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Activation of plasma membrane TGR5 receptors in enteroendocrine cells by bile acids
is known to regulate gastrointestinal secretion and motility and glucose homeostasis.
The endocrine functions of the gut are modulated by microenvironment of the distal
gut predominantly by sulfur-reducing bacteria of the microbiota that produce H2S.
However, the mechanisms involved in the release of peptide hormones, GLP-1 and
PYY in response to TGR5 activation by bile acids and the effect of H2S on bile
acid-induced release of GLP-1 and PYY are unclear. In the present study, we have
identified the signaling pathways activated by the bile acid receptor TGR5 to mediate
GLP-1 and PYY release and the mechanism of inhibition of their release by H2S in
enteroendocrine cells. The TGR5 ligand oleanolic acid (OA) stimulated Gαs and cAMP
formation, and caused GLP-1 and PYY release. OA-induced cAMP formation and peptide
release were blocked by TGR5 siRNA. OA also caused an increase in PI hydrolysis and
intracellular Ca2+. Increase in PI hydrolysis was abolished in cells transfected with PLC-ε
siRNA. 8-pCPT-2′-O-Me-cAMP, a selective activator of Epac, stimulated PI hydrolysis,
and GLP-1 and PYY release. L-Cysteine, which activates endogenous H2S producing
enzymes cystathionine-γ-lyase and cystathionine-β-synthase, and NaHS and GYY4137,
which generate H2S, inhibited PI hydrolysis and GLP-1 and PYY release in response to
OA or 8-pCPT-2′-O-Me-cAMP. Propargylglycine, an inhibitor of CSE, reversed the effect
of L-cysteine on PI hydrolysis and GLP-1 and PYY release. We conclude: (i) activation of
Gαs-coupled TGR5 receptors causes stimulation of PI hydrolysis, and release of GLP-1
and PYY via a PKA-independent, cAMP-dependent mechanism involving Epac/PLC-ε/Ca2+
pathway, and (ii) H2S has potent inhibitory effects on GLP-1 and PYY release in response
to TGR5 activation, and the mechanism involves inhibition of PLC-ε/Ca2+ pathway.
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INTRODUCTION
Hormones released from the gastrointestinal tract play an impor-
tant role in the regulation of several physiological functions
including food intake, gastrointestinal motility and secretions,
glucose and lipid metabolism, and energy expenditure (Sarah
et al., 2005; Grudell and Camilleri, 2007; Holst, 2007). Glucagon-
like peptide-1 (GLP-1) and peptide YY (PYY) are secreted from
open-type neuroendocrine epithelial cells (L-cells) located in the
distal ileum and colon that come in direct contact with gut
nutrients (Eissele et al., 1992; Holzer et al., 2012).

GLP-1, a potent glucose-dependent insulin-stimulating hor-
mone (MacDonald et al., 2002), also stimulates β cell proliferation
and pro-insulin gene expression (Buteau et al., 2003), and inhibits
glucagon expression (Mojsov, 2000). The synthesis of GLP-1
from pro-glucagon is directed by specific expression of conver-
tase 1/3 in L-cells; cleavage of pro-glucagon by convertase 1/3
yields equimolar amounts of GLP-1 and GLP-2, together with

the glucagon-containing peptides, glicentin and oxyntomodulin
(Holst, 2007). The primary stimulus of GLP-1 secretion is the
presence of nutrients, mainly fat and bile salts, in the distal ileum.
Although both glucose and partly digested proteins can stimu-
late GLP-1 release when added directly to the distal ileum, both
nutrients are predominantly absorbed by the proximal intestine.
An early rise in the circulating GLP-1 has been attributed to GIP, a
distinct glucose-dependent insulin-stimulating hormone released
by glucose from the proximal intestine. The plasma enzyme
dipeptidyl peptidase-IV inactivates circulating GLP-1 making its
half-life short (less than 2 min) (Pospisilik et al., 2002; Holst,
2007).

PYY, a potent appetite regulating hormone that belongs to the
neuropeptide Y and pancreatic polypeptide family of peptides, is
co-localized with GLP-1 in the L-cells (Holzer et al., 2012). PYY
content increases from proximal to distal regions in the GI tract.
The two endogenous forms of PYY released into the circulation
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are PYY1-36 and PYY3-36; the latter is from the cleavage of
tyrosine-proline residues from the N-terminal end of PYY1-36
and is the predominant form of PYY in the L-cells and in the
circulation (Holzer et al., 2012). The stimulus for PYY release is
luminal nutrients including glucose, protein and lipid digestion
products, and bile salts (Reimann et al., 2004; Jahan-Mihan et al.,
2011; De Silva and Bloom, 2012).

The role of altered levels of GLP-1 and PYY in the pathogen-
esis of diseases such as diabetes, obesity and non-alcoholic fatty
liver diseases has been suggested and understanding the mecha-
nisms of their release and regulation, might greatly contribute to
the development of therapeutics (Valassi et al., 2009). Studies in
cultures of mixed intestinal epithelial cells and in model enteroen-
docrine cells (e.g., STC-1 and GLUTag) have demonstrated the
expression of the bile acid G protein-coupled receptor, TGR5, and
the ability of bile acids to activate TGR5 and stimulate GLP-1
secretion (Kidd et al., 2008; Parker et al., 2012). TGR5-mediated
stimulation of GLP-1 secretion was dependent on cAMP forma-
tion and was blocked by inhibitors of adenylyl cyclase (Katsuma
et al., 2005; Parker et al., 2012).

H2S, produced as a byproduct by luminal sulfate-reducing
commensal bacteria in the colon or as an endogenous signaling
molecule synthesized from L-cysteine mainly via cystathionine-
γ-lyase (CSE) and cystathionine-β-synthase (CBS), and to lesser
extent by 3-mercaptopyruvate sulfurtransferase (3-MST), regu-
late various physiological functions such as secretion, motility
and visceral nociception (Robert et al., 2003; Distrutti et al., 2006;
Wallace, 2010; Li et al., 2011; Wang, 2012). The role of H2S in
the regulation of GLP-1 and PYY release is not known. Therefore,
the aims of this study were (i) to determine the mechanism of
GLP-1 and PYY release by TGR5 activation, and (ii) to deter-
mine the effect of endogenous H2S on TGR5-mediated GLP-1
and PYY release. We show that cAMP-dependent GLP-1 and PYY
release in response to TGR5 activation reflects activation of Epac
(an exchange protein activated directly by cAMP) and PLC-ε, and
release of Ca2+. We also show that stimulation of endogenous H2S
formation by activation of CSE inhibited TGR5-dependent GLP-1
and PYY release by blockade of the Epac/PLC-ε pathway.

MATERIALS AND METHODS
MATERIALS
Oleanolic acid was obtained from Sigma Aldrich (St. Louis,
MO). TGR5 antibody was obtained from Abcam (Boston, MA).
[35S]GTPγS, [125I]cAMP, [3H]myo-inositol were obtained from
NEN Life Sciences Products (Boston, MA). U73122 and myris-
toylated PKI were obtained from Calbiochem (La Jolla, CA).
Rabbit polyclonal antibody to TGR5 and PLC-ε were pur-
chased from Abcam (Cambridge, MA), antibodies to Gαs, Gαq,
Gαi1, Gαi2, and Gαi3 were from Santa Cruz Biotechnology Inc.
(Santa Cruz, CA). Lipofectamine™ 2000 transfection reagents
and SuperScript™ II Reverse Transcriptase kit were obtained from
Invitrogen (Carlsbad, CA). All other reagents were obtained from
Sigma (St. Louis, MO).

CELL CULTURE
Murine enteroendocrine cells (STC-1) were obtained from
American Type Culture Collection (ATCC) and cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10%
fetal bovine serum (FBS) with 2 mM L-glutamine. Cells were
maintained at 37◦C in a humidified atmosphere of 5%
CO2/95% air.

DETECTION OF TGR5, CBS, AND CSE IN STC-1 CELLS BY RT-PCR
STC-1 cells were treated with the RNAqueous reagent (Ambion,
Austin, TX) for total RNA extraction. The potentially contam-
inated genomic DNA was removed by treating 10 μg of the
RNA sample at 37◦C for 30 min with 1 μl of TURBO DNase
(Ambion, Austin, TX) followed by an extraction with phe-
nol:chloroform:isoamylalcohol (25:24:1). RNA (2 μg) was used
to synthesize cDNA using SuperScript II reverse transcriptase
(Applied Biosystems, Foster, CA) with random hexanucleotide
primers. Conventional PCR was performed on cDNA using the
HotMaster Taq DNA polymerase kit (Epicentre Biotechnologies,
Madison, WI). The primers for mouse TGR5 (GenBank Accession
No.NM_174985.1) were as follows; Forward 5′-CCC ACC GCC
AGC TGT GTG AG-3′ and Reverse 5′-CCC CAT GGC CAC AGG
CAC AG-3′, generating a fragment of 269 bp. The primers for
mouse CBS (GenBank Accession No. NM_144855.2) were as fol-
lows; Forward 5′-GGT GGT GGC GTC TGC GTG TT-3′ and
Reverse 5′-AGG CCT GGT CTC GTG ATT GGA TCT G-3′, gener-
ating a fragment of 345 bp. The primers for mouse CSE (GenBank
Accession No. AY262829.1) were as follows; Forward 5′-GGG
CAT CTG CAG GGA AAG GAA CG-3′ and Reverse 5′-GCA GAT
TGG TCC ACG CCC CT-3′, generating a fragment of 851 bp.

DETERMINATION OF TGR5 AND PLC-ε BY WESTERN BLOT
Lysates were prepared from STC-1 cells and were separated by
SDS-PAGE followed by transfer onto nitrocellulose membranes
(Immobilon-FL, Millipore, Billerica, MA). The membranes were
blocked, incubated with antibodies to TGR5 (1:1000) or PLC-ε
(1:1500) (Abcam, Cambridge, MA; Proteintech, Chicago, IL),
and following washing, incubated with secondary antibody con-
jugated to horseradish peroxidase (Santa Cruz biotechnology,
Santa Cruz, CA). Proteins on the membrane were detected by the
enhanced chemiluminescence detection system (Amersham Life
Science Buckinghamshire, UK).

IDENTIFICATION OF TGR5 RECEPTOR-ACTIVATED G PROTEINS IN STC-1
CELLS
G proteins selectively activated by the TGR5 ligand were identi-
fied as described previously (Okamoto et al., 1991; Murthy and
Makhlouf, 1996). Ten ml of cells suspension (2 × 106 cells/ml)
were homogenized in 20 mM HEPES medium (pH 7.4) contain-
ing 2 mM MgCl2, 1 mM EDTA, and 2 mM dithiothreitol. After
centrifugation at 27,000 × g for 15 min, the crude membranes
were incubated for 30 min at 37◦C with 100 nM [35S]GTPγS in
a solution containing 10 mM HEPES (pH 7.4), 100 μM EDTA,
and 10 mM MgCl2. The reaction was stopped with 10 volumes of
100 mM Tris-HCl medium (pH 8.0) containing 10 mM MgCl2,
100 mM NaCl, and 20 μM GTP and the mixture was placed in
wells pre-coated with specific G protein antibodies (1:1000 dilu-
tion). Coating with G protein antibodies (1:1000) was done after
the wells were first coated with anti-rabbit IgG for 2 h on ice. After
incubation for 2 h on ice, the wells were washed three times with
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phosphate buffer solution containing 0.05% Tween 20, and the
radioactivity from each cell was counted by liquid scintillation.

Ca2+ RELEASE
Cells were plated in Matrigel-coated dishes (MatTek, Ashland,
MA) 1–3 days prior to use and loaded with fura-2 AM by incu-
bation for 2 h in a medium containing 25 mM Hepes (pH 7.4),
120 mM NaCl, 4.0 mM KCl, 1 mM CaCl2, and 1 mM MgCl2, and
14 mM glucose at room temperature. Cells were then washed,
and dishes mounted on an inverted fluorescence microscope
(Olympus IX71, Southall, UK) with a 40 × oil-immersion objec-
tive. Excitation at 340 and 380 nm was achieved using a 75
W Xenon arc lamp with a monochromator (Cairn Research,
Faversham, UK) controlled by MetaFluor software (Universal
Imaging; Cairn Research) and emission was recorded with a CCD
camera (Orca ER, Hammamatsu; Cairn Research). Background-
subtracted fluorescence was normalized to a baseline average
measured before application of the first test reagent and expressed
as a 340/380 nm ratio, and the response to OA was defined as
increase in 340/380 ratio.

cAMP ASSAY
OA (10 μM) was added to 0.5 ml of cell suspension (106

cells/ml) in the presence of 3-isobutyl-1-methylxanthine (IBMX,
10 μM), and the reaction was terminated after 60 s with 6% cold
trichloroacetic acid (Vol/Vol). The mixture was centrifuged at
2000 × g for 15 min at 4◦C; the supernatant was extracted three
times with 2 ml diethyl ether, and the samples were lyophilized.
The samples were reconstituted and cAMP was measured in trip-
licate using 100 μl aliquots by radioimmunoassay as described
before (Murthy and Makhlouf, 1995). Results are expressed as
pmol/mg protein.

TRANSFECTION OF siRNA
siRNA oligonucleotides specific for mouse TGR5 and PLC-ε
were obtained from Invitrogen (Carlsbad, CA). The sequence of
TGR5 siRNA was as follows; Forward 5′-CCC AAC UUC UCC
UUC CUC UTT-3′ and Reverse TGR5: 5′-AGA GGA AGG AGA
AGU UGG GTT-3′. Double-stranded RNA oligoribonucleotide
NNGCGCGCUUUGUAGGAUUCA (5′-3′) was used as a control
siRNA. The sequence of PLC-ε siRNA was as follows; Sense: 5′
CUG AUC CUC AAG ACG UUA Att 3′ and Antisense: 5′ UUA
ACG UCU UGA GGA UCA Gtt 3′. STC-1 cells were seeded on
100 mm plates and allowed to adhere overnight. At the time of
transfection, cells were 80–85% confluent and the siRNAs were
transfected into STC-1 cells at a final concentration of 20 μM by
use of lipofectamine 2000 reagent (Invitrogen Corp., Carlsbad,
CA) according to the manufacturer’s instructions. Cells were kept
for 48 h before use for biochemical measurements.

GLP-1 AND PYY SECRETION
STC-1 cells were washed three times with DMEM and incubated
for 30 min at 37◦C in DMEM containing various test reagents.
After incubation, the conditioned medium was collected and
the concentration of GLP and PYY was determined by enzyme
immunoassay with a specific ELISA kits for GLP-1 and PYY
(Peninsula Laboratories, LLC, San Carlos, CA) (Katsuma et al.,
2005).

ASSAY OF PHOSPHOINOSITIDE (PI) HYDROLYSIS
PI hydrolysis was measured as total inositol phosphate forma-
tion with the use of anion exchange chromatography as described
previously (Murthy and Makhlouf, 1996). Cells were labeled
with myo-2-[3H]inositol (0.7 Ci/ml) in inositol-free medium
and treated with OA or 8-pCPT-2′-O-Me-cAMP (10 μM) in
the presence or absence of inhibitors for 1 min in a medium
containing 25 mM HEPES, 115 mM NaCl, 5.8 mM KCl, 2.1 mM
KH2PO4, 2 mM CaCl2, 0.6 mM MgCl2, and 14 mM glucose. The
reaction was terminated by the addition of 940 μl of chloroform-
methanol-HCl (50:100:2). After extraction with 340 μl of chlo-
roform and 340 μl of H2O, the upper aqueous phase was
applied to DOWEX AG-1 columns. [3H]inositol phosphates were
then eluted, and the radioactivity was determined by liquid
scintillation.

STATISTICAL ANALYSIS
The results are expressed as means ± s.e.m. of n experiments, and
statistical significance was determined using Student’s t-test for
paired or unpaired values.

RESULTS
EXPRESSION OF TGR5, CSE, AND CBS IN STC-1 CELLS
To gain insight into the role of TGR5 and H2S in the regulation
of GLP-1 and PYY release, we first investigated the expression
of TGR5 and the endogenous enzymes involved in the synthesis
of H2S in STC-1 cells. RT-PCR analysis of mRNA using specific
primers showed amplification of PCR products of predicted size
for TGR5 (269 bp), CBS (345 bp), and CSE (851 bp) (Figure 1).

OA MEDIATED GLP-1 AND PYY RELEASE VIA TGR5
We initially examined whether STC-1 cells are responsive to
the TGR5 selective ligand OA to release GLP-1 and PYY. The
dose of OA was selected based on our previous work in pan-
creatic β cells and isolated smooth muscle cells (Kumar et al.,
2012; Rajagopal et al., 2013). Treatment of STC-1 cells with OA

FIGURE 1 | Expression of TGR5, CBS, and CSE in STC-1 cells. RT-PCR
analysis of mRNA using specific primers showed amplification of PCR
products of predicted size for TGR5 (269 bp), CBS (345 bp), and CSE
(851 bp).
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(10 μM) stimulated GLP-1 and PYY release over a 30 min incu-
bation period (4.1 ± 0.6-fold increase in GLP-1 release above
basal levels 0.65 ± 0.09 pg/100 ml; 8.3 ± 1.2-fold increase in PYY
release above basal levels 0.42 ± 0.068 pg/100 ml). The specific
involvement of TGR5 in GLP-1 and PYY release in response to
OA was examined using TGR5 specific siRNA. Neither basal nor
OA-induced GLP-1 and PYY secretion was affected in cells trans-
fected with control siRNA (Figure 2); however, the effect of OA
on GLP-1 and PYY release was significantly attenuated in cells
transfected with TGR5 siRNA compared to cells transfected with
control siRNA (78 ± 10% inhibition in GLP-1 release and 88 ±
12% inhibition in PYY release) (Figure 2). Western blot analysis
demonstrated suppression of TGR5 expression in cells transfected
with TGR5 siRNA (Figure 2; inset). These results suggest that OA-
induced GLP-1 and PYY release is mediated by TGR5, but not by
other receptors such as nuclear receptor FXR.

SIGNALING PATHWAYS ACTIVATED BY TGR5
Activation of Gs/cAMP pathway
In membranes isolated from STC-1 cells, OA (10 μM) caused
a significant increase in the binding of [35S]GTPγS to Gαs as
determined by the binding of [35S]GTPγS.Gα complexes to the
corresponding Gαs antibody (10 ± 2-fold increase in the bind-
ing) (Figure 3A). There was no significant increase in the binding
of [35S]GTPγS to Gαi1 (5 ± 7% increase), Gαi2 (3 ± 8% increase),
Gαi3 (6 ± 9% increase), or Gαq (10 ± 15% increase) antibody.
These results suggest that TGR5 is selectively coupled to the acti-
vation of Gs. Consistent with activation of Gαs, OA caused an
increase in cAMP formation in a concentration-dependent man-
ner with an EC50 of 0.7 ± 0.1 μM and a maximum stimulation
of 1.20 ± 0.07 pmol/mg protein above basal levels (0.054 ± 0.008
pmol/mg protein) was obtained with 10 μM OA (Figure 3B).

The specific involvement of TGR5 in the cAMP response to OA
was further examined using TGR5 specific siRNA. Neither basal

FIGURE 2 | TGR5-mediated release of GLP-1 and PYY by oleanolic acid

(OA). Cells transfected with control siRNA or TGR5-specific siRNA for 48 h
and then treated with OA (10 μM) for 30 min. Release of GLP-1 (A) and PYY
(B) into the medium was measured by ELISA. Inset: Down regulation of
TGR5 expression in cells transfected with TGR5 siRNA was determined by
western blot. Results are expressed as pg/100 ml. Values are mean ±
s.e.m. of 5 experiments. ∗∗p < 0.001 vs. basal.

nor OA-induced cAMP formation was affected in cells transfected
with control siRNA (basal, 0.051 ± 0.007 pmol/mg protein; OA,
1.12 ± 0.08 pmol/mg protein); however, the effect of OA on
cAMP formation was significantly attenuated in cells transfected
with TGR5 siRNA (81 ± 6% inhibition) compared to control cells
(Figure 3C).

Stimulation of PI hydrolysis and Ca2+ release
OA selectively activated Gαs, and treatment of myo-[3H]inositol
labeled cells with OA resulted in an increase in PI hydrolysis
in a concentration-dependent manner with an EC50 of 0.83 ±
0.15 μM and a maximal stimulation of 8715 ± 1024 cpm/mg pro-
tein above basal levels (1856 ± 302 cpm/mg protein) with 10 μM
OA (Figure 3D). OA-induced PI hydrolysis was blocked (81 ± 7%
inhibition) by a selective PI hydrolysis inhibitor, U73122 (10 μM),
but not by a selective PKA inhibitor, myristoylated PKI (1 μM)
(8 ± 5% inhibition) (Figure 3E). These results combined with
selective activation of Gαs by OA suggest that stimulation of PI
hydrolysis is independent of PKA, and probably involves acti-
vation of the cAMP-dependent Epac/PLC-ε pathway. In support
to this notion, RT-PCR studies demonstrated expression of both
Epac2 and PLC-ε in STC-1 cells (data not shown) and a selec-
tive Epac ligand, 8-pCPT-2′-O-Me-cAMP (10 μM) stimulated PI
hydrolysis that was significantly inhibited (75 ± 5% inhibition) by
U73122 (1 μM) (Figure 3E). Stimulation of PI hydrolysis by OA
was corroborated by Ca2+ release studies. Increase in intracellu-
lar Ca2+ was monitored in cells after loading the monolayers with
fura-2 AM. Increase in cytosolic Ca2+ was measured as increase in
340/380 ratio. OA caused a rapid increase in Ca2+ response with
a mean increase of 4.1 ± 0.7-fold (n = 25 cells, p < 0.001) above
base line (Figure 3D; inset).

The involvement of PLC-ε in OA-stimulated PI hydrolysis was
examined using PLC-ε siRNA. Suppression of PLC-ε expression
by transfection of PLC-ε siRNA was validated by western blot
analysis (Figure 4). Neither basal nor OA-induced PI hydrolysis
was affected in cells transfected with control siRNA. Stimulation
of PI hydrolysis in response to OA (10 μM), however, was signif-
icantly inhibited in cells transfected with PLC-ε siRNA (72 ± 5%
inhibition) (Figure 4).

The involvement of PI hydrolysis/Ca2+ and cAMP/PKA path-
ways in OA-mediated GLP-1 and PYY release was examined
using selective inhibitors. OA-induced GLP-1 release was sig-
nificantly inhibited by incubation of cells with U73122 or with
the Ca2+ chelator, BAPTA-AM (78 ± 6 and 82 ± 5% inhibi-
tion, respectively), but not with myristoylated PKI (14 ± 8%
inhibition) (Figure 5A). Similarly, OA-induced PYY release was
inhibited by U73122 or BAPTA-AM (86 ± 8 and 79 ± 6%
inhibition, respectively), but not myristoylated PKI (12 ± 6%
inhibition) (Figure 5B). 8-pCPT-2′-O-Me-cAMP also caused an
increase in GLP-1 (3.8 ± 0.5-fold increase) and PYY release
(4.2 ± 0.7-fold increase) that was inhibited by U73122 (84 ±
7% inhibition in GLP-1 release and 65 ± 6% inhibition in
PYY release) or BAPTA-AM (83 ± 6% inhibition in GLP-1
release and 78 ± 5% inhibition in PYY release) (Figures 5C,D).
These results suggest that TGR5 activation causes GLP-1 and
PYY release via the cAMP/Epac/PLC-ε pathway. A similar path-
way was shown to be involved in the release of insulin in
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FIGURE 3 | Signaling pathways activated by OA. (A) Selective activation of
Gs by OA. Membranes were incubated with [35S]GTPγS in the presence or
absence of OA (10 μM) for 20 min. Aliquots were added to wells pre-coated
with antibodies to Gαs, Gαq, Gαi1, Gαi2, and Gαi3 for 2 h and the bound
radioactivity was measured. An increase in the binding of [35S]GTPγS.Gα

reflects activation of G protein. A significant increase in the binding of
[35S]GTPγS.Gα complexes was obtained to wells coated with Gαs antibody
only. No significant increase in the binding was obtained to wells coated with
Gαi1 (5 ± 7% increase), Gαi2 (3 ± 8 increase), Gαi3 (6 ± 9% increase), or Gαq

(10 ± 15% increase) antibody. Values are mean ± s.e.m. of 4 experiments.
∗∗p < 0.001 vs. basal. (B) Stimulation of cAMP by OA. Cells were treated with
different concentrations of OA for 5 min in the presence of IBMX (10 μM) and
cAMP formation was measured by radioimmunoassay. Results are expressed
as pmol/mg protein above basal levels (0.054 ± 0.008 pmol/mg protein). OA
caused an increase in cAMP levels in a concentration-dependent manner.
Values are mean ± s.e.m. of 3 experiments. (C) TGR5-mediated increase in
cAMP by OA. Cells transfected with control siRNA or TGR5-specific siRNA
were treated with OA (10 μM) for 5 min and cAMP formation was measured
by radioimmunoassay. Suppression of TGR5 expression by TGR5 siRNA was
confirmed by western blot analysis. Basal level of cAMP was similar in cells

transfected with control siRNA (0.051 ± 0.007 pmol/mg protein) and or TGR5
siRNA (0.049 ± 0.008 pmol/mg protein). OA induced a significant increase in
cAMP levels (1.12 ± 0.08 pmol/mg protein) in control cells, but not in cells
transfected with TGR5 siRNA. Results are expressed as percent of response.
Values are mean ± s.e.m. of 3 experiments. ##p < 0.001 significant
inhibition of cAMP response compared to cells transfected with control
siRNA. (D,E) Stimulation of PI hydrolysis and Ca2+ release by OA and
8-pCPT-2′-O-Me-cAMP (Epac ligand). Cells labeled with myo-[3H]inositol were
treated with different concentrations of OA and PI hydrolysis was measured
(D). Cells were incubated with the cAMP analog that selectively activates
Epac, 8-pCPT-2′-O-Me-cAMP (10 μM) or OA (10 μM) in the presence or
absence of inhibitors of PI hydrolysis (U73122, 10 μM) or PKA (myristoylated
PKI, 1 μM) (E). PI hydrolysis was measured by ion exchange chromatography
as increase in water soluble inositol formation. Results are expressed as
cpm/mg protein above basal levels (1856 ± 302 cpm/mg protein). Treatment of
cells with PKI (1985 ± 402 cpm/mg protein) or U73122 (1685 ± 293 cpm/mg
protein) alone had no significant effect on basal PI hydrolysis. Values are mean
± s.e.m. of 4 experiments. ∗∗p < 0.001 vs. basal. (D) Inset: Increase in
intracellular Ca2+ monitored in cells after loading the monolayers with Fura-2
AM. Increase in Ca2+ is represented in the figure as increase in 340/380 ratio.

response to TGR5 ligands in pancreatic β cells (Kumar et al.,
2012).

Inhibition of OA-induced GLP-1 and PYY release by H2S
To investigate the regulation of TGR5-mediated GLP-1 and PYY
release by H2S, cells were incubated with L-cysteine, an activator
of endogenous enzymes CSE and CBS, for 10 min and then GLP-1
and PYY release in response to OA was measured. L-cysteine
inhibited both GLP-1 and PYY release in a dose-dependent

manner (Figures 6A,B). Maximum inhibition of GLP-1 and PYY
release by L-cysteine is closely similar (78 ± 7% inhibition in
GLP-1 release and 82 ± 8% inhibition in PYY release). To further
examine, whether endogenous H2S production was involved in
the inhibition by L-cysteine, DL-propargylglycine (PPG), a selec-
tive inhibitor of CSE was used (Yang et al., 2005). PPG pretreat-
ment significantly reversed the inhibition of OA-induced GLP-1
and PYY release by L-cysteine (25 ± 4% inhibition in GLP-1
release and 25 ± 4% inhibition in PYY release) (Figures 6A,B).
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FIGURE 4 | OA-induced PI hydrolysis is mediated via PLC-ε. Cells
transfected with PLC-ε specific siRNA or control siRNA were labeled with
myo-[3H]inositol. Cells were treated with OA (10 μM) for 60 s and PI
hydrolysis was measured by ion exchange chromatography as increase in
water soluble inositol formation. Results are expressed as cpm/mg protein.
Values are mean ± s.e.m. of 4 experiments. ∗∗p < 0.001 vs. Basal
##p < 0.001 significant inhibition of PI hydrolysis compared to response in
cells transfected with control siRNA. Inset: Expression of PLC-ε in control
cells and in cell transfected with PLC-ε siRNA.

Treatment of cells with NaHS, an exogenous donor of H2S,
also inhibited both GLP-1 and PYY release in a concentration-
dependent manner. Maximum inhibition of GLP-1 and PYY
release by NaHS was similar (78 ± 8% inhibition in GLP-1
release and 79 ± 6% inhibition in PYY release) (Figures 6A,B).
PPG had no effect on NaHS (100 mM)-induced inhibition of
GLP-1 (74 ± 5% inhibition) or PYY release (71 ± 3% inhibition)
(Figures 6A,B). Treatment of cells with GYY4137, an exogenous
donor that releases H2S with slower kinetics, also inhibited both
GLP-1 and PYY release (43 ± 4% inhibition in GLP-1 release
and 68 ± 6% inhibition in PYY release with 10 mM GYY4137)
(Figures 6A,B).

Effect of H2S on Gs/cAMP and Epac/PLC-ε pathways
To examine whether the Gs/cAMP pathway was inhibited by H2S,
cAMP formation in response to TGR5 activation with OA was
measured in the presence of L-cysteine, NaHS or GYY4137. cAMP
levels were increased in response to OA (2.1 ± 0.3 pmol/mg pro-
tein increase above basal 0.093 ± 0.01 pmol/mg protein) and
the increase was not significantly affected by L-cysteine, NaHS or
GYY4137 (Figure 7). These results raised the possibility that the
inhibition of OA-induced GLP-1 and PYY release by L-cysteine or

H2S donors could be due to inhibition of targets downstream of
Gs/cAMP. We tested the possibility that inhibition of OA-induced
peptide release by L-cysteine and H2S donors is due to inhibi-
tion of OA-induced PI hydrolysis. In contrast to its effect on
OA-induced cAMP formation, L-cysteine inhibited OA-induced
PI hydrolysis (81 ± 8% inhibition) and the inhibition was sig-
nificantly reversed by PPG (28 ± 4% inhibition) (Figure 8A).
OA-induced PI hydrolysis was also inhibited by NaHS (72 ±
5% inhibition) or GYY4137 (63 ± 6% inhibition) (Figure 8A).
Stimulation of PI hydrolysis, independent of TGR5 activation, by
8-pCPT-2′-O-Me-cAMP was also inhibited by L-cysteine (66 ±
5% inhibition), NaHS (72 ± 7% inhibition), or GYY4137 (53 ±
3% inhibition) (Figure 8B). These results suggest that inhibition
of OA-induced GLP-1 and PYY release by L-cysteine, NaHS or
GYY4137 was mediated via inhibition of Epac/PLC-ε pathway.

DISCUSSION
Our studies demonstrate that activation of TGR5 recep-
tors in enteroendocrine cells leads to activation of the
Gαs/cAMP/Epac/PLC-ε/Ca2+ pathway and stimulation of GLP-
1 and PYY release. These conclusions are reached through several
lines of evidence. (1) Specific involvement of TGR5 in GLP-1 and
PYY release is supported by the finding that suppression of TGR5
by siRNA greatly attenuated the increase in cAMP formation and
GLP-1 and PYY release in response to OA. (2) Selective activation
of Gs and stimulation of adenylyl cyclase activity and PI hydroly-
sis, and Ca2+ release occurs in response to OA. (3) OA-induced PI
hydrolysis and GLP-1 and PYY release was blocked by suppression
of PLC-ε and PI hydrolysis inhibitor (U73122), but not by a PKA
inhibitor (myristoylated PKI). (4) Suppression of PLC-ε expres-
sion blocked the increase in PI hydrolysis in response to OA.
These data, in conjunction with the data using a cAMP analog
that selectively activated Epac and which also caused stimulation
of PI hydrolysis and GLP-1 and PYY release, provided further
confirmation of the key role of the Epac/PI-PLC/Ca2+ pathway
in GLP-1 and PYY release. It is noteworthy that in the present
study we used OA, a selective agonist of the TGR5 receptor, rather
than native bile salts, to examine the regulation of PYY and GLP-1
release (Sato et al., 2007). Native Bile salts activate two receptors,
the nuclear FXR receptor, and the G-protein coupled TGR5 recep-
tor. The former likely mediates more delayed genomic actions of
bile salts while the latter likely mediates more immediate or rapid
actions of bile salts. The EC50 for TGR5 ligand stimulated cAMP
formation and PI hydrolysis is close to the luminal bile acids con-
centrations and suggests that under physiological conditions it is
likely that L cells would be activated by postprandial bile acids and
induce GLP-1 and PYY release.

Previous studies have established that bile acids stimulate the
release of GLP-1 from enteroendocrine cells, both in vivo and
in vitro (Katsuma et al., 2005; Parker et al., 2012). TGR5 report-
edly couples to the Gs/cAMP pathway to mediate GLP-1 release
from enteroendocrine cells (Katsuma et al., 2005; Parker et al.,
2012). These studies, however, did not examine the pathway
in detail and presumed that cAMP acted through its canonical
kinase, PKA, to cause the release of GLP-1. Our studies pro-
vided a more detailed analysis of the signaling pathways and
demonstrate that release of GLP-1 and PYY was mediated via
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FIGURE 5 | Signaling pathways involved in the release of GLP-1 and PYY

by OA. Cells were treated with OA (10 μM) (A,B) or 8-pCPT-2′-O-Me-cAMP
(Epac L, 10 μM) (C,D) for 30 min in the presence or absence of inhibitors of PI
hydrolysis (U73122, 10 μM), PKA (myristoylated PKI, 1 μM), or Ca2+ chelator

(BAPTA-AM, 10 μM). Release of GLP-1 and PYY into the medium was
measured by ELISA and the results are expressed as pg/100 ml. Treatment of
cells with PKI, U73122 or BAPTA-AM alone had no significant effect on basal
release. Values are mean ± s.e.m. of 6 experiments. ∗∗p < 0.001 vs. basal.

a PKA-independent cAMP/Epac/PLC-ε/Ca2+ pathway. A similar
PKA-independent pathway was recently demonstrated in TGR5-
mediated insulin release in pancreatic β cells (Kumar et al.,
2012). The increased cytosolic Ca2+ triggers fusion of peptide-
containing secretory granules with the plasma membrane and
stimulates secretion from the cells. Although, the present study
did not provide evidence for the involvement of Epac in OA-
mediated PI hydrolysis, demonstration of Epac2 expression in
STC-1 cells and published reports in other cell types support our
conclusion about the role of Epac/PLC-ε pathway in Ca2+ mobi-
lization. Epac is a cAMP-regulated guanine nucleotide exchange
factor (GEF) and regulates many physiological functions via acti-
vation of monomeric G protein Rap1 (De Rooij et al., 1998).
Binding of cAMP to Epac stimulates its GEF activity and acti-
vates Rap1. Rap1 is active in the GTP-bound form and possesses
intrinsic GTPase activity that is activated by GTPase activating
protein, Rap1GAP. Epac2 has been shown to activate PLC-ε via
Rap1. Deletion of PLC-ε or Epac2 gene in vivo or expressing
Rap1GAP that down regulates Rap1 activity in vitro attenuates
the effect of 8-pCPT-2′-O-Me-cAMP on Ca2+ release and insulin
release (Dzhura et al., 2011). The relative importance of Epac2
and Rap1 in TGR5 mediated GLP-1 and PYY release remains to
be determined.

Recent studies have demonstrated the expression of TGR5 in
various cell types of the gastrointestinal tract (Lavoie et al., 2010;
Alemi et al., 2013) and we have confirmed the presence of TGR5
receptors on STC-1 cells by the presence of specific mRNA. Our
studies coupled with the demonstration of TGR5 receptors on
the native enteroendocrine cells, strongly suggest that bile acids
in the gut can directly influence enteroendocrine cells to increase
the release of GLP-1 and PYY, and regulate energy metabolism
and gastrointestinal motility. Activation of TGR5 could regulate
motility via several mechanisms including release of 5-HT from
enteroendocrine cells and initiation of peristalsis, activation of
nitrergic neurons and suppression of spontaneous contraction,
and direct activation of smooth muscle cells to mediate muscle
relaxation (Alemi et al., 2013). In addition to these direct effects
mediated by TGR5 receptors on target cells, bile salts are likely
to have indirect effects on gut motility. Both GLP-1 and PYY are
shown to regulate gastrointestinal functions, especially proximal
gut motility and secretion (Grudell and Camilleri, 2007; Holst,
2007; Kidd et al., 2008; Hellstrom, 2010; Holzer et al., 2012). The
biological functions of PYY include attenuation of food intake,
and gastric emptying and motility, and gastric secretion. PYY
modulates gastrointestinal functions and motility partly via its
action on myenteric neurons and smooth muscle but also through
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FIGURE 6 | Inhibition of OA-induced GLP-1 and PYY release by H2S.

Cells were incubated with OA (10 μM) in the presence or absence of
various concentrations of L-cysteine, an activator of endogenous CSE and
CBS, and H2S donors NaHS or GYY4137. In some experiments, L-cysteine
(100 mM) was co-incubated with the CSE inhibitor, DL-propargylglycine
(PPG). GLP-1 (A) and PYY (B) release into the medium was measured by
ELISA and the results are expressed as pg/100 ml. Values are mean ±
s.e.m. of 4 experiments. ∗∗p < 0.01 vs. response to OA alone; #p < 0.05
vs. OA+L-cysteine (100 mM).

central effects mediated by the vagus (Grudell and Camilleri,
2007; Holzer et al., 2012). This latter mechanism is especially
noteworthy in the postprandial state where PYY has been shown
to participate in the inhibition of gastric motility and secretion
when intraluminal stimuli reach the distal gut, a phenomenon
known as the ileal brake (Grudell and Camilleri, 2007; Holzer
et al., 2012). The presence of TGR5 receptors on enteroendocrine
cells mediating the release of PYY and the presence of bile salts in
the lumen of the distal gut suggest that TGR5 receptor activation
may play a major role in initiating the ileal break (Al-Saffar et al.,
1985; Savage et al., 1987; Pironi et al., 1993; Goumain et al., 1998;
Misra et al., 2004; Murphy and Bloom, 2006).

The postprandial functions of GLP-1 include insulin release
from pancreatic β cells and regulation of glucose metabolism

FIGURE 7 | Lack of effect of H2S on OA-induced cAMP formation. Cells
were incubated with OA (10 μM) in the presence or absence of L-cysteine
(100 mM), NaHS (10 mM), or GYY4137 (10 mM) for 5 min. cAMP formation
was measured by radioimmunoassay. Results are expressed as pmol/mg
protein above basal levels (0.054 ± 0.008 pmol/mg protein). Values are
mean ± s.e.m. of 5 experiments.

(Toft-Nielsen et al., 2001). Studies using pharmacological agents
and transgenic animal models established the physiological func-
tions of TGR5 and GLP-1 secretion. The impact of GLP-1 mimetic
agents and TGR5 agonists to stimulate GLP-1 release in the dia-
betes, illustrates the beneficial effects of GLP-1 in the regulation
of pancreatic β cell function. Increased delivery of bile acids to
distal gut following gastric bypass, and hence their increased stim-
ulation of TGR5 receptors present on enteroendocrine cells in
the distal gut, are correlated with the elevated levels of GLP-1
and improvement of glucose tolerance (Hage et al., 2012). In
addition, recent studies demonstrated that GLP-1 functions as
a trophic factor for islet cells and augments glucose-dependent
insulin secretion (Buteau et al., 2003). Our recent studies demon-
strated the TGR5 receptors are also present in pancreatic β cells
and that activation of these receptors by bile acids results in
insulin secretion (Kumar et al., 2012). These multiple functions of
TGR5 act in concert and offer a great potential for the treatment
of hyperglycemia.

Other important results of the present study demonstrate
that TGR5-induced release of GLP-1 and PYY from enteroen-
docrine cells is modulated by endogenous agents produced within
the wall of the gut such as H2S (Linden et al., 2010; Strege
et al., 2011; Vandiver and Snyder, 2012). In support to this
notion, we have shown: (i) L-cysteine, an activator of H2S pro-
ducing enzymes (CSE and CBS), or the exogenous H2S donors
NaHS and GYY4137 inhibited OA-induced GLP-1 and PYY
release, and (ii) inhibition of release is due to suppression of
the Epac/PLC-ε/Ca2+ pathway downstream of cAMP pathway.
Our results also demonstrated that when CSE was inhibited by
the specific inhibitor DL-propargylglycine (PPG), inhibition of
GLP-1 and PYY release was greatly attenuated suggesting a role
for CSE in endogenous H2S generation and of H2S in regulating
the TGR5-mediated release of GLP-1 and PYY. Similar levels of
inhibition of OA-induced GLP-1 and PYY release with the rapid
releasing donor, NaHS, and the slow releasing donor, GYY4137,
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suggest that the rate of H2S generation is not an important factor
in the inhibitory action. The contractile effect of oxytocin in rat
and human myometrium was also inhibited by both NaHS and
GYY4137 in the same manner (Robinson and Wray, 2012). This
is in contrast to the divergent actions of NaHS and GYY4137 on
LPS-induced release of pro-inflammatory mediators. GYY4137
inhibited pro-inflammatory mediators, whereas NaHS stimulated
pro-inflammatory mediators (Whiteman et al., 2010; Wallace
et al., 2012). NaHS results in rapid release of a large bolus of H2S
which could be toxic and is not physiological. The slow release
of H2S generated by GYY4137, is certainly more physiological in

FIGURE 8 | Inhibition of OA-induced PI hydrolysis by H2S. (A)

Myo[3H]inositol labeled cells were incubated with OA (10 μM) in the
presence or absence of L-cysteine (100 mM), NaHS (10 mM), or GYY4137
(10 mM). In some experiments L-cysteine was co-incubated with the CSE
inhibitor, DL-propargylglycine (PPG). (B) Myo[3H]inositol labeled cells were
incubated with 8-pCPT-2′-O-Me-cAMP (Epac L, 10 μM) in the presence or
absence of L-cysteine (100 mM), NaHS (10 mM), or GYY4137 (10 mM). PI
hydrolysis was measured by ion-exchange chromatography as increase in
water soluble inositol formation. Results are expressed as cpm/mg protein.
Values are mean ± s.e.m. of 3 experiments. ∗∗p < 0.001 vs. basal;
#p < 0.05 vs. OA+L-cysteine.

time course, and is comparable to the effect of endogenous H2S
generated from CSE and CBS activity (Robinson and Wray, 2012).
The effect of H2S on insulin secretion and smooth muscle con-
traction was demonstrated largely to be due to the opening of
KATP channels (Yang et al., 2005; Mustafa et al., 2009; Jiang et al.,
2010; Tang et al., 2010; Wallace et al., 2012; Wang, 2012). The role
of KATP channels in mediating the effects of H2S on GLP-1 and
PYY release induced by activation of TGR5 receptors was not evi-
dent in the present study. In contrast this study indicates that H2S
acts downstream of the cAMP generation induced by TGR5 acti-
vation, most likely by inhibiting PI hydrolysis and the subsequent
increase in intracellular calcium needed for vesicle release from
the enteroendocrine cells.

In conclusion, we have provided evidence indicating that
GLP-1 and PYY release in response to TGR5 activation is medi-
ated via the Gs/cAMP/PLC/Ca2+ pathway and both endogenous
and exogenous H2S inhibit TGR5-mediated GLP-1 and PYY
release. Inhibition of TGR5 mediated effects by H2S is due to
inhibition of PI hydrolysis (Figure 9). Sulfur-reducing bacteria,

FIGURE 9 | TGR5-mediated signaling pathways to release GLP-1 and

PYY and inhibition of release of GLP-1 and PYY by H2S. In STC-1 cells,
activation of Gs-coupled TGR5 receptors by OA causes stimulation of PI
hydrolysis, and release of GLP-1 and PYY via a PKA-independent,
cAMP-dependent mechanism involving Epac/PLC-ε/Ca2+ pathway. H2S
inhibits GLP-1 and PYY release by inhibiting PI hydrolysis and Ca2+ release.
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present as a part of the microbiota of the gut, generate H2S
in the lumen where it has immediate access to enteroendocrine
cells. The endogenous generation of H2S by CBS and CSE in
mammalian cells in the gut wall such as smooth muscle cells
in the adjacent muscle likely plays an important role in the
regulation of gastrointestinal functions under physiological and
pathophysiological conditions. To understand the physiological
and pathophysiological significance of H2S, further studies are
warranted to elucidate the mechanisms involved in the activation
of endogenous H2S generating enzymes and identify the cellular
targets of H2S which regulate GLP-1 and PYY release.
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