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Abstract: Immunocompromised individuals generally fail to mount efficacious immune humoral
responses following vaccination. The emergence of SARS-CoV-2 variants of concern has raised the
question as to whether levels of anti-spike protein antibodies achieved after two or three doses of
the vaccine efficiently protect against breakthrough infection in the context of immune suppression.
We used a fluorescence-based neutralization assay to test the sensitivity of SARS-CoV-2 variants
(ancestral variant, Beta, Delta, and Omicron BA.1) to the neutralizing response induced by vaccination
in highly immunosuppressed allogeneic HSCT recipients, tested after two and three doses of the
BNT162b2 vaccine. We show that neutralizing antibody responses to the Beta and Delta variants
in most immunocompromised HSCT recipients increased after three vaccine doses up to values
similar to those observed in twice-vaccinated healthy adults and were significantly lower against
Omicron BA.1. Overall, neutralization titers correlated with the amount of anti-S-RBD antibodies
measured by means of enzyme immunoassay, indicating that commercially available assays can
be used to quantify the anti-S-RBD antibody response as a reliable surrogate marker of humoral
immune protection in both immunocompetent and immunocompromised individuals. Our findings
support the recommendation of additional early vaccine doses as a booster of humoral neutralizing
activity against emerging variants, in HSCT immunocompromised patients. In the context of Omicron
circulation, it further emphasizes the need for reinforcement of preventive measures including the
administration of monoclonal antibodies in this high-risk population.

Keywords: SARS-CoV-2; variant of concern; COVID-19 vaccine; HSCT immunocompromised
patients; neutralizing antibody

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsi-
ble for coronavirus disease 2019 (COVID-19). A two-dose regimen of the BioNTech/Pfizer
mRNA BNT162b2 vaccine has been shown to be safe and highly effective in preventing
infection and symptomatic COVID-19 [1,2]. Nevertheless, waning immunity in vaccinated
individuals [3–6], together with the emergence of SARS-CoV-2 variants of concern (VOC)
has been associated with a risk of breakthrough, possibly severe infection in vulnerable
vaccinated populations, such as elderly patients or immunocompromised individuals who
may not produce adequate amounts of neutralizing antibodies after the first two doses of
the vaccine. These populations are also those most exposed to infection, due to their regular
interactions with medical staff and other residents in hospitals and/or nursing homes.
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Booster vaccination, with a third dose administered approximately 6 months after the
second dose, has been shown to enhance the production of neutralizing antibodies [7,8]
while providing longer-lasting protection in healthy individuals [9,10]. Nevertheless, little
information is available on the efficacy of an early third dose (1 month after the second dose)
vaccine booster in immunocompromised patients. We previously showed that early admin-
istration of a third dose of BNT162b2 improved the humoral immunogenicity of the vaccine
in recipients of HSCT [11] as reported in patients of solid-organ transplantation [12,13]. The
emergence of SARS-CoV-2 variants with higher transmissibility than the original strains,
such as variant Delta (B.1.617.2), and/or decreased intrinsic susceptibility to neutralizing
antibodies, such as variants Beta (B.1.351) or, more recently, Omicron (B.1.1.529), has raised
the question as to whether levels of anti-spike protein antibodies achieved after two or
three doses of the vaccine efficiently protect against breakthrough infection in the context
of immune suppression. Thus, exploring neutralizing activity against different VOCs as
surrogate evidence of vaccine efficacy in such patients is crucial to adapt the timing and
number of vaccine doses required to protect this particularly vulnerable population.

In France, a third booster dose of the vaccine has been recommended since early 2021
in immunocompromised patients, including hematopoietic stem cell transplant (HSCT)
recipients. The third dose has been administered 28 days after the second dose in patients
with a suboptimal response, characterized by the lack of anti-spike seroconversion or
a low level of anti-spike antibodies after the second dose, as assessed by automated
enzyme immunoassay.

In the present study, we used a fluorescence-based neutralization assay to compare
the sensitivity of different infectious SARS-CoV-2 variants, including the ancestral variant,
variant Beta, variant Delta, and variant Omicron BA.1, to the neutralizing response induced
by vaccination in three cohorts of patients: (i) 26 highly immunosuppressed allogeneic
HSCT recipients, tested after two and three doses of the BNT162b2 vaccine; (ii) 22 healthy
individuals vaccinated with two doses of the BNT162b2 vaccine (control group 1); and
(iii) 20 non-vaccinated convalescent immunocompetent patients who had been infected
during the first or the second French epidemic wave in 2020 (control group 2).

2. Materials and Methods
2.1. Patients

Three groups of patients were included in this retrospective study: (i) The first group
(ImmunoSupp-V) included allogeneic HSCT recipients vaccinated with the BNT162b2 mes-
senger RNA (mRNA) vaccine (Pfizer-BioNTech) 3 months or more after HSCT. All of them
received 3 doses of the vaccine given 1 month apart, with the third dose having been
administered in patients considered to have a suboptimal immune humoral response, char-
acterized by anti-spike protein receptor-binding domain (S-RBD) IgG levels < 4160 arbitrary
units (AU/mL). This threshold was recommended by the manufacturer and is broadly used
for surrogate measurements of vaccine protection. The clinical and biological data were
retrospectively collected from their medical charts. (ii) The second group (ImmunoComp-V)
included healthy immunocompetent healthcare workers having received 2 doses of the
BNT162b2 vaccine; (iii) the third group (ImmunoComp-C) included convalescent immuno-
competent patients who had been infected during the first or the second French epidemic
wave in 2020. Their characteristics are shown in Table 1. This anonymous retrospective
study protocol followed the ethical guidelines of the declaration of Helsinki. Data collection
was declared and approved by the French Committee of Data Protection and Civil Liberties
(CNIL), registration number n◦ 2218612v0.

In the ImmunoSupp-V group, serum samples were collected after the 2nd vaccine dose
(median: 27 days; range: 20–58 days) and the 3rd vaccine dose (median: 26 days; range:
20–34 days). In the ImmunoComp-V group, serum samples were collected after the 2nd
vaccine dose (median: 22 days; range: 18–30 days). In the ImmunoComp-C group, serum
samples were collected 22 days to 3 months (median: 45 days) after the onset of symptoms.
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Table 1. Characteristics of the study population, including 3 cohorts: (i) 26 immunocompromised
allogeneic HSCT recipients sampled after 2 and 3 doses of BNT162b2 vaccine (ImmunoSupp-V);
(ii) 22 healthy immunocompetent healthcare workers sampled after 2 doses of BNT162b2 vaccine;
(iii) 20 convalescent immunocompetent patients sampled after having been infected during the first
or second French epidemic waves in 2020.

“ImmunoSupp-V”
Allogeneic HSCT

Recipients
(n = 26)

“ImmunoComp-V”
Immunocompetent

Vaccinated Individuals
(n = 22)

“ImmunoComp-C”
Immunocompetent

Convalescent Patients
(n = 20)

Median age (min-max), years 61 (31–75) 40 (21–56) 71 (26–94)

% male gender (n/N) 73.1% (19/26) 40.9% (9/22) 40.0% (8/20)

Wards of origin

Hematology unit [% (n/N)] 100.0% (26/26) - -

Geriatric wards [% (n/N)] - - 45.0% (9/20)

Medical wards [% (n/N)] - - 10.0% (2/20)

Outpatients [% (n/N)] - - 20.0% (4/20)

Healthcare workers [% (n/N)] - 100.0% (22/22) 25.0% (5/20)

Median time between HSCT and initiation of
vaccination, (min-max), months 14 (3–100) - -

2.2. Measurement of Anti-S-RBD IgG Antibody Levels

All sera were analyzed for anti-S-RBD IgG titers with the SARS-CoV-2 IgG Quant
II assay on an ARCHITECT device (Abbott, Chicago, IL, USA). The assay is an auto-
mated enzyme immunoassay that quantifies anti-S-RBD IgG with a lower limit of de-
tection/quantification of 21 AU/mL and a maximal cutoff of linear quantification of
40,000 AU/mL (analytical measuring interval). Samples containing anti-S-RBD titers
higher than 40,000 AU/mL were further diluted to extend the measuring interval. All
tests were performed by trained laboratory technicians, according to the manufacturer’s
standard procedures.

2.3. Cell Lines and Viruses

Vero-E6 cells (ATCC, CRL-1586) were maintained in Dulbecco’s modified Eagle
medium (DMEM, ThermoFischer Scientific, Waltham, MA, USA) supplemented with 50 in-
ternational unit (IU)/mL penicillin, 100 µg/mL streptomycin, 10% fetal bovine serum (FBS),
and 0.1 µg/mL fungizone (ThermoFischer Scientific). Calu-3 cells (ATCC, HTB-55) were
maintained in the same media supplemented with non-essential amino acids (ThermoFis-
cher Scientific) and 10% sodium bicarbonate (Gibco, ThermoFisher Scientific, Waltham,
MA, USA).

SARS-CoV-2 (ancestral variant D614G, variant Beta, and variant Delta) was isolated
from nasopharyngeal swabs of symptomatic patients infected during the corresponding
French epidemic waves. The variant Omicron prototype (BA.1) was provided by EVAg
(UVE/SARS-CoV-2/2021/FR/1514 B.A.1.529, Omicron, sample reference 47184). Variants
D614G and beta were amplified by passages in Vero-E6 cells, while variant Delta, which
did not result in high viral titer in Vero-E6, was amplified by passages in Calu-3 cells. Viral
titers were measured by a standard plaque assay using Vero-E6 cells. All experiments
were performed in a biosafety level 3 laboratory. Spike gene sequences of the original
clinical sample and expanded viruses were determined and compared to the ancestral
Wuhan-Hu-1 reference genome (Accession MN908947). Key spike amino acid changes in
the viral isolates are summarized in Supplementary Table S1.
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2.4. Fluorescence-Based Neutralization Assay

To measure actual neutralizing antibody activity, patients’ sera were heat-inactivated
for 1 h at 56 ◦C and subsequently 4-fold serially diluted from 1:2 to 1:2,048. SARS-CoV-2
viruses (3.6 × 105 TCID 50/mL) were then mixed with diluted sera and incubated for
1 h at 37 ◦C. The mixture was subsequently added to target cells plated the previous
day at 30,000 cells/well in clear-bottom black-walled 96-well culture plates. Four hours
later, wells were washed with PBS and 100 µL DMEM supplemented with 2% FBS was
added. Twenty hours later, the detection of infected cells was performed by means of
immunofluorescent labeling using a primary antibody directed against the SARS-CoV-2
nucleoprotein (GTX135357, Euromedex, Souffelweyersheim, France) followed by labeling
with a secondary Alexa fluor antibody (594 nm) (A11037, ThermoFisher Scientific). Total
cells were labelled with DAPI. Fluorescence was quantified using multipoint fluorescence
intensity detection with top optics on a Varioskan LUX multimode reader, operated with
SkanIt Software 6.0. The procedure involves the measurement of the fluorescence intensity
within a defined arrangement of 29 points on the bottom of each well. Fluorescence was
quantified at both 450 nm (DAPI) and 620 nm (Nucleoprotein) for each of the 29 points.
Fluorescence at 620 nm was normalized with the corresponding DAPI fluorescence.

2.5. Statistical Analyses

The experiments were performed in triplicate. Data are expressed as mean ± SEM
or percentages. Statistical differences between the means of two datasets were assessed
using the unpaired, two-sided Student’s t test. Correlations between the two datasets were
calculated using Spearman’s correlation coefficient with Graphpad Prism software, version
is 9.4.1, San Diego, CA, USA.

3. Results
3.1. Effectiveness of a Third “Booster” Vaccine Dose in HSCT Recipients vs. Two Doses Only in
Immunocompetent Patients

The 50% neutralization effectiveness (NT50) of sera from allogeneic HSCT recipients
(ImmunoSupp-V group) who received two or three BNT162b2 vaccine doses was assessed
by means of a fluorescence-based neutralization assay on different SARS-CoV-2 variants,
including the ancestral variant (i.e., harboring D614G), variant beta, variant delta and
variant Omicron BA.1 (Figure 1). For each of these variants, the neutralization capacities
after two and three doses were compared to those obtained after two BNT162b2 doses in
immunocompetent healthcare workers (ImmunoComp-V group) and, additionally for the
ancestral variant (i.e., harboring D614G), variant beta, and variant delta, in convalescent
immunocompetent patients naturally infected with SARS-CoV-2 (ImmunoComp-C group),
serving as control groups (Figure 2).

As shown in Figures 2 and 3, serum-neutralizing titers increased in the majority of
allogeneic HSCT recipients (88%, 92%, 80%, and 73% against variants D614G, beta, delta,
and Omicron, respectively) after the third dose, as compared to their response after the
second dose. Quantitatively, the increase in neutralizing capacity was significant: 3.8-fold,
3.5-fold, 2.8-fold, and 2.3-fold against variants D614G (p < 0.01), beta (p < 0.001), delta
(p < 0.001), and omicron (p < 0.001), respectively (Figures 2 and 3). Overall, the proportion
of non-responders, defined by an NT50 > 0.5 (i.e., the smallest serum dilution) was smaller
after the third dose than after only two doses (11% vs. 42% for D614G, 4% vs. 30% for variant
Beta, 19% vs. 58% for variant delta, and 42% vs. 73% for variant Omicron, respectively).

When comparing neutralizing capacities between allogeneic HSCT recipients and
the two immunocompetent groups, neutralizing capacities were significantly lower with
all variants after two doses of the BNT162b2 vaccine in the former than in the two latter
groups. In contrast, after three BNT162b2 vaccine doses, serum-neutralizing capacities
were not significantly different from those in two-dose-vaccinated healthy individuals for
the tested variants. However, the neutralizing capacity was reduced against Omicron BA.1
in all groups including in the three-dose immunocompromised group (p = 0.02) (Figure 2).
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Figure 1. Immunofluorescence labeling of SARS-CoV-2 variant delta infection in Calu-3 cells and neu-
tralization by patient serum dilutions. Representative examples of individuals from the three groups
are shown, including ImmunoSupp-V (double- then triple-vaccinated allogeneic HSCT recipients),
ImmunoComp-V (double-vaccinated immunocompetent healthcare workers), and ImmunoComp-C
(immunocompetent non-vaccinated convalescent individuals).
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Figure 2. Antibody-mediated neutralization effectiveness of sera from the three groups tested against
SARS-CoV-2 variants D614G, Beta, Delta, and Omicron (BA.1). NT50 represents the serum dilution
resulting in 50% virus neutralization. Neutralization assay was performed using serum samples ob-
tained from double- or triple-BNT162b2 vaccinated immunocompromised allogeneic HSCT recipients
(ImmunoSupp-V), non-vaccinated immunocompetent convalescent individuals (ImmunoComp-C), and
double-BNT162b2-vaccinated healthy immunocompetent individuals (ImmunoComp-V). Negative
titers were handled as 0.5. Statistical significance was calculated by two-tailed, paired Student’s
t tests. Asterisks indicate p-values as **: p < 0.01, and ***: p < 0.001. NS: Not significantly different.
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Figure 3. Changes in serum-neutralizing effectiveness against variants D614G, beta, delta, and
Omicron (BA.1) after a third dose of BNT162b vaccine compared to post-second vaccine dose in
allogeneic HSCT recipients from the ImmunoSupp-V group. The experiments were performed in
triplicate. Asterisks indicate p-values as **: p < 0.01 and ***: p < 0.001.

3.2. Relationship between Anti-S-RBD Antibody Responses and Neutralization Titers

Anti-S-RBD antibodies were quantified in the sera from all vaccinated individuals
included in the study and plotted against their respective NT50 against D614G, variant
beta, and variant delta (Figure 4). Spearman correlation coefficients ranged from 0.70 to
0.93 in immunocompromised allogeneic HSCT recipients and from 0.69 to 0.88 in im-
munocompetent vaccinated individuals. Thus, the correlation was strong between the
anti-S-RBD antibody detected in serum and the in vitro neutralizing capacity for these
variants, irrespective of the immunological status of the individuals tested.
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Figure 4. Relationship between serum neutralization titers in cell culture and the amounts of anti-
S-RBD antibodies detected in the same sera from individuals in the ImmunoSupp-V (double- or
triple-BNT162b2 vaccinated immunocompromised allogeneic HSCT recipients) and ImmunoComp-V
(double-BNT162b2 vaccinated healthy immunocompetent individuals) groups. Anti-S-RBD titers
were plotted against the corresponding NT50 for variants D614G, Beta, Delta, and Omicron BA.1.
Correlations between NT50 and anti-S-RBD titers were calculated using Spearman’s correlation, and
p-values are indicated for each graph.

4. Discussion

COVID-19 RNA vaccines prevent infection in the majority of vaccine recipients. How-
ever, several SARS-CoV-2 variants of concern, including variants Beta (B.1.351), Delta
(B.1.617.2), and more recently, Omicron, have been reported to have the potential to escape
vaccine-induced immune responses in individuals with insufficient levels of neutralizing
antibodies [14–17]. In addition, certain groups of patients, in particular immunocom-
promised individuals, generally fail to mount efficacious immune responses following
vaccination [11,18].

Inducing the production of SARS-CoV-2 neutralizing antibodies directed against the
spike protein is one of the vaccine’s goals that achieves protection against the virus. In
France, national guidelines recommend the use of anti-SARS-CoV-2 spike protein receptor-
binding domain antibody titration to establish whether immunocompromised patients
are well, poorly, or not at all protected against infection. This biomarker can be detected
and quantified by means of commercially available automated enzyme immunoassays
that quantify anti-spike antibodies based on the calibration of neutralizing activity against
variants that circulated early during the pandemic, i.e., the original Wuhan strain that
preceded VOC emergence. However, very few data have been generated on the ability of
such antibodies to neutralize VOCs, particularly in immunocompromised patients.

In the present study, we used an in-house neutralization assay to measure the mag-
nitude of neutralization associated with the anti-spike antibody response against several
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VOCs (including variants Beta, Delta, and Omicron BA.1) in immunocompromised allo-
geneic HSCT recipients who received two and three doses of the mRNA vaccine. Antibody
responses in healthy immunocompetent vaccinated individuals and in non-vaccinated con-
valescent patients were used as comparators. We show that immunocompromised patients
respond suboptimally to two doses of vaccines, but this insufficiency can be compensated
by administering a third “booster” dose one month later. Indeed, in our experiments,
the neutralization capacity of our HSCT recipients’ sera against variants Beta, Delta, and
Omicron increased after three vaccine doses up to values similar to those observed in the
two control groups. However, the neutralizing activity against Omicron was still weak in
these groups, as has been reported elsewhere [19]. Interestingly, the neutralizing capacity
of the sera correlated with the amount of anti-S-RBD antibodies measured by means of
enzyme immunoassay.

Our findings have several potential practical implications: (i) Commercially available
assays can reliably be used to quantify the anti-S-RBD antibody response in serum, as
a reliable surrogate marker of humoral immune protection against circulating VOCs in
both immunocompetent and immunocompromised individuals; (ii) increasing anti-S-RBD
antibody titers generated after the third vaccine dose in immunocompromised patients
correlate with higher neutralizing potency against variants Beta and Delta but an insuffi-
cient response against Omicron. In the context of Omicron circulation, these results further
emphasize the need for reinforcement of preventive measures including the administration
of active monoclonal antibodies in this high-risk population.

5. Conclusions

Together, these findings support the recommendation of early vaccine doses as boost-
ers of humoral neutralizing activity against emerging variants, in particular in immunocom-
promised patients. In the context of Omicron circulation, these results further emphasize
the need for reinforcement of preventive measures including the administration of active
monoclonal antibodies in this high-risk population.
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