (d) several strategies to increase caveolin-1 
levels,81 and (e) stem cell therapy to replace or restore func-
tion of impaired EPCs or SPCs. Further efforts will benefit 
from collaborative works between the clinical hospital bed 
and the laboratory bench.
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