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Recent advances in microbiome research have led to the further development of microbial interventions, such 
as probiotics and prebiotics, which are potential treatments for constipation. However, the effects of probiotics 
vary from person to person; therefore, the effectiveness of probiotics needs to be verified for each individual. 
Individuals showing significant effects of the target probiotic are called responders. A statistical model for the 
evaluation of responders was proposed in a previous study. However, the previous model does not consider the 
lag between intake and effect periods of the probiotic. It is expected that the lag exists when probiotics are 
administered and when they are effective. In this study, we propose a Bayesian statistical model to estimate the 
probability that a subject is a responder, by considering the lag between intake and effect periods. In synthetic 
dataset experiments, the proposed model was found to outperform the base model, which did not factor in the 
lag. Further, we found that the proposed model could distinguish responders showing large uncertainty in terms 
of the lag between intake and effect periods.
1. Introduction

Recent advances in microbiome research have resulted in the rapid 
development of microbial interventions, such as probiotics and prebi-

otics, which are potential treatments for constipation [1]. Probiotics are 
living microbes that benefit the host when ingested in sufficient quan-

tities and are reported to improve defecation frequencies and treat con-

stipation [1,2]. The effects of probiotics vary from person to person [3]. 
Individuals exhibiting significant effects of probiotics are called “re-

sponders” [4]; each responder exhibits a significant effect of a different 
probiotic. That is, different responders respond to different probiotics, 
and individual differences make it difficult to evaluate the effects of 
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probiotics. Therefore, experimental designs used for probiotic research 
should consider the individual differences between subjects.

One type of sophisticated experimental design is a cross-over trial, 
in which each subject takes both the target probiotic and a placebo. 
A cross-over trial comprises the following steps: (1) Each individual is 
first administered a capsule containing the target probiotic or placebo 
for several days. (2) After a washout period, which lasts several weeks 
and is set to remove the effects of the former capsule, each individ-

ual is administered another capsule (containing either a probiotic or a 
placebo) for a specific period. Cross-over trials are widely applied in 
various fields of research, including research related to probiotics [5], 
prebiotics [6], neurorehabilitation [7], and spinal manipulation [8]. 
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Fig. 1. Schematic illustration of the effect of lag in cross-over trials. Blue and orange boxes represent the placebo and target probiotics periods, respectively. 𝑑1 , 𝑑2 , 
𝑑3 , and 𝑑4 represent the start day index of the first capsule, the end day index of the first capsule, the start day index of the second capsule, and the end day index of 
the second capsule, respectively. 𝜇 and 𝜈 are the lag of effect start and end, respectively. 𝐺𝑡 shows the term of the day in the 𝑡-th segment. The time when an effect 
of the probiotic was observed was delayed compared to the time the probiotic was ingested. In this case, the subject was first administered the placebo capsule and 
then the target probiotic capsule.
The main advantage of cross-over trials is that they enable the evalua-

tion of individual differences [9], which are supposed to be determined 
by attributes such as gender, genetics, and habits. Accordingly, datasets 
obtained from a cross-over trial require a reasonable analysis method 
that considers individual differences.

An approach to estimate individual differences has already been 
conducted in a previous study. Nakamura et al. evaluated improvements 
in defecation frequencies using a Weibull regression model [10]. They 
revealed individual differences in the improvement of defecation fre-

quency by grouping subjects into three groups: strong responders, weak 
responders, and non-responders. However, their model used the unrea-

sonable assumption that the effects of the target probiotics start on the 
day the probiotic is administered to the subject. A previous study sug-

gested that orally ingested material should be excreted for one or more 
days [11]. In addition, it has been estimated that it can take more than 
ten hours for microbes to increase dramatically [12] and at least two 
days for food to alter the gut microbiome [13]. Therefore, analyses that 
do not consider the lag between intake and effect periods can lead to 
a misidentification of responders, especially in short-term intervention 
experiments.

In this study, we propose a Bayesian statistical model for estimat-

ing the efficacy of a target probiotic in improving defecation frequency, 
considering the lag between intake and effect periods (Fig. 1) and in-

dividual differences in a cross-over trial dataset. This study aimed to 
identify responders accurately using cross-over trial datasets where the 
lag between intake and effect periods exists. The proposed model is 
based on the segmented linear regression model, which represents each 
periodic term using linear regression, and has discrete parameters for 
lag days. The proposed model evaluates the cumulative sum of the num-

ber of times a subject defecates. An individual can be evaluated based 
on the posterior probability that the individual is a responder to pro-

biotics. With the proposed model, we estimated whether each subject 
is a responder using synthetic datasets and the real dataset used in the 
previous study [10]. We compared the results of the proposed model 
with those of a base model that did not consider the lag period. Our 
analysis showed that considering the effect of time lag was useful in the 
synthetic dataset experiments. Real data experiments showed that the 
proposed model estimated the posterior distribution considering the ef-

fect lag and led to different conclusions from those of the base model. 
We found that the proposed model could eliminate uncertain respon-

ders (responders whose response to a probiotic is uncertain) according 
to the lag between intake and effect periods.

2. Materials and methods

2.1. Overview

Here, we provide an overview of the proposed model. The pro-

posed model requires a dataset representing the cumulative sum of the 
number of defecation events collected from a cross-over trial. Fig. 1
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shows the schematic illustration of the respective cross-over trial whose 
dataset was used in this study. The terms of the trial are divided into 
several periodic terms with respect to capsule intake/effect and are de-

noted as “segments.” Here, 𝑆 = 5 is used in this figure and the dataset 
used in this study, where 𝑆 is the number of segments. The proposed 
Bayesian statistical model is based on segmented linear models for 
the cumulative sum of the number of defecation events. The proposed 
model can consider the lag between intake and effect periods (cf. Sec-

tion 1) using the number of lag days as discrete parameters.

2.2. Generative process

Here, we describe the generative process of the proposed model. 
The proposed model demands the cumulative sum of the defecation 
frequency 𝑦𝑖(𝑖 = 1 … 𝑁), where 𝑁 is the number of days in the entire 
trial term. This model is for one subject. Let 𝛼 ∈ ℝ, 𝜂 ∈ ℝ, and 𝜂̃ ∈
ℝ be the logarithmic defecation frequency during normal periods, the 
effect of target probiotics, and the effect of capsules, respectively. Here, 
the effect of the capsule indicates the effects of ingesting the capsule, 
regardless of its content. That is, the effect of the capsule is observed in 
both the target probiotic and placebo periods. Although 𝜂̃ is utilized to 
denote the effect of “the capsule,” the proposed model does not rely on 
the form of the target probiotics or the placebo. The prior distributions 
of 𝛼, 𝜂, and 𝜂̃ are as follows.

𝛼 ∼WIP,

𝜂 ∼WIP,

𝜂̃ ∼WIP,

where WIP denotes the weakly informative prior distribution. We use 
Cauchy(0,10) as the weakly informative prior distribution in this study, 
where Cauchy

(
𝑥0, 𝛾

)
denotes the Cauchy distribution with the location 

parameter 𝑥0 and scale parameter 𝛾 . Let 𝜇 and 𝜈 be the lag of effect 
start and end, respectively. 𝜇 and 𝜈 are shared by the effects of capsules 
and probiotics. Specifically, the effects of the capsules and probiotics 
emerged 𝜇 days after the subject ingested the capsule and expired 𝜈 days 
after the subject stopped taking the capsule. Here, we assume that 𝜇 and 
𝜈 are up to several days long using the following prior distributions:

𝜇 ∼DiscreteUniform
(
0, 𝜇max

)
,

𝜈 ∼DiscreteUniform
(
0, 𝜈max

)
,

where DiscreteUniform(𝑎, 𝑏) denotes the discrete uniform distribution 
with minimum value 𝑎 and maximum value 𝑏, and 𝜇max and 𝜈max are 
the maximum values of 𝜇 and 𝜈, respectively. We used 𝜇max = 𝜈max = 5
in this study. We modified the segment in which the subject ingested 
the capsule using 𝜇 and 𝜈 as follows:

𝑑′
1 = 𝑑1 + 𝜇,

𝑑′
2 = 𝑑2 + 𝜈,
𝑑′
3 = 𝑑3 + 𝜇,



S. Hosoda, Y. Nishimoto, Y. Yamauchi et al.

𝑑′
4 = 𝑑4 + 𝜈,

where 𝑑1, 𝑑2, 𝑑3, and 𝑑4 represent the start day index of the first capsule, 
the end day index of the first capsule, the start day index of the second 
capsule, and the end day index of the second capsule, respectively; and 
𝑑′
1, 𝑑

′
2, 𝑑

′
3, and 𝑑′

4 indicate the effect start day index of the first capsule, 
the effect end day index of the first capsule, the effect start day index of 
the second capsule, and the effect end day index of the second capsule, 
respectively. Let 𝑂, 𝑃 , and 𝑇 be the sets of day indices in the normal, 
placebo, and target probiotic periods, respectively. 𝑂, 𝑃 , and 𝑇 are 
given by

𝑂 =
{
𝑖 ∣ 1 ≤ 𝑖 < 𝑑′

1 ∨ 𝑑′
2 ≤ 𝑖 < 𝑑′

3 ∨ 𝑑′
4 ≤ 𝑖

}
,

𝑃 =

{{
𝑖 ∣ 𝑑′

1 ≤ 𝑖 < 𝑑′
2
}

𝐶 = 0,{
𝑖 ∣ 𝑑′

3 ≤ 𝑖 < 𝑑′
4
}

𝐶 = 1,
(1)

𝑇 =

{{
𝑖 ∣ 𝑑′

3 ≤ 𝑖 < 𝑑′
4
}

𝐶 = 0,{
𝑖 ∣ 𝑑′

1 ≤ 𝑖 < 𝑑′
2
}

𝐶 = 1,
(2)

where 𝐶 indicates the cross-over type, which shows the order of the tar-

get probiotic and placebo capsules. The subject was first administered 
the placebo and then the target probiotic when 𝐶 = 0, and the subject 
was first administered the target probiotic and then the placebo when 
𝐶 = 1. Let 𝛽𝑖 be the rate of increase in the cumulative sum of the defe-

cation frequency on the 𝑖-th day. 𝛽𝑖 depends on the period in which the 
𝑖-th day lies, as given below:

𝛽𝑖 =
⎧⎪⎨⎪⎩
exp(𝛼) 𝑖 ∈𝑂,

exp(𝛼 + 𝜂̃) 𝑖 ∈ 𝑃 ,

exp(𝛼 + 𝜂 + 𝜂̃) 𝑖 ∈ 𝑇 .

(3)

The intercept of the 𝑖-th segment 𝛾𝑖 is defined as

𝛾𝑖 =

{
0 𝑖 ∈𝐺1,

𝑦𝑑′
𝑡−1−1

− 𝛽𝑖(𝑑′
𝑡−1 − 1) 𝑖 ∈𝐺𝑡 ∧ 𝑡 > 1,

where 𝐺𝑡 is the set of the day indices in the 𝑡-th segment. Here, 𝛾𝑖 is 
calculated such that the regression line passes through the observation 
point 

(
𝑑′
𝑡−1 − 1, 𝑦𝑑′

𝑡−1−1

)
. This calculation enables the precise evaluation 

of the increase in the cumulative sum of the defecation frequencies in 
each segment. 𝛾𝑖 in the first segment equals zero because the cumula-

tive sum of defecation frequencies is 0 before the first day. Here, we 
considered the placebo effect of defecation frequencies because placebo 
effects have been confirmed in previous studies [14,15]. The distribu-

tion of the 𝑖-th day cumulative sum of defecation frequencies 𝑦𝑖 is as 
follows:

𝑦𝑖 ∼Normal
(
𝛽𝑖𝑖+ 𝛾𝑖, 𝜎

2),
where

𝜎2 ∼WIP>𝜀.

Here, WIP>𝜀 denotes the truncated weakly informative prior distribu-

tion, whose domain of definition is 𝑥 > 𝜀 with a random variable 𝑥. We 
used 0.1 as 𝜀.

2.3. Parameter estimation

We estimated the posterior distribution of the parameters of the 
proposed model using the No-U-Turn-Sampler (NUTS) [16], which is 
a Markov chain Monte Carlo (MCMC) method. Because the NUTS can 
sample only continuous parameters, we estimated the following poste-

rior distribution marginalized with respect to 𝜇 and 𝜈:∑∑
𝑝(𝛼, 𝜂, 𝜂̃, 𝜇, 𝜈, 𝜎2|𝑦1∶𝑁,𝑑1∶4),
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𝜇 𝜈
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where ⋅1∶𝑁 denotes the set 
{
⋅𝑖
}𝑁

𝑖=1. We implemented a parameter esti-

mation algorithm using PyStan (https://github .com /stan -dev /pystan). 
We used five chains of MCMC and then sampled parameters 1000 times 
randomly for each chain and discarded the first half of the samples as 
burn-in samples, which were supposed to depend on the initial sample. 
We used 15 as the maximum tree depth in the NUTS algorithm (called 
the “max_treedepth” option in the PyStan library). The other hyperpa-

rameters were set by default.

2.4. Evaluation by scoring improvement of defecation frequency

We defined the following defecation frequency improvement (DFI) 
score DFI(𝜇, 𝜈):

DFI(𝜇, 𝜈) ≡ ln
1|𝑇 | ∑𝑖∈𝑇 𝑥𝑖

1|𝑃 | ∑𝑖∈𝑃 𝑥𝑖

,

where 𝑥𝑖 is the defecation frequency of the 𝑖-th day, and 𝑇 and 𝑃 are 
defined by Eq. (1) and Eq. (2), respectively, for the score parameters 𝜇
and 𝜈. The DFI score indicates the log ratio of the defecation frequency 
in the target probiotic period to that in the placebo period.

2.5. Synthetic data experiment

We generated synthetic datasets and estimated the parameters using 
these datasets to evaluate the performance of the proposed model. We 
generated 𝛼, 𝜂, 𝜂̃, 𝜇, and 𝜈 using the following distribution:

𝛼 ∼Normal(0,0.1),

𝜂 ∼Normal(0,0.2),

𝜂̃ ∼Normal(0,0.2),

𝜇 ∼DiscreteUniform(0,5),

𝜈 ∼DiscreteUniform(0,5).

After computing 𝛽𝑖 using 𝛼, 𝜂, 𝜂̃, 𝜇, and 𝜈 (cf. Eq. (3)), the number of 
days between the 𝑙-th and 𝑙 + 1-th defecation events for subject 𝑣𝑙 ∈ ℝ
was obtained as follows:

𝑣𝑙 ∼Gamma

(
1

𝜎(𝑣)2𝛽2
𝑖

, 𝜎(𝑣)2𝛽𝑖

)
,

where Gamma(𝑎, 𝑏) denotes the gamma distribution with the shape pa-

rameter 𝑎 and scale parameter 𝑏 and 𝜎(𝑣)2 is the variance of the interval. 
The mean and variance of this gamma distribution were 1∕𝛽𝑖 and 𝜎(𝑣)2, 
respectively. We generated 𝑣𝑙 until ∑𝑙 𝑣𝑙 exceeded the number of days 
in each segment and obtained 𝑦𝑖 by transforming the defecation inter-

vals. We randomly generated datasets 1000 times and estimated the 
posterior distributions of the parameters once for each dataset. We 
used 

(
𝑑1, 𝑑2, 𝑑3, 𝑑4

)
= (29, 43, 71, 85), (51, 76, 126, 151), (101, 151, 251, 301), 

𝑁 = 85, 151, 301, 𝜎(𝑣)2 = 0.001, 0.01, 0.1, and 𝐶 = 0 in one half of the sub-

jects and 𝐶 = 1 in the other half of the subjects for each dataset.

2.6. Real data experiment

We used a real dataset from a previous study [10], which conducted 
a randomized double-blind controlled cross-over trial. Twenty subjects 
received Bifidobacterium longum capsules in the experiment. Eleven sub-

jects were administered placebo capsules from day 29 to 42 and the 
target probiotic capsules from day 71 to 84 (𝐶 = 0), and the remaining 
nine subjects were administered them in the reverse order (𝐶 = 1). That 
is, 

(
𝑑1, 𝑑2, 𝑑3, 𝑑4

)
= (29, 43, 71, 85) was used in the trial. Subjects reported 

their defecation frequencies every day in the trial term. See [10] for the 

details of the trial.

https://github.com/stan-dev/pystan
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Fig. 2. The heat map of the true 𝜇, 𝜈 and 𝜇, 𝜈 estimated by the proposed model for each synthetic dataset, where the number of observation points is the same as 
that of the real dataset. The 𝑥- and 𝑦-axes indicate the true 𝜇, 𝜈 and estimated 𝜇, 𝜈 values, respectively. Each column represents the sum of the probabilities of each 
estimate for the subject, whose true value is that in the column. a, b, and c indicate the 𝜇 results when 𝜎(𝑣)2 = 0.1, 𝜎(𝑣)2 = 0.01, and 𝜎(𝑣)2 = 0.001, respectively. d, e, 
and f indicate the 𝜈 results when 𝜎(𝑣)2 = 0.1, 𝜎(𝑣)2 = 0.01, and 𝜎(𝑣)2 = 0.001, respectively.
2.7. Bayesian beta regression of responder probability on the microbial 
relative abundances

We conducted regression analysis using the beta regression model 
[17]. Let 𝑟𝑖 be the response probability of the 𝑖-th subject. The Bayesian 
beta regression model represents 𝑟𝑖 using the standardized relative 
abundances of the bacteria in the 𝑖-th subject shortly before the start 
of capsule administration, which is denoted by 𝐦𝑖. 𝐦𝑖 is the 𝐷-

dimensional vector, and 𝐷 is the number of the different bacteria. The 
generative process is as follows:

𝜙 ∼WIP>0,

𝜆 ∼WIP>0,

𝑏𝑗 ∼Normal(0, 𝜆),

𝜃𝑖 = logit−1
(
𝐛T𝐦𝑖

)
,

𝑟𝑖 ∼ Beta
(
𝜃𝑖𝜙, (1 − 𝜃𝑖)𝜙

)
,

where 𝜙 is the precision parameter obtained by reparameterizing the 
beta distribution parameters. 𝜆 is the regularization parameter. 𝐛 =(
𝑏1,… , 𝑏𝐷

)T
is the regression parameter vector; logit−1(⋅) is the inverse-

logit function; and Beta(𝑎, 𝑏) denotes the beta distribution with the 
shape parameters 𝑎 and 𝑏. Because the domain of the definition of the 
beta distribution does not include zero or one, we added 10−5/−10−5 to 
𝑟𝑖 when 𝑟𝑖 is zero or one. The same method as in Section 2.3 was used 
for the parameter estimation.

2.8. Microbiome data

The 16S rRNA sequence data were obtained from the DDBJ 
DRA(DRA006874). QIIME2 (version 2019.10) was used for the 16S 
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rRNA gene analysis [18]. In the analytical pipeline, sequence data were 
processed using the DADA2 pipeline for quality filtering and denoising 
(options: –p-trunc-len-f 150 –p-trunc-len-r 190–p-max-ee-f 3.0 –p-max-

ee-r 3.0) [19]. The filtered output sequences were assigned to different 
taxa using the “qiime feature-classifier classify-sklearn” command with 
the default parameters. Silva SSU Ref Nr 99 (version 132) was used as 
the reference database for taxonomy assignment [20]. For the regres-

sion analysis, we used only those taxa with a non-zero abundance in at 
least 15 subjects.

3. Results

3.1. Performance evaluation with synthetic datasets

We evaluated the performance of the proposed model under various 
conditions using synthetic datasets (cf. Section 2.5). To verify the accu-

racy of 𝜂, we compared the estimated and true values (Supplementary 
Fig. S1). In the case of 𝜎(𝑣)2 ≤ 0.01, the proposed model could accu-

rately estimate 𝜂. 𝜎(𝑣)2 ≤ 0.01, the standard deviation 𝜎(𝑣) ≤ 0.1, means 
that defecation events with the one-sigma error are within ±2.4 hours 
(cf. Section 2.5).

We also verified the estimation accuracy of 𝜇 and 𝜈. Fig. 2 shows the 
sum of the probabilities for each true 𝜇 and 𝜈 to evaluate the uncertainty 
of the estimation. The diagonal elements in Fig. 2def, which shows the 
results of 𝜈, are high in the 𝜎(𝑣)2 ≤ 0.01 experiments. However, as shown 
in Fig. 2abc, which shows the results for 𝜇, the proposed model tends 
to overestimate the 𝜇 value.

To evaluate the performance improvement by considering the lag 
between intake and effect periods, we identified responders based on 
the posterior distributions. Here, we defined responders as the subjects 
with 𝜂 > 0. Fig. 3 shows the receiver operating characteristic (ROC) 
curve of the proposed and base models. We used the proposed model 
with 𝜇max = 𝜈max = 0 (cf. Section 2.2), which does not consider the lag, 

as the base model. The proposed model outperformed the base model, 
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Fig. 3. The ROC curve for identifying responders based on the estimated posterior distributions of 𝜂 in the synthetic datasets of 𝑁 = 85 and (𝑑1, 𝑑2, 𝑑3, 𝑑4) =
(29,43,71,85) using the proposed model (𝜇max = 𝜈max = 5) and the base model (𝜇max = 𝜈max = 0). The 𝑥- and 𝑦-axes indicate the false positive and true positive rates, 
respectively. The blue and orange dashed lines indicate the results for 𝜇max = 𝜈max = 5 and 𝜇max = 𝜈max = 0, respectively. The red circle, blue triangle, and green square 
indicate the performance of responder identification with the threshold of the probability of 𝜂 > 0 0.5, 0.7, and 0.95, respectively, when 𝜇 = 𝜈 = 5.
Fig. 4. Estimated posterior distributions of 𝜂 for each subject. The 𝑥- and 𝑦-axes 
indicate the subjects and 𝜂 values, respectively. The bar shows the median of the 
posterior distribution. The error bars represent the 2.5% and 97.5% percentiles.

and the effectiveness of considering the lag was demonstrated in the 
case where a lag exists. Fig. 3 also shows the performance for each 
threshold of the posterior probability of 𝜂 > 0. In the case of 𝜎(𝑣)2 ≤ 0.01, 
identification with a threshold of 0.95 showed a low false positive rate.

3.2. Responder evaluation using a real dataset

We conducted an experiment using a real dataset (cf. Section 2.6). 
To evaluate the effect of the target probiotic on each subject, we visu-

alized the estimated posterior distribution of 𝜂 (Fig. 4). Subjects MO04, 
MO05, MO10, and MO16 exhibited high values of 𝜂, which mean high 
efficacy of probiotics. In contrast, subjects MO06 and MO18 exhibited 
low values of 𝜂. The 95% Bayesian credible intervals of subjects MO02, 
MO04, MO05, MO06, MO08, MO10, MO12, MO13, MO16, MO18, and 
5354

MO23 did not include zero. The posterior distributions of 𝜇 and 𝜈 are 
max max

Fig. 5. The probability that each subject is a responder based on the posterior 
distribution. The 𝑥- and 𝑦-axes indicate the subjects and probabilities of 𝜂 > 0, 
respectively. The horizontal line indicates that the probability equals 0.95.

shown in Supplementary Fig. S2. We can see that the estimated values 
of 𝜇 and 𝜈 vary from person to person.

We also examined the estimated probability that each subject was 
a responder (Fig. 5). We counted the number of samples that satisfied 
𝜂 > 0 and computed the ratio of the count to the number of all sam-

ples as the posterior probability. The probabilities of subjects MO02, 
MO04, MO05, MO08, MO09, MO10, and MO16 exceeded 0.95. In a 
previous study, subjects MO04, MO05, and MO10 were reported as 
responders, whereas subject MO16 was a non-responder [10]. Supple-

mentary Fig. S3 shows the posterior distributions of 𝜂 estimated by 
the base model, which did not consider the lag (𝜇max = 𝜈max = 0). The 
Bayesian credible interval of subject MO16 also did not include zero, 
but the median was estimated to be lower than that of the proposed 
model. The results for subjects MO22 and MO24 showed large differ-

ences between the proposed and base models. The median values of the 
base model were larger than those of the proposed model, and their 
identification of responders based on 95% Bayesian credible intervals 

led to different conclusions (Fig. 5 and Supplementary Fig. S4).
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Fig. 6. DFI scores (cf. Section 2.4) of all subjects. The title of each panel indicates the subject and the result of the responder identification by the proposed and base 
models. The left and right circles indicate the proposed and base model results, respectively. The filled circle indicates that the subject is identified as a responder, 
and the open circle indicates that the subject is not. The 𝑥- and 𝑦-axes indicate 𝜈 and 𝜇 of the score parameters, respectively. Each value indicates the score. A darker 
color indicates a higher score.
To verify the consistency between the posterior distributions and 
the used dataset, we evaluated the improvement in the defecation fre-

quency using scoring (cf. Section 2.4). Fig. 6 shows the DFI score of 
subjects where 𝜇 = 0 … 5 and 𝜈 = 0 … 5. While the DFI scores of 𝜇 = 0
and 𝜈 = 0 for subject MO24, which was identified as a responder by 
the base model, were 0.18, the DFI scores for 𝜇 ≠ 0 and 𝜈 ≠ 0 were less 
than 0. Therefore, subject MO24 did not show an improvement in the 
defecation frequency when a lag in the effect period existed, and the 
proposed model reflected the specifications of subject MO24. We also 
examined the fit of the predictive distribution to the data set (Fig. 7). 
We observed that using the cumulative sum enabled the consideration 
of the uncertainty caused by uneven defecation frequencies. For exam-

ple, the defecation frequencies of MO04 and MO12 were comparable, 
but the uncertainty was estimated to be larger for MO04 because of the 
uneven defecation frequencies.

To investigate the relationship between the response to probiotics 
and gut microbiota, we performed Bayesian beta regression of the re-

sponder probability on the microbial abundance features before the 
target probiotic periods. Fig. 8 shows the posterior distribution of the 
regression parameters. The negative effect of Agathobacter was esti-

mated. This result for Agathobacter is consistent with that of the pre-

vious study [10]. However, The 95% Bayesian credible intervals for all 
regression parameters included zero, and we could not conclude any 
microbial effect based on them.

4. Discussion

One of the benefits of using statistical Bayesian models is its adapt-

ability and the potential for extensive customization. If our model is 
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desired to be applied to other phenotype datasets, it can be employed 
with a slightly modified structure. For example, consider a blood pres-

sure value case. 𝑦𝑖 indicates the blood pressure value, which is continu-

ous and not cumulative. In this case, the 𝑦𝑖 distribution of the form

𝑦𝑖 ∼Normal
(
𝛽𝑖, 𝜎

2),
can represent the continuous values for days in each segment. There-

fore, although the proposed model in this study was applied to the 
cumulative sum of defecation frequencies, the key idea of the model 
is supposed to be widely applicable in cross-over trial datasets.

We used the same lag of the start/end day for the placebo and the 
target probiotic periods. However, these two types of lags may differ 
because of their sources. While the lag in the target probiotic period is 
likely to be caused by physical factors (digestion and changes in phys-

ical conditions), the lag in the placebo period is likely to be caused 
by cognitive factors [21]. Therefore, introducing different lag param-

eters for the placebo and target probiotic periods may enable better 
estimation. However, adding these parameters can render the estima-

tion computationally expensive.

We used uniform distributions with fixed hyperparameters as prior 
distributions of 𝜇 and 𝜈. There are several options for the prior distri-

bution. Setting prior distributions based on literature enables a more 
accurate estimation of parameters. In addition, the covariance between 
𝜇 and 𝜈 can reflect the consistency of 𝜇 and 𝜈 in a subject if a covariate 
between 𝜇 and 𝜈 can be assumed.

𝜇 and 𝜈 play key roles in the proposed model. In the synthetic data 
experiments (Section 3.1), the estimation performance of 𝜇 and 𝜈 was 
not very accurate. However, the proposed model is effective for esti-

mating responders, as seen in the synthetic data experiments (Fig. 3). 
This is because considering all cases of (𝜇, 𝜈) contributes to the detec-
tion of responders when there is a lag in the effect period. However, 
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Fig. 7. Data used for the analysis and predictive distributions. Each plot shows each subject. The 𝑥- and 𝑦-axes indicate the day and cumulative sum of the defecation 
frequencies, respectively. The blue line and the blue area indicate real data and the 2.5% and 97.5% percentiles of predictive distributions, respectively. The red and 
black areas indicate the target probiotic and placebo intake periods, respectively.
Fig. 8. Posterior distributions of the coefficients of Bayesian beta regression. 
The 𝑥- and 𝑦-axes indicate bacteria and regression coefficients, respectively. The 
bar shows the median of the posterior distribution. The error bars represent the 
2.5% and 97.5% percentiles.

𝜇 and 𝜈 may not always be indispensable. The effects of 𝜇 and 𝜈 are 
limited for the long-term datasets because the number of lag days is 
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small relative to the number of days in the trial. Indeed, the difference 
between the base model and the proposed model is smaller for syn-

thetic long-term datasets containing observations made under similar 
conditions (Supplementary Fig. S5 and Supplementary Fig. S6). Nev-

ertheless, consideration of lag is still significant due to the following 
reasons: first, the proposed model still outperforms the base model in 
long-term datasets (Supplementary Fig. S5 and Supplementary Fig. S6), 
and second, experiments are frequently limited to a brief duration for 
economic reasons.

There is a limitation to determining responders based only on defe-

cation frequencies, which is suggested to be unreliable by the U.S. 
Department of Health and Human Services Food and Drug Adminis-

tration [22]. According to them, the identification of responders needs 
to be evaluated based on defecation frequency and abdominal pain in-

tensity. Therefore, deterministic estimation of responders may lead to 
wrong conclusions. We believe that the responder estimation based on 
the posterior distribution of 𝜂 conducted in this study enables us to con-

sider the uncertainty of the estimation and contribute to solving this 
problem.

5. Conclusion

In this study, we proposed a model for estimating the improvement 
in defecation frequencies using cross-over trial datasets and considering 
the lag between intake and effect periods. Using synthetic datasets, we 
verified that the proposed model could identify responders better than 
the base model. In the real dataset experiments, we identified seven 
responders based on the probability of 𝜂 > 0. The base model, which as-

sumed that the lag did not exist, identified subjects MO22 and MO24 
as responders in addition to those identified by the proposed model. 
Subjects MO22 and MO24 did not have high DFI scores when 𝜇 ≠ 0
and 𝜈 ≠ 0 (Fig. 6). The proposed model reflected these observations. 

The proposed model was suggested to eliminate uncertain responders 
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regarding the lag between intake and effect periods. In the regression 
analysis of the responder probabilities on the microbial relative abun-

dances before target probiotic intake, we found that Agathobacter had 
a negative effect. This result for Agathobacter is consistent with that of 
the previous study [10].

The proposed model effectively addresses the lag between intake 
and effect periods. The model demonstrated strong performance when 
lag was present. We believe that our model will help identify probiotic 
responders on cross-over trials for constipation.
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